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ABSTRACT

Gravitational wave signals from coalescing Massive Black Hole (MBH) binaries could be used as
standard sirens to measure cosmological parameters. The future space based gravitational wave
observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events,
providing very accurate measurements of their luminosity distances. To constrain the cosmological
parameters we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the
merger. This requires the identification of a distinctive electromagnetic event associated to the binary
coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead,
we study here the possibility of constraining the cosmological parameters by enforcing statistical
consistency between all the possible hosts detected within the measurement error box of a few dozen
of low redshift (z < 3) events. We construct MBH populations using merger tree realizations of the
dark matter hierarchy in a ΛCDM Universe, and we use data from the Millennium simulation to
model the galaxy distribution in the LISA error box. We show that, assuming that all the other
cosmological parameters are known, the parameter w describing the dark energy equation of state can
be constrained to a 4-8% level (2σ error), competitive with current uncertainties obtained by type Ia
supernovae measurements, providing an independent test of our cosmological model.
Subject headings: black hole physics – gravitational waves – cosmology: cosmological parameters –

galaxies: distances and redshifts – methods: statistical

1. INTRODUCTION

The Laser Interferometer Space Antenna (LISA,
Danzmann & the LISA Study Team 1997) is a space
based gravitational wave (GW) observatory which is ex-
pected to be launched in 2022+. One of its central scien-
tific goals is to provide information about the cosmic evo-
lution of massive black holes (MBHs). It is, infact, now
widely recognized that MBHs are fundamental building
blocks in the process of galaxy formation and evolution;
they are ubiquitous in nearby galaxy nuclei (see, e.g.,
Magorrian et al. 1998), and their masses tightly corre-
late with the properties of their host (Gültekin et al.
2009, and references therein). In popular ΛCDM cos-
mologies, structure formation proceeds in a hierarchi-
cal fashion (White & Rees 1978), through a sequence of
merging events. If MBHs are common in galaxy cen-
ters at all epochs, as implied by the notion that galaxies
harbor active nuclei for a short period of their lifetime
(Haehnelt & Rees 1993), then a large number of MBH bi-
naries are expected to form during cosmic history. LISA
is expected to observe the GW driven inspiral and fi-
nal coalescence of such MBH binaries out to very high
redshift with high signal-to-noise ratio (SNR), allowing
very accurate measurements of the binary parameters.
The collective properties of the set of the observed coa-
lescing binaries will carry invaluable information for as-
trophysics, making possible to constrain models of MBH
formation and growth (Plowman et al. 2010; Gair et al.
2010; Sesana et al. 2010).
Besides astrophysical applications, coalescing

MBHs could be used as standard sirens (Schutz
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1986; Holz & Hughes 2005; Lang & Hughes 2006;
Arun et al. 2007; Arun et al. 2009b; Lang & Hughes
2009; Van Den Broeck et al. 2010). The high strength
of the GW signals allows us to measure the luminosity
distance with a precision of less than a percent at
redshift z = 1 (neglecting weak lensing). However,
we need an electromagnetic identification of the host
in order to measure the source redshift and be able
to do cosmography. If the event is nearby (z < 0.4),
then we have a very good localization of the source on
the sky and we can identify a single cluster of galaxies
hosting the merger. As we go to higher redshifts, LISA
sky localization abilities become quite poor: a typical
sky resolution for an equal mass 106M⊙ inspiralling
MBH binary at z = 1 is 20-30 arcminutes a side at 2σ
(Trias & Sintes 2008; Lang & Hughes 2009; Arun et al.
2009a), which is in general not sufficient to uniquely
identify the host of the GW event. There is, therefore,
a growing interest in identifying putative electromag-
netic signatures associated to the MBH binary before
and/or after the final GW driven coalescence (for a
review, see Schnittman 2010, and references therein).
Electromagnetic anomalies observed before or after
the coalescence within the LISA measurements error
box may allow us to identify the host and to make a
redshift measurement. However, most of the proposed
electromagnetic counterparts are rather weak (below the
Eddington limit), and in case of dry mergers (no cold
gas efficiently funneled into the remnant nucleus) we
do not expect any distinctive electromagnetic transient.
This brings us back to the original idea by Schutz (1986)
to consider each galaxy within the LISA measurement
error box as a potential host candidate. The idea is
that, by cross-correlating several GW events, only one
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galaxy (cluster of galaxies) in each error box will give us
a consistent set of parameters describing the Universe.
The effectiveness of this method has been demonstrated
by MacLeod & Hogan (2008) in the context of the
Hubble constant determination by means of low redshift
(z < 0.2) extreme mass ratio inspirals.
We use the hierarchical MBH formation model sug-

gested by Volonteri & Begelman (2010) to generate cata-
logs of coalescing MBH binaries along the cosmic history.
This model predicts ∼ 100 MBHs mergers observable by
LISA in three years, in the redshift range [0 : 5]. We
do not use sources beyond redshift z = 3 due to difficul-
ties of measuring galaxy redshifts beyond that thresh-
old2. We model the galaxy distribution in the Universe
using the Millennium simulation (Springel et al. 2005).
For each coalescing MBH in our catalog, we select a host
galaxy in the Millennium run snapshot closest in red-
shift to the actual redshift of the event. For each galaxy
in the snapshot, we compute the apparent magnitude in
some observable band, and we create a catalog of red-
shift measurements of all the observable potential host
candidates. Note that typical observed mergers involve
104−106 M⊙ MBHs, which implies (using the black hole
mass–bulge relations, see, e.g., Gültekin et al. 2009) rel-
atively light galaxies. However, observed galaxies are
heavy due to selection effects: roughly speaking, mass
reflects luminosity, so that at high redshifts we can ob-
serve only very massive (luminous) galaxies. Therefore,
the actual host might not be (and often is not) among
the observed galaxies. The important fact is the self-
similarity of the density distribution: the local density
distribution for all galaxies and the density distribution
for heavy galaxies are quite similar, which allow us to
infer the likelihood of the host redshift on the basis of
redshift measurements of the luminous galaxies only.
We assume that the GW source parameter measure-

ments (GW likelihoods) are represented by multivari-
ate Gaussian distributions around the true values, with
the variance-covariance matrix defined by the inverse of
the Fisher matrix. This is a good approximation in the
case of Gaussian instrumental noise and large SNR. At
z ≥ 0.25 the uncertainty in the luminosity distance (DL)
is dominated by weak lensing due to the extended dis-
tribution of dark matter halos between us and the GW
source. In this paper we combine the luminosity distance
errors given by GW measurements and weak lensing, re-
ferring to them as GW+WL errors. We use two esti-
mations of the weak lensing error (i) from Shapiro et al.
(2010) and (ii) from Wang et al. (2002).
In order to evaluate the error box we need to assume

some prior on the cosmological parameters. In this ex-
ploratory study, we assume that we know all the cosmo-
logical parameters but the effective equation of state for
the dark energy, described by the parameter w (which
could be the case by the time LISA will fly). In a fol-
low up paper we will relax this assumption by including
also the Hubble constant and the matter and dark energy
content of the Universe as free parameters. We take the
prior range for w from the seven-year WMAP analysis
(Komatsu et al. 2010). We show that using statistical
methods w can be constrained to a 4-8% level (2σ error

2 There are other reasons for not going beyond z = 3 which we
will discuss later.

), providing an effective method for estimating the dark
energy equation of state. We also show that this result
depends weakly on the prior range and could serve as an
independent way of measuring the dark energy equation
of state, with respect to canonical methods employing
observations of type Ia supernovae (Riess et al. 1998).
The paper is structured as follows. In Section 2 we

spell out explicitly all the details of the adopted cosmo-
logical model and of the Bayesian analytical framework.
In Section 3 we give more insights on the MBH popu-
lation model and on the galaxy distributions extracted
from the Millennium database. In Section 4 we describe
our simulated GW and electromagnetic observations. We
give results of our simulations under different assump-
tions about weak lensing, depth of the follow up electro-
magnetic surveys, etc. in Section 5. We summarize our
findings in Section 6.

2. ANALYTICAL FRAMEWORK

2.1. Cosmological description of the Universe

We assume the standard ΛCDM model, which de-
scribes our Universe as the sum of two non-interacting
components: (i) a pressureless component correspond-
ing to all visible and dark matter, (ii) a dark energy
component with current effective equation of state cor-
responding to the Λ−term p = −ǫ. Current estimates
based on SN1a observations and anisotropy measure-
ments in the cosmic microwave background (Riess et al.
1998; Komatsu et al. 2010) tell us that about 70% of the
Universe energy content is in the form of the dark energy.
The evolution of the Universe is therefore described by
the expansion equation

H2 = H2
0

[
Ω0

m(1 + z)3 +Ω0
de exp

(
3

∫ z

0

dz
1 + ω(z)

1 + z

)]
.

(1)
where H = ȧ/a (a being the lengthscale of the Universe)
is the Hubble expansion parameter and H0 is its cur-
rent value (t = 0), Ωm and Ωde are the ratios of the
matter density and the dark energy density to the criti-
cal density, and ω(z) describes the effective dark energy
equation of state as a function of z. We assume that
the Universe is spatially flat, the luminosity distance is
therefore computed as

DL = (1 + z)

∫ z

0

dz′

H(z′)
. (2)

In our simulations we fix all parameters (assuming that
they are known exactly) to the currently estimated mean
values: H0 = 73.0 km× s−1×Mpc−1, Ωm = 0.25, Ωde =
0.75. We also simplify the form of ω(z) for which we will
assume ω = −1−w, where w is a constant 3. We choose
the value w = 0 to simulate our Universe which is what
has been used in the Millennium simulation (see below).

2.2. Methodology and working plan

Our aim is to show that we can constrain w via GW
observations of spinning MBH binaries, using a Bayesian
framework. Let us consider j = 1, .., Nev GW obser-
vations. For each event we can infer the probability of

3 Here we use notations for the dark energy equation of state
adopted in the WMAP data analysis (Komatsu et al. 2010).
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a parameter w, given the collected data s, using Bayes
theorem:

Pj(w|s) =
p0(w)Pj(s|w)

Ej
. (3)

Here Pj(w|s) is the posterior probability of the parameter
w, Pj(s|w) is the likelihood of the observation s given the
parameter w, p0(w) in the prior knowledge of w and Ej

is defined as

Ej =

∫
p0(w)Pj(s|w)dw. (4)

The likelihood Pj(w|s) must be appropriately specialized
to our problem. We want to exploit GW observations
to constrain w through the distance - redshift (DL − z)
relation as given by (2).

• The distance DL is provided by the GW observa-
tions: the GW signal carries information about the
parameters of the binary, including its location on
the sky and its luminosity distance. All those pa-
rameters can be extracted using latest data analysis
methods (Petiteau et al. 2010; Cornish & Porter
2007). The measurements errors are encoded in

the GW likelihood 4 function L(DL, θ, φ, ~λ), where
{θ, φ} are the ecliptic coordinates of the source and
~λ represents all the other parameters characterizing
MBH binary (spins and their orientation, masses,
orientation of the orbit and MBHs position at the
beginning of observations). When estimating DL

weak lensing can not be neglected. In fact the error
coming from the weak lensing (causing fluctuations
in the brightness of the GW source which gives an
uncertainty in the luminosity distance) dominates
over the GW error starting from redshift z ∼ 0.25
(see figure 2).

• The redshift measurement does not rely on any
distinctive electromagnetic signature related to the
GW event. We extract a redshift probability dis-
tribution of the host from the clustering properties
of the galaxies falling withing the GW+WL error
box. This defines an astrophysical prior p(θ, φ, z)
for a given galaxy in the measurement error box
to be the host of coalescing binary. To translate
the measured DL and uncertainty ∆DL of the GW
event into a corresponding z and ∆z for the can-
didate host galaxies in the sky we use the prior
knowledge of p0(w) obtained from WMAP.

The likelihood in equation (3) can therefore be written
as

Pj(s|w) =

∫
Lj

[
DL(z, w), θ, φ, ~λ

]
p(~λ)pj(θ, φ, z) d~λ dθ dφ dz,

(5)

where we have introduced the priors p(~λ) on the parame-

ters ~λ (which we assume in this paper to be uniform). It
is convenient to change the variable of integration from

4 Through the paper, with GW likelihood we mean the likelihood
of the LISA data to contain the GW signal with a given parameters,
not to be confused with the likelihood Pj(s|w) defined in the Bayes
theorem.

DL to z. Since we have assumed uniform priors on ~λ, we
can marginalize the likelihood over those parameters 5 to
obtain:

Pj(s|w) =

∫
πj [DL(z, w), θ, φ] pj(θ, φ, z) dθ dφ dz, (6)

where we denoted the marginalized GW likelihood as
πj [DL(z, w), θ, φ]. Practically, we limit the integration
to the size of the error box (in principle the integration
should be taken over the whole range of parameters but
we found that considering the 2σ error box is sufficient).
We assume that the error in luminosity distance from

the weak lensing is not correlated with the GW mea-
surements, hence the integral in equation (6) can be per-
formed over the sky ({θ, φ}) first, and then over the red-
shift. We also found that the correlation between DL

and the sky position coming from the GW observations
is not important for events at z < 0.5. Plugging equation
(6) into equation (3) defines the posterior distribution of
w for a single GW event (as indicated by the index j).
Assuming that all Nev GW events are independent, the
combined posterior probability is

P (w) =
p0(w)

∏Nev

j=1 Pj(s|w)
∫
p0(w)

∏Nev

j=1 Pj(s|w)dw
. (7)

To evaluate w through equation (7) we therefore need:

• a MBH binary population model defining the prop-
erties of the Nev coalescing systems;

• the spatial distribution of galaxies within a volume
comparable with the combined GW+WL measure-
ment error box;

• the measurement errors associated to GW ob-
servations of coalescing MBH binaries (defining

Lj(DL, θ, φ, ~λ));

• an estimation of spectroscopic survey capabilities
to construct the galaxy redshift distribution within
the GW+WL measurement error box (defining
pj(θ, φ, z)).

We will consider these points individually in the next two
sections.

3. ASTROPHYSICAL BACKGROUND

3.1. Massive black hole binary population

To generate populations of MBH binaries in the Uni-
verse, we use the results of merger tree simulations de-
scribed in details in Volonteri et al. (2003). MBHs grow
hierarchically, starting from a distribution of seed black
holes at high redshift, through a sequence of merger and
accretion episodes. Two distinctive type of seeds have
been proposed in the literature. Light (M ∼ 100M⊙)
seed are thought to be the remnant of Population III
(POPIII) stars (Madau & Rees 2001), whereas heavy
seeds form following instabilities occurring in massive
protogalactic disks. In the model proposed by Begel-
man Volonteri & Rees (Begelman et al. 2006, hereafter

5 Here this corresponds to the projection of the Fisher matrix
to three dimensional parameter space of sky location θ, φ and lu-
minosity distance DL.
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BVR model), a ‘quasistar’ forms at the center of the
protogalaxy, eventually collapsing into a seed BH that
efficiently accretes from the quasistar envelope, result-
ing in a final mass M ∼ few ×104M⊙. Here we use
the model recently suggested by Volonteri & Begel-
man (Volonteri & Begelman 2010, hereafter VB model),
which combines the two above prescriptions by mix-
ing light and heavy initial seeds. This model predicts
∼ 30−50 events per year in the redshift range 0 < z < 3,
relevant to this study. The dashed blue lines in figure 1

Fig. 1.— Population of coalescing MBH binaries in three years.
Top left panel: total redshifted mass distribution; top right panel:
mass ratio distribution; lower panel: redshift distribution. Color
and linestyle codes are labeled in the figure.

show the redshifted total mass (Mz = (M1+M2)(1+ z),
being M1 > M2 the restframe masses of the two MBHs,
upper–left panel), mass ratio (q = M2/M1, upper–right
panel) and redshift (lower panel) distribution of the MBH
binaries coalescing in three years, as seen from the Earth.
The model predicts ∼ 40 coalescences in the redshifted
mass range 105M⊙ < Mz < 107M⊙, almost uniformly
distributed in the mass ratio range 0.1 < q < 1, with a
long tail extending to q < 10−3. For comparison we also
show the population expected by a model featuring heavy
seed only (BVR model, green dotted–dashed lines), and
by an alternative VB type model (labeled VB-opt for op-
timistic, red long–dashed lines) with a boosted efficiency
of heavy seed formation (see Volonteri & Begelman 2010,
for details). It is worth mentioning that these models
successfully reproduce several properties of the observed
Universe, such as the present day mass density of nuclear
MBHs and the optical and X-ray luminosity functions
of quasars (Malbon et al. 2007; Salvaterra et al. 2007).
The BVR and the VB-opt models predict MBH popula-
tion observables bracketing the current range of allowed
values. The VB-opt model, in particular, is borderline
with current observational constraints on the unresolved
X-ray background, and it is shown here only for compar-
ison. In the following, we considered the VB model only,
which fits all the relevant observables by standing on the

conservative side.
We performed 100 Monte Carlo realizations of the

population of MBH binaries coalescing in three years.
Each realization takes into account the distribution of
the number of events and MBH masses with the redshift
as predicted by the VB model. Other parameters (like
time of coalescence, spins, initial orbital configuration)
are chosen randomly using uniform priors over the ap-
propriate allowed ranges.

3.2. Galaxy distribution

To simulate the galaxy distribution in the Universe
we use the data produced by the Virgo Consortium
publicly available at http://www.g-vo.org/Millennium.
These data are the result of the implementation of semi-
analytic models for galaxy formation and evolution into
the dark matter (DM) halo merger hierarchy generated
by the Millennium simulation (Springel et al. 2005). The
Millennium run is a N-body simulation of the growth of
DM structures in the expanding Universe starting from
a Gaussian spectrum of initial perturbations in the DM
field at high redshift, which successfully reproduced the
net-like structure currently observed in the local Uni-
verse. The simulation has a side-length of ≈ 700 Mpc
(co-moving distance), and its outcome is stored in 63
snapshots evenly separated in log(z), enclosing all the
properties of the DM structure at that particular time.
Semi-analytical models for galaxy formation are imple-
mented a posteriori within the DM structures predicted
by the simulation. Such models have been successful
in reproducing several observed properties of the local
and the high redshift Universe (see , e.g., Bower et al.
2006; De Lucia & Blaizot 2007). Here we use the im-
plementation performed by Bertone and collaborators
(Bertone et al. 2007), which is a refinement of the origi-
nal implementation by De Lucia & Blaizot (2007).
For each coalescing MBH binary, we choose the snap-

shot closest in redshift. Within the snapshot we choose
the host of the GW signal according to a probability
proportional to the number density of neighbor galax-
ies ngal. Such assumption comes from the fact that two
galaxies are needed in order to form a MBH binary, and
we consider that the probability that a certain galaxy was
involved in a galaxy merger is proportional to the num-
ber of neighbor galaxies. We consider to be neighbors of
a specific galaxy all the N(R) galaxies falling within a
distance

R = σTH(z), (8)

where σ = 500 km s−1 is the typical velocity dispersion of
galaxies with respect to the expanding Hubble flow, and
TH(z) is the Hubble time at the event redshift. The num-
ber density of neighbor galaxies is then simply written
as ngal = 3N(R)/(4πR3). When we choose the merger
host, we compute ngal considering all the neighbor galax-
ies, without imposing any kind of mass or luminosity se-
lection. In this case ngal ≡ ntotal. However, when we will
construct the probability of a given observable galaxy to
be the host of the merger (i.e. the astrophysical prior
pj(θ, φ, z)), we will have to compute ngal according to
the number of observed neighbors, because this is the
only thing we can do in practice when we deal with an
observed sample of galaxies (see Section 4.2).

http://www.g-vo.org/Millennium


5

4. SIMULATING THE OBSERVATIONS

4.1. Gravitational wave observations: shaping the error
box

As we mentioned in Section 3.1, we drawn hundred re-
alizations of the MBH binary population from the VB
model. Each realization contains 30 to 50 events in the
redshift range [0 : 3]. The total mass, mass ratio and
redshift distributions of the events are shown in the fig-
ure 1. In order to simulate GW observations, the binary
sky location is randomly chosen according to a uniform
distribution on the celestial sphere, the coalescence time
is chosen randomly within the three years of LISA op-
eration (we assume 3 years as default mission lifetime).
the spin magnitudes are uniformly chosen in the interval
[0 : 1] in units of mass square, and the initial orienta-
tions of the spins and of the orbital angular momentum
are chosen to be uniform on the sphere. More detailed
description of the model for GW signal used in this paper
is given in Petiteau et al. (2010).
The GW likelihood L needed in equation (5) is ap-

proximated as a multivariate Gaussian distribution with
inverse correlation matrix given by the Fisher informa-
tion matrix (FIM) :

L ∼ e−(s−h|s−h) ∼ e(θ
i−θ̂i)Γij(θ

j−θ̂j)/2. (9)

Here θi is the vector of the parameters characterizing the

spinning MBH binary, θ̂i are the maximum likelihood es-
timators for those parameters which are assumed to cor-
respond to the true values (no bias), and Γij = (h,i|h,j)
is the FIM, where the commas correspond to derivatives
with respect to the parameters. This is a reasonable
approximation due to the large SNR (for more details
on the FIM and its applicability see Vallisneri 2008).
Our uncertainties on estimated parameters are consis-
tent with Lang & Hughes (2009), Babak et al. (2010)
and Petiteau et al. (2010). We did not include higher
harmonics (only the dominant, twice the orbital fre-
quency) as they only slightly improve parameter esti-
mation for precessing binaries. However including higher
harmonics in the GW signal model is important in case of
the small spins and low precession (when spins are almost
(anti)aligned with the orbital momentum, Lang et al.
(2011)). We use truncated waveforms corresponding to
the inspiral only. However the addition of merger and
ring-down will further reduce the localization error due
to the higher SNR (McWilliams et al. 2010). This er-
ror is usually an ellipse on the sky but we simplify it by
choosing the circle with the same area.
For the luminosity distance measurement we need to

take into account the weak lensing. We assume the
weak lensing error to be Gaussian with a σ given by
(i) Shapiro et al. (2010). Such assumption is rather
pessimistic; we also tried the prescription given by (ii)
Wang et al. (2002), which gives smaller errors, but still
larger than the level that may be achieved after mitiga-
tion through shear and flexion maps (Hilbert et al. 2010).
Both of those estimations are represented in figure 2 as
(i) dark (red online) circles and (ii) light (orange online)
squares correspondingly. The median error in DL due to
GW measurements only is given by the solid black line.
The combined error for model (i) is given by the upper
(blue) circle-line curve, and for model (ii) by the lower

(green) square-line curve. We consider our setup to be

0 0.5 1 1.5 2 2.5 3
z

0

0.01

0.02

0.03

0.04

0.05

0.06

δD
L
/D

L

GW error
Weak lensing error #1
Weak lensing error #2
Combined error #1
Combined error #2

Fig. 2.— Relative error in the luminosity distance due to
weak lensing from (i) Shapiro et al. (2010) (circles) and from (ii)
Wang et al. (2002) (squares). The black solid line is the median
error due to GW measurements only; the solid-circle and the solid-
square lines are for the combined errors under assumptions (i) and
(ii) respectively (see text).

conservative in the estimation of the weak lensing effects.
The main aim of this work is to build a reasonable setup
for what could be observed by the time LISA will fly,
and make a first order estimation of LISA capabilities
to constrain the dark energy equation of state. We will
address non-Gaussianity of the weak lensing as well as
other corrections to the model to make it more realistic
in a follow up paper.
We consider an error box size corresponding to 2σ of

the measurement errors in the sky location (σsky) and in
the source distance as evaluated by the FIM plus weak
lensing uncertainties. For observational purposes, the
dimensions of this error box are ∆Ω = 2σsky and ∆z.
For the latter we also include the uncertainty given in the
Dl − z conversion due to the error (prior) on w, p0(w).
Let us summarize how we construct an error box in

practice, as, for example, the one illustrated in figure 3 :

• We select the closest Millennium snapshot to the
event in redshift.

• We pick a galaxy (red dot) in the snapshot with a
probability given by the local galaxy number den-
sity ntotal.

• We construct around the galaxy an error box given
by ∆Ω and ∆zGW+WL, and the galaxy can lie any-
where with respect to this error box (blue cylinder).

• We expand the error box along the direction of the
observer both sides by ∆z given by the uncertainty
in w (green cylinder).

• According to some prescription,which we will de-
scribe in the next section, we select observable
galaxies in the error box (brown dots).

As shown in figure 3, we interpret one of the direc-
tions in the Millennium snapshot as distance from the
observer, and convert the comoving distance in redshift.
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Fig. 3.— Example of error box (cylinder) in part of the Millen-
nium snapshot (cube with unit in Mpc). The blue cylinder is the
measurement error box and the green one also considers the prior
on w. The black big dot is the host and the brown small dots are
the selected galaxy candidates.

We assume a periodic expansion of the Millennium data
in order to fit large error boxes. Note that the original
Millennium simulation also assumes the same periodic-
ity in the distribution of the matter. The size of the
error box at high redshift covers a significant fraction
of the simulation box so we do not go beyond the red-
shift z = 3 (as we will show later, spectroscopic observa-
tions at such high redshifts will be impractical anyway).
Together with larger error boxes, we have a nonlinear
increase in the number of events at high redshift. To re-
duce the overlap between error boxes corresponding to
different GW events we choose cylinders with random
orientations.
Figure 4 shows an example of the resulting weighted

distribution of galaxy redshifts (with weight proportional
to the local density ntotal). It is a projection of the
clumpiness along the line of sight which is also propor-
tional to the probability distribution of z for the event.
The probability distribution of w for the event will be
directly related to this result. We noticed that there is a
very large number of underdense regions and several very
dense superclusters. The probability of a galaxy with a
low local density to host a merger is very low but there
is a huge number of such galaxies, and we found that the
probability of the host to be in (super)clusters is similar
to that of being in a low density region. As we will see
later in the result section, this may cause a very wrong
estimation of w for some individual GW event.

4.2. Redshift measurements through spectroscopic
surveys

To get a statistical measurement of w we need to ex-
ploit the clustering of the galaxies falling within the error
box (which defines the astrophysical prior pj(θ, φ, z) in
equation (5)). It is therefore necessary to get efficient
redshift measurements of thousands of galaxies within a
small field of view (FOV): the information we seek is en-
closed in the redshift distribution of such galaxies. We

1.2 1.25 1.3 1.35 1.4 1.45 1.5
z
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Fig. 4.— Distribution of the weighted galaxies with the redshift.
The green dashed vertical line is the redshift of the host galaxy.

stress here that we are not looking for a distinctive elec-
tromagnetic counterpart to the GW event. In fact, the ac-
tual host of the coalescing binary may not even be observ-
able. Typical masses of our binaries are 105−106M⊙. Us-
ing MBH-bulge scaling relations (Gültekin et al. 2009),
such MBHs are expected to be hosted in galaxies with
stellar mass 109 − 1010M⊙, i.e., in dark matter halos
with total mass < 1011M⊙. The Millennium run mass
resolution is ∼ 109M⊙, meaning that typical host struc-
tures are formed by less than 100 particles. Unfortu-
nately, the Millennium run is severely incomplete in the
expected mass range of LISA MBH binary hosts. Here
we do not attempt to exploit any MBH-host relation to
select the host of our GW event; the probability of be-
ing a host is only related to the local number density
of neighbor galaxies ntotal. Such assumption relies on
the concept of self-similarity of the galaxy clustering at
different mass scales: typical LISA MBH binary hosts
cluster in the same way as more massive galaxies. We
checked this assumption by comparing the spatial distri-
bution of galaxies in different mass ranges (109−1010M⊙,
1010−1011M⊙, 10

11−1012M⊙), within simulation snap-
shots at different redshift, and we postulate that this self-
similarity extends to lower masses, below the Millennium
run resolution. This point is crucial for two reasons: (i)
especially at z > 1, we will be able to get only spec-
tra of luminous (massive) galaxies, and we need to be
confident that their spatial distribution mimics that of
lighter galaxies that may host the GW event but are ob-
servable in the spectroscopic survey; (ii) the number of
observable galaxies in the error box may be too large
anyway (> 104) to efficiently complete a spectroscopic
survey on the full sample: self-similarity allows us to get
the clustering information we need by getting spectra of
the brightest objects only.
At z = 1, the typical number of galaxies enclosed in

the 2σ error box described above is in the range 104−105.
However, not all of them are bright enough to get use-
ful spectra. The semianalytic galaxy evolution model
(Bertone et al. 2007) implemented on top of the Millen-
nium run returns the stellar mass of each galaxy, and
the absolute bolometric magnitude Mb. By knowing
the redshift, and by using standard galactic templates
one can therefore compute the apparent magnitude in
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a given band, by assuming the appropriate k correction
(Oke & Sandage 1968). Here we use the R band appar-
ent magnitudemr for illustrative purposes, and we adopt
the relation (Zombeck 1990)

Mb = −5log(zc/H0)− 1.086z − 25 +mr + 0.6, (10)

where 0.6 is the k correction. For each galaxy we com-
pute mr and we simulate spectroscopic surveys at differ-
ent thresholds mr = 24, 25, 26. We stress here that the
GW host was chosen among all the galaxies falling in the
error box, and therefore may not (and usually does not)
belong to the observed sample. We then assume that for
each galaxy satisfying the survey threshold we get an ex-
act spectroscopic redshift, and we combine the redshift
distribution of several error boxes to get a statistical es-
timation of w. In practice, each redshift estimation will
come with a measurement error, and an intrinsic error
due to the proper motion of the source with respect to
the Hubble flow. Both errors are however of the order of
∆z/z < 10−3, well below the typical redshift scale corre-
sponding to spatial clustering of structures (∆z ∼ 0.01,
see figure 4) we need to resolve.
Our method does not rely on the observation of a

prompt transient associated to the MBH binary coa-
lescence to identify the host galaxy. Nevertheless, get-
ting thousands (or tens of thousands) of spectra in a
small field of view requires a dedicated observational pro-
gram. Thanks to multi-slit spectrographs such as VI-
MOS at VLT (Le Fèvre et al. 2003) and DEIMOS at
Keck (Faber et al. 2003), fast deep spectroscopic surveys
of relatively large FOV are now possible. For example,
the ongoing VIMOS VLT deep survey (Le Fèvre et al.
2005), took spectra of > 10000 galaxies, mostly in the
redshift range 0 < z < 1.5, within a FOV of 0.61deg2

at an apparent magnitude limit IAB < 24. Compa-
rable figures are achieved by other observational cam-
paigns such as zCOSMOS (Lilly et al. 2009) and DEEP2
(Davis et al. 2003), being able of surveying selected
galaxies in various photometric bands (U,B,R, I) to an
apparent magnitude limit of about 24. Going deeper in
redshift, Lyman break galaxy redshift surveys are being
successful in efficiently getting high quality spectra of
hundreds of galaxies in the redshift range 2.5 < z < 3.5
within a FOV ∼ 1deg2 (Bielby et al. 2010). To get an
idea, the VIMOS spectrograph can take ∼ 500 high qual-
ity spectra per pointing with an integration time of about
4h, within a 7×8 arcmin2 FOV, which is coincidentally
of the same order of the typical error box for a z = 1
GW event. The typical redshift accuracy of the spec-
tra is ∆z < 10−3 (3 × 10−4 in the zCOSMOS survey,
2× 10−3 in the Lyman break galaxy survey), well below
the typical redshift scale we are interested in (z ∼ 0.01).
Such figures witness the feasibility of efficient spectro-

scopic redshift determination of a large sample of galaxies
at faint apparent magnitude (mr ≈ 24), as required by
our problem. Future spectroscopic survey as BigBOSS
(Schlegel et al. 2009) are expected to further improve
such figures of merit; a new spectrograph will be able
to simultaneously get up to 4000 spectra within a single
pointing of a 7deg2 FOV. Getting few thousand spectra
of objects falling within the GW error box in the redshift
range of interest may be possible in a single observing
night. At a mr = 24 cut-off magnitude we generally have

few hundred to few thousands galaxies in the GW error
box, but we go deeper (i.e., mr = 26, feasible with future
surveys), the number of spectra may increase drastically.
For some of the error boxes, we count up to 105 galaxies
with mr < 26. However, the requirement of a factor of
ten more spectra, does not correspond to a significant
improvement of the results. This is a consequence of
the self similarity of the galaxy distribution: as long as
there are enough galaxies in the error box to recover the
clustering information, the results are basically indepen-
dent on the assumed cut-off magnitude. A survey with
a cut-off magnitude of mr = 24 may indeed be a good
compromise between reliability of the results and time
optimization in terms of follow-up spectroscopy.
The magnitude cut-off defines the number of neigh-

bor observable galaxies. This is the only practical way
to weight each galaxy with a local density, ngal ≡ nmr

(the subscript mr refers to the adopted magnitude limit)
along the lines discussed in Section . Once we have a
spectroscopic galaxy sample, each galaxy in the error box
comes with the prior probability to be the host propor-
tional to nmr

, so the astrophysical prior in equation (6)
could be written as

p(Ω, z) =
∑

i

nmr,i δ(Ω− Ωi)δ(z − zi) (11)

where the sum is over all observable galaxies in the error
box and Ω is the geodesic distance on the celestial sphere
from the center of the box. At redshifts z ≥ 1 the prior
probability p(Ω, z) becomes almost a continuous function
(as the example in figure 4).

4.3. Approximations and caveats

Before jumping to the results, we want to mention
some corrections we made to accommodate the limita-
tions of our simulations. Firstly, we interpreted one of
the directions in the snapshot (along the side of the cylin-
der) as distance from the observer. This is a good ap-
proximation only if the error box size is small. For large
error boxes, a uniform distribution in the comoving dis-
tances does not translate into a uniform distribution in
redshifts: there is an artificial slope with a bias toward
low values of z. We have corrected for this slope. Sec-
ondly, the clumpiness evolves with redshift, which is not
the case if we use a single snapshot and interpret one
of the directions as a redshift. To properly account for
this, we should glue snapshots together and perform an
interpolation between them. However we wanted to sim-
plify the setup for this very first attempt. The main idea
was to check whether the density contrast within the er-
ror boxes is sufficient to constrain further the error on
w. If the distribution of density within the error box
is uniform then we do not gain any useful information.
However there is a natural bias: for a given measurement
of DL, the galaxy further away (larger z) constrains w
better than galaxy at lower redshift. One can see it from
the fact that deviation between the curves inDL−z plane
corresponding to the small deviation in w is bigger for
large z. This could be counterbalanced by the decreas-
ing density contrast at large redshift. Here, we corrected
the slope of the posterior Pj(w|s) by demanding that a
uniform distribution pj(θ, φ, z) returns a posterior on w
equal to the prior, i.e., Pj(w|s) = p0(w).
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5. CONSTRAINTS ON THE DARK ENERGY EQUATION OF
STATE

In this section we present the results of our simulations.
We tried several setup of the experiment by using differ-
ent thresholds on the observable apparent magnitude of
galaxies, different prescriptions for the measurement er-
rors, and different cosmological priors. For each setup,
we performed either 100 or 20 realizations of the MBH
binary population as observed by LISA, together with
the follow up spectroscopic survey of the galaxies in all
the error boxes.

5.1. Fiducial case

We consider in this subsection 100 realizations which
we refer to as our fiducial case. For this setup, we
limit spectroscopic identification of galaxies in the er-
ror box to an apparent magnitude of mr ≤ 24, the er-
rors in sky localization and in the luminosity distance
are estimated according to the inspiral part of GW sig-
nal only, and the weak lensing uncertainty is taken from
Shapiro et al. (2010). The prior p0(w) was assumed to
be uniform U [−0.3 : 0.3] with an exponential decay at
the boundaries. Such interval is consistent with cur-
rent 2σ (95% confidence level) constraints on w (w =
−0.12 ± 0.27, Komatsu et al. 2010), obtained by cross
correlating seven-year WMAP data with priors com-
ing from independent measurements of H0 and barionic
acoustic oscillations (see Komatsu et al. 2010, and refer-
ences therein for full details), under our same assumption
for the dark energy equation of state, ω = −1−w, where
w is a constant. Such range is reduced by a factor of
almost three (w = −0.02± 0.1) when type Ia supernovae
data (Riess et al. 1998) are included. Here we show that
GWmeasurements offer a competitive alternative to type
Ia supernovae, placing an independent constraint on the
dark energy equation of state.
We find that in almost all cases we improve the con-

straints on w, in other words, the posterior distribution
is narrower than the prior. Few events at low redshift
usually play a major role in the final result. One typi-
cal realization is plotted in the top panel figure 5. We
split the contribution to the posterior distribution P (w)
in redshift bands: z ∈ [0 : 1] (second plot from the left),
[1 : 2] (third plot), [2 : 3] (fourth plot). Their relative
contribution and the resulting posterior (black) is given
in the leftmost plot. In this example the final poste-
rior probability is almost completely determined by few
events at low redshift. The second realization, shown
in the lower panels of figure 5, demonstrates how low
redshift contributions could give inconclusive results. In
this particular case, there are two maxima with prefer-
ence given to the wrong one. The contribution from high
redshift events could change this ratio as it is shown in
this example. In many cases the mergers above redshift
z = 1 can constrain w only to a 0.1-0.15 accuracy, but
they almost always add up coherently giving a maximum
at the right value (w = 0). This usually helps in case the
low redshift events return a multimodal P (w), and is, in
turn, the power of our statistical method.
We characterize the results of each setup (100 or 20

realizations) using the figures of merit shown in figures 6
and 7. The first one (figure 6) is obtained by adding the
posterior distributions P (w) of all the realizations. We
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Fig. 5.— Posterior distribution for w for two particular realiza-
tions (top and bottom row). In each row, the left plot shows the
full posterior from all GW events (black curve) as well as contribu-
tions from different redshift bands. The three right plots show the
individual contribution for the three redshift ranges, as labelled in
the panels.

fit the resulting curve with a Gaussian, characterizing
the result using its mean w0 and standard deviation σw.
The second figure of merit (figure 7) shows the result
of Gaussian fits performed on each individual realization
(vertical index i): the mean w0(i) is shown as a circle
and the standard deviation σw(i) is the error bar. The
first figure of merit gives collective information, showing
how well, on average, an individual realization can be
approximated by a Gaussian fit, while the second figure
of merit shows the dispersion of the posterior distribution
across the individual realizations.
The fiducial case, featuring 100 realizations, is shown

in panel (a) of both figures 6 and 7. The parameters
of the global fitting Gaussian mean are w0 = 0.0008 and
σw = 0.036, corresponding to a factor of four improve-
ment in the estimation of w with respect to our standard
2σ [−0.3 : 0.3] prior. However the distribution has clearly
some outliers, recognizable as non-Gaussian tails in fig-
ure 6 and pinned down in figure 7. For the fiducial case,
84% of the realizations have a mean value close to the
true one, i.e. |w0(i)−wtrue| < 0.1 with an appreciable re-
duction of the prior range, i.e. σw(i) < 0.15 (i = 1, .., 100
is the realization index). Moreover, most of the outliers
can be corrected as we will explain in Section 5.6.

5.2. Removing “electromagnetic counterparts”

Our goal is to demonstrate that we are able to con-
strain the dark energy equation of state without directly
observing electromagnetic counterparts. However, for
some of the low redshift events, the error box is so small
that only one or two galaxies fall within it. Having one
or two galaxies in the error box essentially implies an
electromagnetic identification of the host, so we decided
to re-analyze the fiducial case removing all such fortu-
nate events (usually 0-2 in each realization). The fiducial
case without clearly identifiable hosts is presented in the
panel (b) of figure 6. Clearly, our results remain almost
unchanged, the posterior distribution is slightly wider
(larger sigma) and non-Gaussianity is more pronounced.

5.3. Choice of the prior for w
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Fig. 6.— Collective figures of merit of our experiment. In each panel, corresponding to a different setup of our experiment as labelled in
figure, the red solid curve corresponds to the data, i.e. the sum of the posterior distributions of w over all realizations. The blue dashed
curve is a Gaussian fit with parameter given in the legend of each plot.
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Fig. 7.— Mean values and standard deviations resulting from
the Gaussian fit of the posterior P (w). The setup of each panel
correspond to the one adopted in the panel of figure 6 labelled by
the same letter).

Here and in the next subsections we make use of 20
selected realizations, which we found to be sufficient to
depict the relevant trends of the analysis. We took 15
“good” (mean values close to the true and small rms
errors) and 5 “bad” cases from the fiducial setup.
In this subsection we study the effect of the prior p0(w)

on the posterior distribution. We considered an extreme
case: a Gaussian N (w0 = −0.2, σ = 0.3). As shown in
panel (c) of figure 6, the global posterior distribution is
still centered at the true value w = 0. This demonstrates
that the final conclusion is basically unaffected by the
choice of the prior (as long as the prior covers the true
value) and GW observations, in principle, could be used
as an independent mean of estimating w.

5.4. Using deeper surveys

Here we study the dependence of our results on the
depth of the follow up spectroscopic survey: i.e. on the

observability threshold. We considered the same 20 real-
izations as in the previous section, but now with different
limits on the apparent magnitude of observable galaxies:
mr = 24, 25, 26. The case mr = 26 is given in panel (d)
of figures 6 and 7. The results are comparable to the
fiducial case. They show a small improvement in sigma
and slightly larger bias for the combined distribution.
We also notice that 4 out of 5 “bad” cases remain bad.
We should say few words about the number of galaxies

used here. As mentioned above, the typical number of
galaxies for the fiducial case (mr = 24) is less than few
thousand for events at z < 1 and less than few tens of
thousands for the high redshift event. For the improved
observational limit (mr = 26), these numbers are 2 to 10
times larger. The fact that our results are not sensitive to
the depth of the survey reflects the self-similarity of the
spatial distribution of galaxies in different mass ranges.

5.5. Improving the sky localization and the luminosity
distance estimation

In our fiducial setup, the assumed source sky localiza-
tion and luminosity distance error are rather conserva-
tive. In this subsection we consider the effect of improv-
ing such measurements. So far, we considered only the
inspiral part of the GW signal; the inclusion of merger
and ringdown will improve the localization of the source
by at least a factor of two (McWilliams et al. 2010), due
to the large gain in SNR. We artificially reduced the sky
localization error coming from the inspiral by a factor of
two (factor of four in the area), assuming that this will
be the case if we take the full GW signal. We reanalyzed
the same 20 realizations with this new error on the sky.
Because the size of the error box is smaller, the number
of potential counterparts is reduced by a factor of ∼ 4
compared to the fiducial case. The results are presented
in panel (e) of figure 6. We see that the main effect of
a better GW source localization is to reduce the number
of outliers and to remove the non-Gaussian tails in the
combined probability. As it is clear form panel (e) of
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figure 7, the main gain comes from improvement of the
“bad” cases.
We now consider another estimation of the mean weak

lensing contribution to the luminosity distance error,
given in Wang et al. (2002) (green square-line curve on
figure 2). We take this in combination with improved
source localization on the sky coming from taking into
account the merger (as discussed above). We consider
the same 20 realizations. Results are shown in panel
(f) of both figures 6 and 7. The improvement with
respect to all the other cases is obvious. Because the
marginalized likelihood πj coming with each galaxy is
narrower due to the smaller error in the luminosity dis-
tance, the final posterior on Pj(w) is also narrower. The
standard deviation σw is improved by more than 40% as
compared to the fiducial case. The non-Gaussian tails
have almost completely disappeared, due to the removal
of the outliers (further improvement of the “bad” cases,
the remaining bad case will be treated in the subsection
5.6, see also the top panel of figure 8). With this model
of the mean weak lensing contribution and assuming the
full GW signal, the estimation of w is improved by a
factor of ∼ 8 as compared to the initial uniform prior.

5.6. Consistency check.

As we mentioned above, some nearby GW event could
seriously bias the final posterior. We also mentioned that
the odds for the host to be in a low density region of the
Universe are not small. The posterior probability P (w)
reflects the distribution of the mass defined by the astro-
physical prior pj(θ, φ, z). A nearby GW event hosted in
the low density environment could seriously damage the
final result. An example is given in the top left panel of
figure 8. In order to eliminate or at least test such un-
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Fig. 8.— Each row of panels show our self-similarity check for a
selected realization. In each row, the solid curve on the left panel
corresponds the final posterior P (w) The solid curves on the right

panel are the posteriors after removing one event, P̃k(w).

fortunate cases we performed a self-consistency test on
our results. Basically we remove one GW event from the

analysis and see if the resulting posterior P̃k(w) distribu-
tions are consistent. We defined the posterior of all the
events minus one as:

P̃k(w) =
p0(w)

∏
j 6=k Pj(s|w)∫

p0(w)
∏

j 6=k Pj(s|w)dw
. (12)

If P̃k(w) give similar results for all k, then we can be
confident that the result is not biased by one particular
unfortunate event, and this increases our trust in the fi-

nal posterior distribution. If, conversely, all P̃k(w) but
one are consistent, then we say that this one event is not
in line with the remaining events and should be aban-
doned. In the top panels of figure 8 we see that remov-
ing one event at low redshift changes the final probability
completely; the solid (red) line in the right panel is the
new posterior distribution, consistent with the true value
w = 0. However, there are still few cases where the self-
consistency test is not conclusive, and one of them is
shown in the lower panels of figure 8. In this case, re-
moving one “bad” nearby event produces the red curve
centered at w = 0, but removing another (“good”) event
results in the green curve, which are mutually not consis-
tent at all. Since in real life we will not know which event
is “good” and which one is “bad”, we will not be able to
make a clear definite statement, and our answer will be
bi-modal with a probability attached to each mode.

5.7. Comparison with the optimal case: detection of
electromagnetic counterparts.

For comparison, we have also considered the best pos-
sible case, in which the redshifts of the GW source hosts
are determined unambiguously through the identification
of a distinctive electromagnetic counterpart. In this case,
the redshift of each GW event is known exactly (within
negligible measurement errors). Therefore, the error on
w comes only from the error on luminosity distance (GW
error measurement plus weak lensing). Considering 20
realizations with a configuration equivalent to the fidu-
cial case (Section 5.1), the global posterior distribution
is a Gaussian centered at w0 = 0 with σw = 0.021 (for
comparison, see panel (a) of figure 6). With a configu-
ration equivalent to our improved case, i.e. better weak
lensing (Section 5.5), we obtain σw = 0.012 (for com-
parison, see to panel (f) of figure 6). In both case the
difference between our statistical method and the best
possible case (all electromagnetic counterparts detected)
is only about a factor 2.

6. SUMMARY

In this paper, we presented a statistical method for
constraining cosmological parameters using LISA obser-
vations of spinning massive black hole binaries and red-
shift surveys of galaxies. Our approach does not require
any direct electromagnetic counterpart; instead, the con-
sistency between few dozen of GW events imposes con-
straints on the redshift-luminosity distance relationship.
This, in turn, allows us to estimate cosmological param-
eters. This method strongly relies on the non-uniformity
(i.e., clustering) of the galaxy distribution within the un-
certainty error box set by LISA observations, weak lens-
ing and priors on the cosmological parameters.
For this first exploratory study, we fixed all the cosmo-

logical parameters but one, w, describing the effective
equation of state for the dark energy. We used the Mil-
lennium simulation to model the Universe at different
redshifts. We used a particular (VB) hierarchical MBH
formation model to mimic the MBH binary population
observed by LISA. Using this setup, we considered be-
tween 20 and 100 realizations of the observed LISA bi-
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nary population. We tried two different models for es-
timating the error in luminosity distance due to weak
lensing, we also looked at the effect of including merger
and ringdown via improvement of the sky localization.
We checked the robustness of our final result against dif-
ferent depth of future spectroscopic galaxy surveys.
Our fiducial case, based on conservative assumptions,

shows that we are able to constrain w to a 8% level (2σ),
i.e., we improve its estimate by a factor of ∼ 4 as com-
pared to the current 95% confidence interval obtained
by cross correlating the seven-year WMAP data analysis
with priors coming from H0 measurements and barionic
acoustic oscillations (Komatsu et al. 2010). Such new
measurement would be at the same level (25% better on
average) than current constraints based on seven-year
WMAP data plus type Ia supernovae observations. The
optimistic case (smaller weak lensing disturbance and full
GW waveform) allows us a further improvement by an-
other factor of two, providing a factor of ∼ 2.5 tighter
constraint than current estimates including supernovae
data. Our results are most sensitive to the weak lensing
error (witnessing once more how critical is the issue of
weak lensing mitigation for cosmological parameter esti-
mation through GW observations) and are almost inde-
pendent on the depth of the redshift survey (provided we
have a reasonable number of redshift measurements per
error box).
In the majority of the realizations the most information

comes from few events at low redshift, and high redshift
events do help in case of multimodal structures in the
posterior distribution. We suggested a self-consistency

check based on the similarity of the posterior distribution
from each GW event. This increases our confidence in
the final result and allows to reduce the risk of incurring
in unfortunate outlier realizations for which we can not
place useful constraints on w. We also compared our sta-
tistical method to the optimal situation in which electro-
magnetic counterparts to the GW sources are identified,
finding an improvement of a factor of two in the latter
case. In absence of distinctive electromagnetic counter-
parts, statistical methods like the one presented here can
still efficiently constrain cosmological parameters.
Although the main result of the present paper is en-

couraging, it was obtained assuming a fixed cosmological
model with one free parameter only: the w parameter de-
scribing the dark energy equation of state. Even though
we will likely have a good knowledge of most of the other
cosmological parameters by the time LISA will fly, it is
worth considering models with more degrees of freedom.
In following studies, we intend to consider a more realis-
tic situation by releasing other cosmological parameters,
testing LISA capabilities of setting constraints on a multi
parameter model.
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