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We present an introduction to dynamical trapping horizons as quasi-local models for
black hole horizons, from the perspective of an Initial Value Problem approach to the
construction of generic black hole spacetimes. We focus on the geometric and structural
properties of these horizons aiming, as a main application, at the numerical evolution
and analysis of black hole spacetimes in astrophysical scenarios. In this setting, we dis-
cuss their dual role as an a priori ingredient in certain formulations of Einstein equations
and as an a posteriori tool for the diagnosis of dynamical black hole spacetimes. Com-
plementary to the first-principles discussion of quasi-local horizon physics, we place an
emphasis on the rigidity properties of these hypersurfaces and their role as privileged
geometric probes into near-horizon strong-field spacetime dynamics.
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1. Black holes: global vs. (quasi-)local approaches

1.1. Establishment’s picture of the gravitational collapse

Our discussion is framed in the problem of gravitational collapse in General Relativ-

ity. The current understanding is summarized in what one could call the establish-

ment’s picture of gravitational collapse1, a heuristic chain of results and conjectures:

(1) Singularity Theorems: if gravity is able to make all light rays locally converge

(namely, if trapped surfaces exist), then a spacetime singularity forms2,3,4,5.

(2) (Weak) Cosmic Censorship (Conjecture): in order to preserve predictability, the

formed singularity is not visible for a distant observer6.

(3) Black hole spacetimes stability (Conjecture): General Relativity gravitational

dynamics drives eventually the black hole spacetime to a stationary state.

(4) Black Hole uniqueness theorem: the final state is a Kerr black hole spacetime7.

Light bending is a manifestation of spacetime curvature and black holes constitute a

dramatic extreme case of this. The standard picture of gravitational collapse above

1

http://arxiv.org/abs/1108.2408v1


August 15, 2011 18:21 WSPC/INSTRUCTION FILE JaramilloShanghai

2 J.L. JARAMILLO

suggests two (complementary) approaches to the characterization of black holes:

a) Global approach: (weak) cosmic censorship suggests black holes as no-escape

regions not extending to infinity. Its boundary defines the event horizon E .

b) Quasi-local approach: singularity theorems suggest the characterization of a

black hole as a spacetime trapped region where all light rays locally converge.

The establishment’s picture of gravitational collapse depicts an intrinsically dynami-

cal scenario. Hence, a systematic methodology to the study of dynamical spacetimes

is needed. We adopt an Initial (Boundary) Value Problem approach, that offers a

systematic avenue to the qualitative and quantitative aspects of generic spacetimes.

1.2. The Black Hole region and the Event Horizon

The traditional5 approach to black holes involves global spacetime concepts, in

particular a good control of the notion of infinity. Given a (strongly asymptotically

predictable) spacetime M, the black hole region B is defined as B = M−J−(I +),

where J−(I +) is the causal past of future null infinity I +. That is, B is the

spacetime region that cannot communicate with I +.

We are particularly interested in characterizing a notion of boundary surface of

black holes. In this global context this is provided by the event horizon E , defined as

the boundary of B, that is E = ∂J−(I +)∩M. Interesting geometric and physical

properties of the event horizon are: i) E is null hypersurface in M; ii) it satisfies an

Area Theorem8,9, so that the area of spatial sections S of E does not decrease in the

evolution; and, beyond that, iii) a set of black hole mechanics laws are fulfilled10.

However, the global aspects of the event horizon also bring difficulties: a) it is

a teleological concept, i.e. the knowledge of the full (future) spacetime is needed in

order to locate E , and b) the black hole region and the event horizon can enter into

flat spacetime regions. In sum, the notion of event horizon is a too global one: it

does not fit properly into the adopted Initial Value Problem approach.

1.3. The Trapped Region and the Trapping Boundary

The global approach requires controlling structures that are not accessible during

the evolution. In this context, the seminal notion of trapped surface2 plays a crucial

role, capturing the idea that all light rays emitted from the surface locally converge.

Through the singularity theorems and weak cosmic censorship, it offers a bench-

mark for the existence of a black hole region: in strongly predictable spacetimes

with proper energy conditions, trapped surfaces lie inside the black hole region5.

Moreover, their location does not involve a whole future spacetime development.

1.3.1. Trapped and outer trapped surfaces. Apparent horizons

Given a closed spatial surface S in the spacetime, we can consider the light emitted

from it along outer and inner directions given, respectively, by null vectors ℓa and
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ka. Then, light locally converges (in the future) S if the area of the emitted light-

front spheres decreases in both directions (see though Ref. 11). Denoting the area

element S as dA =
√
qd2x, the infinitesimal variations of the area along ℓa and ka

define outgoing and ingoing expansions θ(ℓ) and θ(k) (see section 2.1 for details)

δℓ
√
q = θ(ℓ)

√
q , δk

√
q = θ(k)

√
q . (1)

A trapped surface is characterized by θ(ℓ)θ(k) > 0. In the black hole context, in

which the singularity occurs in the future, we refer to S as a future trapped surface

(TS) if θ(ℓ) < 0, θ(k) < 0 and as futuremarginally trapped surface (MTS) if one of the

expansions, say θ(ℓ), vanishes: θ(ℓ) = 0, θ(k) ≤ 0. If a notion of naturally expanding

direction for the light rays exists (e.g. in isolated systems, the outer null direction ℓµ

pointing to infinity), a related notion of outer trapped surface is given5 by θ(ℓ) < 0.

Marginally outer trapped surfaces (MOTS) are characterized by θ(ℓ) = 0.

Before proceeding to a characterization of black holes in terms of trapped sur-

faces, let us consider trapped surfaces from the perspective of a spatial slice of

spacetime Σ. The trapped region in Σ, TΣ ⊂ Σ, is the set of points p ∈ Σ belong-

ing to some (outer) trapped surface S ⊂ Σ. The Apparent Horizon (AH) is then

the outermost boundary of the trapped region TΣ. A crucial result is the following

characterization5,12,13 of AHs: if the trapped region TΣ in a slice Σ has the structure

of a manifold with boundary, the Apparent Horizon is a MOTS, i.e. θ(ℓ) = 0.

Given a 3+1 foliation of spacetime {Σt}, let us consider the worldtube obtained
by piling up the 2-dimensional AHs St ⊂ Σt. Such an AH-worldtube does not need

to be a smooth hypersurface (it is not even necessarily continuous, as discussed in

section 5.1.1). This is our first encounter with the notion of a spacetime worldtube

foliated by MOTS. Though these worldtubes are slicing-dependent, their character-

ization in terms of MOTSs makes them very useful from a operational perspective.

1.3.2. The trapped region: definition and caveats

From a spacetime perspective, no reference to a slice Σ must enter into the charac-

terization of the trapped region. The spacetime trapped region T is defined as the

set of points p ∈ M belonging to some trapped surface S ⊂ M. Its boundary is

referred14 to as the trapping boundary. These concepts offer, in principle, an intrin-

sically quasi-local avenue to address the notion of black hole region and black hole

horizon, with no reference to asymptotic quantities.

In spite of their appealing features, there are also important caveats associated

with the trapped region and the trapping boundary. In particular, we lack an op-

erational characterization of the trapping boundary (see also the contribution by

J.M.M. Senovilla). A systematic attempt to address this issue is provided by the

notion of trapping horizon14, namely smooth worldtubes of MOTS (see section 2.2),

as a model for the trapping boundary. Trapping horizons, that are non-unique, have

led to important insights into the structure of the trapped region, though an oper-

ational characterization of the trapping boundary is still missing.
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The difficulties are illustrated in the discussion of the relation between the trap-

ping boundary and E . In strongly predictable spacetimes with appropriate energy

conditions (see, though Ref.15), the trapped region T is contained in the black hole

region B. In attempts to refine this statement, support was found16,17 suggest-

ing that the trapping boundary actually coincides with the event horizon, though

later work18 showed that the trapped region not always extend up to E . The ques-

tion is still open for (outer) trapped regions constructed on outer trapped surfaces,

rather than on TSs. Important insight into these issues has been gained in recent

works19,20 demonstrating truly global features of the trapped region T . In partic-

ular:

i) The trapping boundary cannot be foliated by MOTS.

ii) Closed trapped surfaces can enter into the flat region. This is an important

issue in this approach to black holes, since it was a main criticism in 1.2.

iii) Closed trapped surfaces are clairvoyant, that is, they are aware of the geometry

in non-causally connected spacetime regions. This non-local property challenges

their applicability for an operational characterization of black holes.

1.4. A pragmatic approach to quasi-local black hole horizons

Trapping horizons offer a sound avenue towards the quasi-local understanding of

black hole physics. They provide crucial insight in gravitational scenarios where a

quasi-local notion of black hole horizon is essential, such as black hole thermodynam-

ics beyond equilibrium, the characterization of physical parameters of strongly dy-

namical astrophysical black holes (notably in numerical simulations), semi-classical

collapse, quantum gravity or mathematical relativity (cf. A. Nielsen’s contribution).

But, on the other hand, issues like their non-uniqueness or the clairvoyant properties

of trapped surfaces pose fundamental questions that cannot be ignored.

We do not aim here at addressing first-principles questions about the role of

trapping horizons as a characterization of black hole horizons. We rather assume

a pragmatic approach to the study of gravitational dynamics, which underlines the

role of trapping horizons as hypersurfaces of remarkable geometric properties in

black hole spacetimes. More specifically, our main interests are:

i) The construction and diagnosis of black hole spacetimes in Initial (Boundary)

Value Problem approach.

ii) Identification of a geometric probe into near-horizon spacetime dynamics.

Point ii) is particularly important in the study of gravity in the strong-field regime,

where the lack of rigid structures (e.g. symmetries, a background spacetime...) is

a generic and essential problem. Given our interests and the adopted pragmatic

methodology, we look for a geometric object such that: a) represents a footprint of

black holes, providing a probe into their geometry; b) is adapted, by construction,

to an Initial-Boundary Value Problem approach; and c) although not-necessarily
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unique, provides a geometric structure with some sort of rigidity property. As we

shall see in the following, dynamical trapping horizons fulfill these requirements.

1.5. General scheme

In section 2 we introduce the basics of the geometry of closed surfaces in a Lorentzian

manifold and motivate quasi-local horizons in stationary and dynamical regimes.

Section 3 reviews their geometric properties and their special features as physical

boundaries. Sections 4 and 5 are devoted to applications in a 3+1 description of the

spacetime. Section 4 shows the use of quasi-local horizons as inner boundary condi-

tions for elliptic equations in General Relativity, whereas section 5 discusses some

applications to the analysis of spacetimes, in particular their role in a correlation

approach to spacetime dynamics. In section 6 a general overview is presented.

2. Quasi-local horizons: Concepts and Definitions

2.1. Geometry of spacelike closed 2-surfaces S

2.1.1. Normal plane: outgoing and ingoing null vectors

Let us consider a spacetime (M, gab) with Levi-Civita connection ∇a. Given a

spacelike closed (compact without boundary) 2-surface S in M and a point p ∈ S,
the tangent space splits as TpM = TpS⊕T⊥

p S. We span the normal plane T⊥
p S either

by (future-oriented) null vectors ℓa and ka (defined by the intersection between T⊥
p S

and the null cone at p) or by any pair of normal timelike vector na and spacelike

vector sa. Let us denote conventionally ℓa to be the outgoing null normal and ka

the ingoing one. We choose normalizations:

ℓaℓa = 0 , kaka = 0 , ℓaka = −1 , nana = −1 , sasa = 1 , nasa = 0 , (2)

Directions ℓa and ka are uniquely determined, but a normalization-boost freedom

ℓ′a = fℓa , k′a = f−1ka (3)

n′a = cosh(σ)na + sinh(σ)sa , s′a = sinh(σ)na + cosh(σ)sa ,

remains for some arbitrary rescaling positive function f on S (where σ = ln(f) and

ℓa = λ(na + sa)/
√
2 and ka = λ−1(na − sa)/

√
2, for some function λ on S).

2.1.2. Intrinsic geometry of S
The induced metric on S is given by

qab = gab + kaℓb + ℓakb = gab + nanb − sasb , (4)

so that qab is the projector onto S
qabq

b
c = qac , qabv

b = va(∀va ∈ TS) , qabw
b = 0(∀wa ∈ T⊥S) . (5)

We denote the Levi-Civita connection associated with qab as
2Da. The volume form

on S will be denoted by 2ǫ =
√
qdx1 ∧dx2, i.e. 2ǫab = ncsd4ǫcdab, though we will also

employ the area measure notation dA =
√
qd2x.
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2.1.3. Extrinsic geometry of S in (M, g)

We define the second fundamental tensor of (S, qab) in (M, gab) (also, shape tensor

or extrinsic curvature tensor) as

Kc
ab = qdaq

e
b∇dq

c
e , (6)

where c is an index in the normal plane T⊥S, whereas a and b are indices in TS.
Given a vector va normal to S, we can define the deformation tensor Θ

(v)
ab as

Θ
(v)
ab = qcaq

d
b∇cvd . (7)

Then, using expression (4), the second fundamental tensor can be expressed as

Kc
ab = kcΘ

(ℓ)
ab + ℓcΘ

(k)
ab = ncΘ

(n)
ab − scΘ

(s)
ab . (8)

We can express Θ
(v)
ab in terms of the variation of the intrinsic metric along va.

Given a (tensorial) object Aa1...an

b1...bm tangent to S we denote by δv the operator

(δvA)a1...an

b1...bm = qa1
c1 ...qan

cnqd1
b1 ...qdm

bmLvAc1...cn
d1...dm , where Lv denote the

Lie derivative along (some extension of) va. Then, it follows

δvqab =
1

2
Θ

(v)
ab . (9)

a) Shear and expansion associated with va. Defining the expansion θ(v) and shear

tensor σ
(v)
ab associated with the normal vector va as

θ(v) ≡ qab∇avb = δvln
√
q , σ

(v)
ab ≡ Θ

(v)
ab − 1

2
θ(v)qab , (10)

we express the deformation tensor Θ
(v)
ab in terms of his trace and traceless parts

Θ
(v)
ab = σ

(v)
ab +

1

2
θ(v)qab . (11)

b) Mean curvature vector Ha. Taking the trace of Θ
(v)
ab on S we define the mean

curvature vectora

Hc ≡ qabKc
ab = θ(ℓ)kc + θ(k)ℓc . (12)

The extrinsic curvature information of (S, qab) in (M, gab) is completed by the

normal fundamental forms associated with normal vectors va. In particular21

Ω(n)
a = scqda∇dnc , Ω(s)

a = ncqda∇dsc

Ω(ℓ)
a =

1

kbℓb
kcqda∇dℓc , Ω(k)

a =
1

kbℓb
ℓcqda∇dkc . (13)

All these normal fundamental forms are related up to a sign and a total derivative

on S. Using the normalizations (2) we getb: Ω
(n)
a = −Ω

(s)
a ,Ω

(ℓ)
a = −Ω

(k)
a ,Ω

(ℓ)
a =

Ω
(n)
a − 2Daλ. We choose to employ the 1-form Ω

(ℓ)
a in the following.

aNote the opposite sign convention with respect to the contribution by J.M.M. Senovilla.
bWhen using ℓaka = −eσ one gets: Ω

(ℓ)
a = −Ω

(k)
a − 2Daσ. This will be relevant later, in Eq. (39).
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2.1.4. Transformation properties under null normal rescaling

Under the rescaling (2) ℓa → fℓa, ka → f−1ka the introduced fields transform as

qab → qab
2Da → 2Da

Kc
ab → Kc

ab Ha → Ha

Θ
(ℓ)
ab → fΘ

(ℓ)
ab θ(ℓ) → fθ(ℓ) σ

(ℓ)
ab → fσ

(ℓ)
ab

Θ
(k)
ab → f−1Θ

(k)
ab θ(k) → f−1θ(k) σ

(k)
ab → f−1σ

(k)
ab

Ω
(ℓ)
a → Ω

(ℓ)
a + 2Da(lnf)

(14)

Finally, given an axial Killing vector φa on S, we can write the angular momentumc

J =
1

8π

∫

S
Ω(ℓ)

a φa2ǫ . (15)

The transformation rule of Ω
(ℓ)
a in (14) together with the divergence-free property

of φa (following from its Killing character) guarantee that the quantity J does not

depend on the choice of null normals ℓa, ka (i.e. J does not change under a boost).

2.2. Trapping Horizons

2.2.1. Worldtubes of marginally trapped surfaces

A trapping horizon14 is (the closure of) a hypersurfaceH foliated by closed marginal

(outer) trapped surfaces: H =
⋃

t∈R
St, with θ(ℓ)

∣

∣

St
= 0. Trapping horizons are

classified according to the signs of θ(k) and δkθ
(ℓ). In particular, the sign of θ(k)

controls if the singularity occurs either in the future or in the past of S, whereas
the sign of δkθ

(ℓ) controls the (local) outer- or innermost character of H. Then, a

trapping horizon is said to be: i) future (respectively, past) if θ(k) < 0 (respectively,

θ(k) > 0), and ii) outer (respectively, inner) if there existsd ℓa and ka such that

δkθ
(ℓ) < 0 (respectively, δkθ

(ℓ) > 0).

2.2.2. Future Outer Trapping Horizons

In a black hole setting the singularity occurs in the future of sections St of H, so

that the related trapping horizon is of future type, θ(k) < 0. In addition, when

considering displacements along ka (ingoing direction) we should move into the

trapped region, i.e. δkθ
(ℓ) < 0, so that the trapping horizon should be outer.

The resulting characterization of quasi-local black hole horizons as Future Outer

Trapping Horizons (FOTHs) is further supported by the following analysis of the

area evolution. Hawking’s area theorem for event horizons (cf. section 1.2) captures

cThe quantity J coincides with the Komar angular momentum in case that φa can be extended
to an axial Killing in the neighbourhood of S.
dThe sign of δkθ

(ℓ) is not invariant on the whole S under a rescaling (2). However, if there exists
ℓa and ka such that δkθ

(ℓ) < 0 on S, then there does not exist any choice of ℓa and ka such that
δkθ

(ℓ) > 0 on S; see Ref. 22 and also the marginally trapped surface stability condition in Ref. 23.
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a fundamental feature of classical black holes. It is natural to wonder about a quasi-

local version of it. Let us consider an evolution vector ha along the trapping horizon

H, characterized as: i) ha is tangent to H and orthogonal to St, and ii) ha transports

St onto St+δt: δht = 1. We can write ha and a dual vector τa orthogonal to H as

ha = ℓa − Cka , τa = ℓa + Cka . (16)

Then haha = −τaτa = 2C, i.e. ha is spacelike for C > 0, null for C = 0 and timelike

for C < 0. The evolution of the area A =
∫

S dA =
∫

S
2ǫ along ha is given by

δhA =

∫

S
θ(h)2ǫ =

∫

S

(

θ(ℓ) − Cθ(k)
)

2ǫ = −
∫

S
Cθ(k)2ǫ . (17)

Considering for simplicity the spherical symmetric case (C = const; see discussion

of Eq. (37) in 3.2.4, for the general case), the trapping horizon condition, δhθ
(ℓ) = 0,

writes δℓθ
(ℓ)−Cδkθ

(ℓ) = 0, so that C = δℓθ
(ℓ)

δkθ(ℓ) . Applying the Raychaudhuri equation

for δℓθ
(ℓ) [see later Eq. (21)], together with the θ(ℓ) = 0 condition, we find

C = −σ
(ℓ)
ab σ

(ℓ)ab + 8πTabℓ
aℓb

δkθ(ℓ)
. (18)

Under the null energy and outer horizon conditions, it follows C ≥ 0, so that

the future condition guarantees the non-decrease of the area in (17). Therefore,

FOTHs are null or spacelike hypersurfaces (C ≥ 0), satisfying an area law result,

and therefore providing appropriate models for quasi-local black hole horizons.

2.3. Isolated and Dynamical Horizons

The distinct geometric structure of null and spatial hypersurfaces suggests differ-

ent strategies for the study of the stationary and dynamical regimes of quasi-local

black holes, modeled as future outer trapping horizons. This has led to the parallel

development of isolated horizon and the dynamical horizon frameworks24,25,26,27.

In equilibrium, Isolated Horizons (IH) provide a hierarchy of geometric struc-

tures constructed on a null hypersurface H that is foliated by closed (outer)

marginally trapped surfaces. They characterize different levels of stationarity for

a black hole horizon in an otherwise dynamical environment:

i) Non-Expanding Horizons (NEH). They represent the minimal notion of equilib-

rium by imposing the stationarity of the intrinsic geometry qab.

ii) Weakly Isolated Horizons (WIH). They are NEHs endowed with an additional

structure needed for a Hamiltonian analysis of the horizon and its related (thermo-

)dynamics. They impose no additional constraints on the geometry of the NEH.

iii) Isolated Horizons (IH). These are WIHs whose extrinsic geometry is also invari-

ant along the evolution. They provide the strongest stationarity notion on H.

The non-stationary regime can be characterized by Dynamical Horizons (DH),

namely spacelike hypersurfaces H foliated by closed future marginally trapped sur-

faces, i.e. θ(ℓ) = 0 and θ(k) < 0. Introduced in a 3+1 formulation, they provide
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a complementary perspective to the dual-null foliation formulation14 of trapping

horizons, making them naturally adapted for an Initial Value Problem perspective.

2.4. IHs and DHs as stationary and dynamical sections of FOTHs

A natural question when considering the transition from equilibrium to the dy-

namical regime is whether a section St of a FOTH can be partially stationary and

partially dynamical. Or, in other words, whether the element of area dA can be non-

expanding (C = 0) in a part of St whereas it already expands (C > 0) in another

part. Namely, can ha be both null and spacelike on a section St of a FOTH?

The answer is in the negative. Transitions between non-expanding and dynam-

ical parts of a FOTH must happen all at once. More precisely, assuming the null

energy condition, a FOTH can be completely partitioned into non-expanding and

dynamical sections. For a section St to be completely dynamical (C > 0) it suffices

that it has δℓθ
(ℓ) < 0 somewhere on it. Otherwise ha is null (C = 0) all over St

28,22.

In more physical terms, it suffices that some energy crosses the horizon some-

where, and the whole horizon instantaneously grows as a whole. This non-local

behaviour is a consequence of the elliptic nature of quasi-local horizons. As shown

in section 3.2.3, the function C determining the metric type of ha satisfies an el-

liptic equation [cf. Eq. (37)]. Under the outer condition δkθ
(ℓ) < 0 one can apply

a maximum principle to show that C is non-negative [generalization of Eq. (18)].

Moreover, it suffices that δℓθ
(ℓ) 6= 0 somewhere, for having C > 0 everywhere.

3. Quasi-local horizons: properties from a 3+1 perspective

3.1. Equilibrium regime

3.1.1. Null hypersurfaces: characterization and basic elements

A hypersurface H is null if and only if the induced metric is degenerated. Equiv-

alently, if and only if there is a tangent null vector ℓa orthogonal to all vectors

tangent to H: ℓava = 0, ∀va ∈ TH.

Let us introduce some elements on the geometry of H. Choosing a null vector

ka transverse to H, we can writee the degenerated metric as qab = gab+kaℓb+ ℓakb.

A projector onto H can also be constructed as: Πa
b = δa

b + ℓak
b = qa

b − kaℓ
b. As

a part of the extrinsic curvature of H, a rotation 1-form can be introduced29 on H
as ω

(ℓ)
a = 1

ℓaka
kc∇aℓc. This 1-form lives on H, i.e. kaω

(ℓ)
a = 0. In particular, we can

write Πa
c∇cℓ

b = ω
(ℓ)
a ℓb+Θ(ℓ)

a
b
, where Θ

(ℓ)
ab is given by expression (7) [cf. Eq. (5.23)

in Ref. 26]. Contracting with ℓa we find: ℓc∇cℓ
a = κ(ℓ)ℓa, a pre-geodesic equation

where the non-affinity coefficient κ(ℓ) is defined as κ(ℓ) = ℓaω
(ℓ)
a . If a foliation {St}

of H is given, we can write [cf. Eq. (5.35) in Ref. 26]: ω
(ℓ)
a = Ω

(ℓ)
a − κ(ℓ)ka.

Vectors ℓa and ka can be completed to a tetrad {ℓa, ka, (e1)a, (e2)a}, where (ei)a

eWe abuse notation and employ the same notation employed in sections St of H, cf. Eq. (4).
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are tangent to sections St. Normalizations given in (2) are then completed to

ℓ · (ei)a = 0 , ka(ei)a = 0 , (ei)
a(ei)b = δab . (19)

Defining the complex null vector ma = 1√
2
[(e1)

a + i(e2)
a], the Weyl scalars are de-

fined as the components of the Weyl tensor Ca
bcd in the null tetrad {ℓa, ka,ma,ma}

Ψ0 = Ca
bcd ℓam

bℓcmd Ψ3 = Ca
bcd ℓak

bmckd

Ψ1 = Ca
bcd ℓam

bℓckd Ψ4 = Ca
bcd mak

bmckd

Ψ2 = Ca
bcd ℓam

bmckd
(20)

3.1.2. Null hypersurfaces: evolution

It is illustrative to give a 3+1 perspective on H. Given a foliation H =
⋃

t∈R
St let

us evaluate explicitly the evolution along ℓa of quantities defined on sections St.

i) Expansion equation (null Raychaudhuri equation):

δℓθ
(ℓ) − κ(ℓ)θ(ℓ) +

1

2
θ(ℓ)

2
+ σ

(ℓ)
ab σ

(ℓ)ab + 8πTabℓ
aℓb = 0 . (21)

ii) Tidal equation:

δℓσ
(ℓ)
ab = κ(ℓ) σ

(ℓ)
ab + σ

(ℓ)
cd σ

(ℓ)cd qab − qcaq
d
bCecfdℓ

eℓf . (22)

iii) Evolution for Ωa:

δℓΩ
(ℓ)
c + θ(ℓ) Ω(ℓ)

a = 8πTcd ℓ
cqda +

2Da

(

κ(ℓ) +
θ(ℓ)

2

)

− 2Dcσ
(ℓ)c

a . (23)

3.1.3. Non-Expanding Horizons

A NEH 30 is a null-hypersurfaceH ≈ S2×R, on which the expansion associated with

ℓa vanishes (θ(ℓ) = 0), the Einstein equations hold and −T a
cℓ

c is future directed

(null dominant energy condition). Note that any foliation H =
⋃

t∈R
St produces a

foliation of H by MOTS St.

i) NEH characterization. Making θ(ℓ) = 0 in the Raychaudhuri Eq. (21) we get

σabσ
ab + 8πTabℓ

aℓb = 0 . (24)

Since the two terms are positive-definite, they vanish independently. This provides

an instantaneous characterization of a NEH:

θ(ℓ) = 0 , σ
(ℓ)
ab = 0 , Tabℓ

aℓb = 0 . (25)

From Eq. (11) with va = ℓa, it follows Θ
(ℓ)
ab = 0. The NEH characterization is

equivalent, cf. Eq. (9), to the evolution independence of the induced metric qab

δℓqcd =
1

2
Θ

(ℓ)
ab = 0 . (26)

From Eq. (8), we conclude that a NEH fixes half of the degrees of freedom in the

second fundamental form Kc
ab of St in M. This will be relevant in section 4.2.1.
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ii) Connection ∇̂a on a NEH. A null hypersurface has no unique (Levi-Civita)

connection compatible with the metric. However, on a NEH H one can intro-

duce a preferred connection as that one induced from the spacetime connection

∇a: u
c∇̂cw

a = uc∇cw
a, ∀ua, wa ∈ TH. Indeed using NEH characterization (26),

uc∇cw
a is tangent to H: ℓd(u

c∇cw
d) = uc∇c(ℓdw

d)− ucwdΘ
(ℓ)
cd = 0.

iii) Geometry of a NEH. We refer31 to the pair (qab, ∇̂a) as the geometry of a NEH.

Writing the components of the ∇̂a connection in terms of quantities on St

qca q
b
d∇̂cv

d = 2Da(q
b
cv

c)qca

kd∇̂cv
d = 2Da(v

ckc)− qcav
dΘ

(k)
cd (27)

ℓc∇̂cv
a = δℓv

a + vcω(ℓ)
c ℓa ,

the free data on a NEH are given, from an evolution perspective, by

(qab|St
,Ω

(ℓ)
a |St

, κ(ℓ)|H,Θ
(k)
ab |St

), where qab is time independent.

iv)Weyl tensor on a NEH. Under the rescaling (3), the 1-form ω
(ℓ)
a transforms as

ω
(ℓ)
a → ω

(ℓ)
a + ∇̂alnf . Its exterior derivative dω

(ℓ) provides a gauge invariant object:

understanding ω
(ℓ)
a as a gauge connection, dω(ℓ) is its gauge-invariant curvature.

Using the NEH condition, Θ
(ℓ)
ab = 0, one can express (cf. section 7.6.2. in Ref. 26)

dω(ℓ) = 2 ImΨ2
2ǫ . (28)

Hence, ImΨ2 is gauge invariant on a NEH. Actually the full Ψ2 is invariant, as it

follows from its boost transformation rules and the values of Ψ0 and Ψ1 on a NEH26,

Ψ0|H = Ψ1|H = 0 . (29)

3.1.4. Weakly Isolated Horizons

A Weakly Isolated Horizon (WIH) (H, [ℓa]) is a NEH together with a class of null

normals [ℓa] such that: δℓω
(ℓ)
a = 0. This condition permits to set a well-posed vari-

ational problem for spacetimes containing stationary quasi-local horizons. This en-

ables the development of a Hamiltonian analysis on the horizon H leading to the

construction of conserved quantities under WIH-symmetries29. In particular, the

expression for the angular momentum in Eq. (15) is recovered

JH =
1

8π

∫

St

ω(ℓ)
c φc 2ǫ =

1

8π

∫

St

Ω(ℓ)
c φc 2ǫ = − 1

4π

∫

St

f ImΨ2
2ǫ , (30)

with φa = 2Dcf
2ǫac (φa is an axial Killing vector, in particular divergence-free).

The WIH structure is relevant for the discussion of IH thermodynamics (cf. A.

Nielsen’s contribution). We do not address this issue here and just comment on the

equivalence of the WIH condition with a thermodynamical zeroth law. Reminding

ω
(ℓ)
a = Ω

(ℓ)
a −κ(ℓ)ka, the (vacuum) evolution equation (23) for Ω

(ℓ)
a leads to LℓΩ

(ℓ)
a =

2Daκ
(ℓ). More generally, δℓω

(ℓ)
a = ∇̂κ(ℓ) (cf. for example Eq. (8.5) in Ref. 26). That

is, on WIHs the non-affinity coefficient (surface gravity) is constant: κ(ℓ) = κo.
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WIHs and NEH geometry. WIHs do not constraint the underlying NEH geometry.

In other words, every NEH admits a WIH structure. In fact, given κ(ℓ) 6= const, the

rescaling ℓ′ = αℓ, with κo = const = ∇ℓα + ακ(ℓ), leads to a constant κ(ℓ′) = κo.

Finally, free data for aWIH are again (qab|St
,Ω

(ℓ)
a |St

, κ(ℓ)|H,Θ
(k)
ab |St

), but now qab|St
,

Ω
(ℓ)
a |St

and κ(ℓ)|H = κo are time-independent.

3.1.5. (Strongly) Isolated Horizons

An isolated horizon (IH) is a WIH on which the whole extrinsic geometry is time-

invariant: [δℓ, ∇̂a] = 0. This condition can be characterized31,26 as δℓΘ
(k) = 0, that

leads to the geometric constraint

κ(ℓ)Θ
(k)
ab =

1

2

(

2DaΩ
(ℓ)
b + 2DbΩ

(ℓ)
a

)

+Ω(ℓ)
a Ω

(ℓ)
b − 1

2
2Rab + 4π

(

qcaq
d
bTcd −

T

2
qab

)

(31)

With Eq. (26), this fixes completely the second fundamental form Kc
ab. Free data of

an IH, (qab|St
,Ω

(ℓ)
a |St

, κ(ℓ)|H = κo), are time independent. Their geometric (gauge-

invariant) content can be encoded in the pairf : (2R, ImΨ2). On the one hand, 2R

accounts for the gauge-invariant part of qab. Regarding Ω
(ℓ)
a , from dω(ℓ) = 2ImΨ2

2ǫ

and κ(ℓ) = const, it follows dΩ(ℓ) = 2ImΨ2
2ǫ. On a sphere St we can write

Ω
(ℓ)
a = Ωdiv−free

a +Ωexact
a , so that Ωexact

a = 2Dag is gauge-dependent [cf. (14)]. From

dΩdiv−free
a = 2ImΨ2, the gauge-invariant part of Ω

(ℓ)
a is encoded in ImΨ2.

IH multipoles of axially symmetric horizons. On an axially symmetric IH, the gauge-

invariant part of the geometry, (2R, ImΨ2), can be described decomposed onto spher-

ical harmonics. On an axially symmetric section St of H, a coordinate system can

be canonically constructed34,35, such that [with AH = 4π(RH)2]

qabdx
a ⊗ dxb = (RH)2

(

F−1sin2θdθ ⊗ dθ + Fdφ⊗ dφ
)

. (32)

In particular, dA = (RH)2sinθdθdφ (round sphere area element). We can then use

standard spherical harmonics Yℓm(θ), with m = 0 in this axisymmetric case
∫

St

Yℓ0(θ)Yℓ′0(θ)d
2A = (RH)2δℓℓ′ , (33)

to define the IH geometric multipoles34 In and Ln

In =
1

4

∫

St

2R Yn0(θ) d
2A

Ln = −
∫

St

ImΨ2 Yn0(θ) d
2A . (34)

Then, Mass Mn and Angular Momentum Jn multipoles are defined34,35,36 by ad-

equate dimensional rescalings of In and Ln.

fNote the relation with the complex scalar K in Refs. 32, 33.
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3.1.6. Gauge freedom on a NEH: non-uniqueness of the foliation

Before proceeding to the dynamical case, we underline the existence of a funda-

mental gauge freedom in the equilibrium (null) case: any foliation {St} of a NEH

H provides a foliation of H by marginally trapped surfaces. This is equivalent to

the rescaling freedom of the null normal ℓa → fℓa. Therefore, the amount of gauge

freedom in the equilibrium case is encoded in one arbitrary function f on St.

Note that in this equilibrium horizon context, the relevant spacetime geometric

object (the hypersurface H) is unique, whereas the gauge-freedom enters in its

evolution description due to the non-uniqueness of its possible foliation by MOTS.

3.2. Dynamical case

3.2.1. Existence and foliation uniqueness results

Let us introduce two fundamental results following from the application of geometric

analysis techniques to the study of dynamical trapping horizons.

Property 1 (Dynamical horizon foliation uniqueness37). Given a dynamical

FOTH H, the foliation by marginally trapped surfaces is unique.

This first result identifies an important rigidity property of DHs: the uniqueness

of its evolution description. This is in contrast with the equilibrium null case, with

its freedom in the choice of the foliation. In particular, on a dynamical FOTH the

evolution vector is completely determined: ha unique up to time reparametrization.

Property 2 (Existence of DHs28,38). Given a marginally trapped surface S0

satisfying an appropriate stability condition on a Cauchy hypersurface Σ, to each

3+1 spacetime foliation (Σt)t∈R it corresponds a unique dynamical FOTHs H con-

taining S0 and sliced by marginally trapped surfaces {St} such that St ⊂ Σt.

This second result addresses the Initial Value Problem of DHs, in particu-

lar the existence of an evolution for a given MOTS into a dynamical FOTH.

The result requires a stability condition (namely, S0 is required to be stably

outermost28,38,23,39), so that the sign of the variation of θ(ℓ) in the inward (out-

ward) direction is under control. This is essentially the outer condition14 in the

FOTH characterization.

3.2.2. ’Gauge’ freedom: Non-Uniqueness of Dynamical Horizons

The evolution of an AH into a DH is non-unique, as a consequence of combining

Properties 1 and 2 above. Let us consider an initial AH S0 ⊂ Σ0 and two different

3+1 slicings {Σt1} and {Σt2}, compatible with Σ0. From Property 2 there exist DHs

H1 =
⋃

t1
St1 and H2 =

⋃

t2
St2 , with St1 = H1∩Σt1 and St2 = H2∩Σt2 marginally

trapped surfaces. Let us consider now the sections ofH1 by {Σt2}, i.e. S ′
t2

= H1∩Σt2 ,

so that H1 =
⋃

t2
S ′
t2
. In the generic case, slicings {S ′

t2
} and {St1} of H1 are differ-

ent (one can consider a deformation of the slicing {Σt2}, if needed). Therefore, from
the foliation uniqueness of Property 1, sections S ′

t2
cannot be marginally trapped
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Fig. 1. Illustration of the DH non-uniqueness. Dynamical horizons H1 and H2 represent evolu-
tions from a given initial MOTS corresponding to different spacetime 3+1 slicings.

surfaces. It follows then that H1 and H2 are different as hypersurfaces in M: if

H1 = H2, sections St2 (MOTSs) and S ′
t2

(non-MOTSs) would coincide by construc-

tion, leading to a contradiction. In addition to this non-uniqueness, DHs interweave

in spacetime due to the existence of causal constraints37: a DH H1 cannot lay

completely in the causal past of another DH H2 (cf. Fig. 1).

Comparing with the discussion in section 3.1.6 on the uniqueness and gauge-

freedom issues in the equilibrium case, we conclude from the previous geometric

considerations that the dynamical and equilibrium cases contain the same amount

of gauge freedom, namely a function on S, although dressed in a different form.

More specifically, whereas in the NEH case there is a fixed horizon, with a rescaling

freedom (ℓa → fℓa, f function on St), in the DH case the foliation is fixed, but a

(gauge) freedom appears in the choice of the evolving horizon (lapse function N on

St). In other words, in the dynamical case the choice is among distinct spacetime

geometric objects, H1 and H2, whereas in the equilibrium case the choice concerns

the description (foliation) of a single spacetime geometric object H.

3.2.3. FOTH characterization

As discussed in 2.2, a FOTH with evolution vector ha = ℓa−Cka is characterized by:

i) a trapping horizon condition: θ(ℓ) = 0, δhθ
(ℓ) = 0, ii) a future condition θ(k) < 0,

and iii) an outer condition: δkθ
(ℓ) < 0. These conditions can be made more explicit
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in terms of the variations22,40

δαℓθ
(ℓ) = −α(σ

(ℓ)
ab σ

(ℓ)ab − 8πTabℓ
aℓb) (35)

δβkθ
(ℓ) = β

[

−2DcΩ(ℓ)
c +Ω(ℓ)

c Ω(ℓ)c − 1

2
2R+ 8πTabk

aℓb
]

+ 2∆β − 2Ω(ℓ)
c

2Dcβ ,

with α and β functions on St. Making β = 1, the outer condition writes

δkθ
(ℓ) = −2DcΩ(ℓ)

c +Ω(ℓ)
c Ω(ℓ)c − 1

2
2R+ 8πTabk

aℓb < 0, (36)

for some ℓa and ka, whereas the trapping horizon condition (with α = 1, β = C) is

δhθ
(ℓ) = δℓθ

(ℓ) − δCkθ
(ℓ) = δℓθ

(ℓ) − Cδkθ
(ℓ) − 2∆C + 2Ω(ℓ)

c
2DcC = 0 , (37)

that is

− 2∆C + 2Ω(ℓ)
c

2DcC − C

[

−2DcΩ(ℓ)
c +Ω(ℓ)

c Ω(ℓ)c − 1

2
2R

]

= σ
(ℓ)
ab σ

(ℓ)ab + 8πTabτ
aℓb(38)

This elliptic condition on C, in particular through the application of a maximum

principle relying on the outer condition δkθ
(ℓ) < 0, is at the heart of the non-local

behaviour of the worldtube
⋃

t∈R
St discussed in section 2.4.

Remark on the variation/deformation/stability operator δvθ
(ℓ). Before proceed-

ing further, Eq. (35) requires some explanation. In section 2.1.3, we have introduced

δv in terms of the Lie derivative on a tensorial object. However, the expansion θ(ℓ)

is not a scalar quantity in the sense of a point-like (tensorial) field defined on the

manifold M. The expansion is a quasi-local object whose very definition at a point

p ∈ M requires the choice of a (portion of a) surface S passing through p. In

this sense, δγv (with γ a function on S) cannot be in general evaluated as a Lie

derivative. Consider a displacement of the surface St by a vector γva. The sur-

face St+δt and therefore θ(ℓ)|t+δt depend on the angular dependence of γ, so that

δγvθ
(ℓ) 6= γδvθ

(ℓ). The operator δv still satisfies a linear property for constant lin-

ear combinations, δav+bwθ
(ℓ) = aδvθ

(ℓ) + bδwθ
(ℓ) (a, b ∈ R), and the Leibnitz rule,

δv(γθ
(ℓ)) = (δvγ)θ

(ℓ) + γδvθ
(ℓ). Details about this operator can be found in Refs.

28, 22, 40g. Here we rather exploit a practical trick for the evaluation of δγvθ
(ℓ),

based on the remark that given the vector va normal to S, and not multiplied by a

function on S, it still holds formally δvθ
(ℓ) = Lvθ

(ℓ). Then, we can evaluate δγvθ
(ℓ)

as δγvθ
(ℓ) = δṽθ

(ℓ) = Lṽθ
(ℓ), with ṽa = γva. In particular, the application of this

strategy to the second line of (35) goes as follows. We write k̃a = βka and calculate

δk̃θ
(ℓ) through a Lie derivative evaluation. This results in

δk̃θ
(ℓ) = (−k̃cℓc)

[

2DcΩ(k̃)
c +Ω(k̃)

c Ω(k̃)
c

− 1

2
2R

]

+ 8πTabk̃
aℓb . (39)

Using (−k̃cℓc) = β, Ω
(k̃)
a = Ω

(k)
a +2Dalnβ and Ω

(k)
a = −Ω

(ℓ)
a the expression for δk̃θ

(ℓ)

in (35) follows (cf. footnote b).

gSee also the treatment in terms of Lie derivatives in the double null foliations treatment in Refs.
14, 21.
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3.2.4. Generic properties of dynamical FOTHs

We review some generic properties of dynamical trapping horizons14,41,24,30,22.

i) Topology Law: under the dominant energy condition, sections St are topological

spheres. This can be shown by integrating δkθ
(ℓ) < 0 on St. Under the assumed

energy condition, the Euler characteristic χ

χ =
1

4π

∫

S

2R 2ǫ =
1

2π

∫

S

(

−δkθ
(ℓ) +Ω(ℓ)

c Ω(ℓ)c + 8πTabk
aℓb

)

2ǫ ,

is positive and, being St a closed 2-surface, its spherical topology follows.

ii) Signature law: under the null energy condition, H is completely partitioned into

null worldtube sections (where δℓθ
(ℓ) = 0) and spacelike worldtube sections (where

δℓθ
(ℓ) 6= 0 at least on a point). Applying a maximum principle to the trapping

horizon constraint condition, Eq. (37), it follows that either C = const ≥ 0, or C is

a function C > 0 everywhere on S (cf. discussion in 2.4).

iii) Area law: under the null energy condition, if δℓθ
(ℓ) 6= 0 somewhere on St, the area

grows locally everywhere on St. Otherwise the area in constant along the evolution.

This follows from applying the future condition, θ(k) < 0, and the signature law to

δh
2√q = −Cθ(k)

√
q [cf. Eq. (17)].

iv) Preferred choice of null tetrad on a DH. According to the foliation uniqueness

and existence results discussed in 3.2.1, there is a unique evolution vector ha tangent

to H and orthogonal to St, such that ha transports St ∈ Σt onto St+δt ∈ Σt+δt: that

is, δht = 1, for a given function t defining a 3+1 spacetime foliation {Σt}. Denoting

the unit timelike normal to Σt by na, the lapse function by N , i.e. na = −N∇at,

and the normal to St tangent to Σt by sa, we can write on the horizon HN

ha = Nna + bsa , (40)

for some b fixed from N and C in (16), as 2C = (b−N)(b−N). The expression of the

evolution vector as ha = ℓa−Cka [cf. Eq. (16)] links the scaling of ℓa and ka to that

of ha. In particular, ℓa is singled out as the only null normal to St such that ha → ℓa

as the trapping horizon is driven to stationarity (C → 0 ⇔ δℓθ
(ℓ) → 0). Writing

generically the null normals at HN as ℓa = f · (na + sa) and ka = (na − sa)/(2f),

Eqs. (40) and (16) lead to a preferred scaling of null normals on the DH HN

ℓaN =
N + b

2
(na + sa) , kaN =

1

N + b
(na − sa) . (41)

3.2.5. Geometric balance equations

One of the main motivations for the development of quasi-local horizon formalisms

is the extension of the laws of black hole thermodynamics to dynamical regimes.

This involves in particular finding balance equations to control the rate of change

of physical quantities on the horizon, in terms of appropriate fluxes through the

hypersurface. This is an extensive subject whose review is beyond our scope. In the

spirit of the present discussion, we restrain ourselves to comment on the balance
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equations for two geometric quantities on St: the area A =
∫

S dA =
∫

S
2ǫ and

the angular momentum J [φ] in Eq. (15), for an axial Killing (or, more generally,

divergence-free) vector φa . That is, we aim at writing

dA

dt
=

∫

St

FA dA ,
dJ [φ]

dt
=

∫

St

F J dA , (42)

for appropriate area FA and angular momentum F J fluxes, with d/dt associated to

the foliation Lie-transported by ha. Eventually, one would aim at writing a 1st law

of thermodynamics by appropriately combining the previous balance equations

κt

dA

dt
+Ωt

dJ [φ]

dt
=

∫

St

FE dA , (43)

for some functions κt and Ωt on St, so that FE is interpreted as an energy

flux41,24,42,43,44,22,45,46,47. As a first step towards (42) we write evolution equa-

tions for the expansion θ(h) and the form Ω
(ℓ)
a along the evolution vector ha. These

equations are given by the projection of some of the components of the Einstein

equations onto H. Introducing a 4-momentum current density pa = −Tabτ
b, with

τa the vector orthogonal to H defined in (16), such equations provide three of the

components of pa. The fourth is given by the trapping horizon condition (38). In

brief:

i) Evolution element of area48,49 (pah
a = −Tabτ

bha):

(

δh + θ(h)
)

θ(h) = −κ(h)θ(h) + σ
(h)
ab σ(τ)ab +

(θ(h))2

2
− 22DaQa + 8πTabτ

ahb − θ(k)

8π
δhC ,(44)

with Qa = 1
4π

[

CΩ
(ℓ)
a − 1/22DaC

]

and κ(h) = −hbkc∇bℓc.

ii) Evolution normal (rotation) form21,49 Ω
(ℓ)
a (pbq

b
a = −Tbcτ

cqba):
(

δh + θ(h)
)

Ω(ℓ)
a = 2Daκ

(h) − 2Dcσ(τ)
ac − 2Daθ

(h) + 8πqbaTbcτ
c − θ(k)2DaC . (45)

iii) Normal component (paτ
a = −Tabτ

bτa): linear combination, using τa = 2ℓa−ha,

of Tabτ
ahb (area element evolution) and Tabτ

aℓb [trapping horizon constraint (38)].

In order to derive the evolution equation for A, we write A =
∫

S dA =
∫

S
2ǫ so

that, using the transport of St into St+δt by h
a, we have dA

dt
=

∫

S δh(dA) =
∫

S θ(h)dA

and d2A
dt2

=
∫

S
(

δhθ
(h) + (θ(h))2

)

dA. From Eq. (44) it then follows

d2A

dt2
+ κ̄′ dA

dt
=

∫

St

[

8πTabτ
ahb + σ

(h)
ab σ(τ)ab +

(θ(h))2

2
+ (κ̄′ − κ′)θ(h)

]

2ǫ , (46)

where κ′ ≡ κ−δh lnC and κ̄′ = κ̄(t) ≡ A−1
∫

St
κ′2ǫ. Note that this is a second-order

equation for the area48. Near equilibrium, the second time derivative as well as

higher-order terms can be neglected leading to the Hawking & Hartle expression50

κ̄′ dA

dt
=

∫

St

[

8πTabℓ
aℓb + σ

(ℓ)
ab σ

(ℓ)ab
]

dA .
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Regarding the evolution equation for J [φ], we make use of Eq. (45) together with a

divergence-free condition on φa (that relaxes the Killing condition) and the condi-

tion that φa is Lie-dragged by the evolution vector ha. Then21,51,52

d

dt
J(φ) = −

∫

St

Tabτ
aφb 2ǫ− 1

16π

∫

St

σ
(τ)
ab δφq

ab 2ǫ , (47)

with the second term in the right hand side accounting for a non-Killing φa. Inter-

estingly in dynamical (spacelike) horizons H, the conditions 2Daφ
a = 0 and δhφ

a

completely fix51 the form of the vector φa: φa = 2ǫac2Dbθ
(h).

3.2.6. Open geometric issues and physical remarks

To close this generic section on geometric aspects of dynamical horizons, we list

some relevant open geometric problems:

i) Canonical choice of dynamical trapping horizon. DHs are highly non-unique in a

given black hole spacetime. A natural question concerns the possibility of making a

canonical choice. There has been some attempts in this direction based on entropic

arguments48,53,54,55,?. A very interesting avenue lies on the recently introduced

notion of the core of the trapped region20 (see also J.M.M. Senovilla’s contribution).

ii) Asymptotics of dynamical horizons to the event horizon. One would expect DHs

to asymptote generically to the event horizon at late times. This is indeed a topic

of active research56,57,58,15.

iii) Black hole singularity covering by dynamical horizons. In addition to the asymp-

totics of DHs to the event horizon, it is also of interest to assess their behaviour

at the birth of the black hole singularity, in particular their capability to separate

(dress) singularities from the rest of the spacetime (see section 5.4.4).

DHs as physical surfaces. Dynamical horizons are objects with very interesting

geometric properties for the study of black hole spacetimes. In addition, from a

physical perspective it is remarkable that they admit a non-trivial thermodynamical

description (cf. A. Nielsen’s contribution). However, it is also important to underline

that, if thought as boundaries of compact physical objects (in the sense we think, say,

of the surface of a neutron star), then they have non-standard physical properties:

a) They are non-unique. From an Initial Value Problem perspective, the question

about the evolution of a given AH is not well-posed, since it depends on the 3+1

slicing choice (such non-uniqueness in evolution is typical of gauge objects).

b) Dynamical trapping horizons are superluminal, something difficult to reconcili-

ate with the physical surface of an object.

c) DHs show a non-local behaviour. For instance, they grow globally (reacting as

a whole) when energy crosses them at a given local region (even a point). This

is a consequence of their intrinsic elliptic, rather than hyperbolic, behaviour.
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4. Black hole spacetimes in an Initial-Boundary Value problem

approach

In the context of an Initial-Boundary Value Problem approach to the construction

of spacetimes, dynamical trapping horizons play a role at two levels: i) first, as an

a priori ingredient to be incorporated into a given PDE formulation of Einstein

equations, and ii) as an a posteriori tool to extract information of the constructed

spacetimes. In this section we address their application as an a priori ingredient.

4.1. The Initial Value Problem in General Relativity: 3+1

formalism

Our general basic problem is the control59 of the qualitative and quantitative as-

pects of generic solutions to Einstein equations in dynamical scenarios involving

a black hole spacetime. The Initial-Boundary Value Problem approach provides a

powerful avenue to it. Such a strategy is well suited, on the one hand, to the use of

global analysis and Partial Differential Equations (PDE) tools for controlling the

qualitative aspects of the problem and, on the other hand, to the employment of

numerical techniques to assess the quantitative ones. In particular, we focus here

on the Cauchy (and hyperboloidal) Initial Value Problem.

4.1.1. Einstein equations: Constraint and Evolution System

General Relativity is a geometric theory in which not all the fields constitute physical

degrees of freedom (gauge theory), so that constraints among the fields are present.

In the passage from the geometric formulation of the theory to an analytic problem

in the form of a specific PDE system, several PDE subsystems enter into scene60.

First, the constraint system is determined by the (Gauss-Codazzi) conditions that

data on a 3-dimensional Riemannian manifold must satisfy to be considered as

initial data on a spacetime slice. The Hamiltonian and momentum constraints are

determined by the Gabn
b components of the Einstein equation, where na is a unit

timelike vector normal to the initial slice. Second, the evolution system is built

from the rest of Einstein equation, including possible auxiliary fields. The gauge

system determines the dynamical choice of coordinates in the spacetime. Finally, a

subsidiary system controls the internal consistency of the previous systems.

4.1.2. 3+1 formalism

We introduce some notation regarding the 3+1 formalism61. As in section 3.2.4,

given a 3+1 slicing of spacetime by spacelike hypersurfaces {Σt}, the unit timelike

normal to Σt is denoted by na and the lapse function as N , na = −N∇at, with t

the scalar function defining the 3+1 slicing. The 3+1 evolution vector is denoted by

ta = Nna+βa, where βa is the shift vector. The induced metric on Σt is denoted by

γab, i.e. γab = gab + nanb. We choose the following sign convention for the extrinsic
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curvature of Σt in M: Kab = −γc
a∇cnb = − 1

2Lnγab. In particular, we can write

Kij = 1
2N

(

γikDjβ
k + γjkDiβ

k − γ̇ij
)

, where the dot denotes the derivative Lt.

Indices i,j,k... are used for objects leaving on Σt. For concreteness, we focus on a

particular 3+1 decomposition of Einstein equations, namely involving the following

conformal decomposition (conformal Ansatz62) for data (γij ,K
ij) on Σt

γij = Ψ4γ̃ij , Kij = ΨζÃij +
1

3
Kγij , (48)

for several ζ choices. Denoting by D̃i the Levi-Civita connection associated with

γ̃ij and inserting (48) into Einstein equations leads to a coupled elliptic-hyperbolic

PDE system on the variables Ψ, βi, N and γ̃ab. The elliptic part has the form

D̃kD̃
kΨ−

3R̃

8
Ψ = SΨ[Ψ, N, βi,K, γ̃, ...]

D̃kD̃
kβi +

1

3
D̃iD̃kβ

k + 3R̃i
kβ

k = Sβ [Ψ, N, βi,K, γ̃, ...] (49)

D̃kD̃
kN + 2D̃k lnΨ D̃kN = SN [N,Ψ, βi,K, γ̃, K̇, ...] ,

where the equation on Ψ follows from the Hamiltonian constraint, the equation on

βi follows from the momentum constraint and the third equation on N follows from

a (gauge) condition imposed on K̇. If only solved on an initial slice with γ̃ij , ˙̃γ
ij , K

and K̇ as free data, this system constitutes the Extended Conformal Thin Sandwich

approach to initial data63,64. If we solve it during the whole evolution, together

with

∂2γ̃ij

∂t2
− N2

Ψ4
∆γ̃ij − 2Lβ

γ̃ij

∂t
+ LβLβ γ̃

ij = Sij
γ̃ [N,Ψ, βi,K, γ̃, ...] , (50)

for γ̃ij , it defines a particular constrained evolution formalism65,66,67.

4.2. Initial Data: Isolated Horizon inner boundary conditions

There are two standard approaches to ensure that initial data on a slice Σ0 corre-

spond to a black hole spacetime. The punctures approach exploits the non-trivial

topology68,69 of Σ0, whereas the excision approach removes a sphere from the ini-

tial slice and enforces it to be inside the black hole region. In a sense, they both

reflect the global versus quasi-local discussion in section 1. Here we discuss the use of

inner boundary conditions derived from the IH formalism, when constructing initial

data of black hole instantaneously in equilibrium in an excision approach.

4.2.1. Non-Expanding Horizon conditions

The NEH condition Θ
(ℓ)
ab = 0 in Eq. (26) [or (25)] provides three inner boundary

conditions for the elliptic system (49). In particular, they enforce the excised surface

S0 to be a section of a quasi-local horizon instantaneously in equilibrium.

For a given choice of free initial data in system (49), the geometric NEH inner

boundary conditions, Θ
(ℓ)
ab = 0, must be complemented with two additional inner



August 15, 2011 18:21 WSPC/INSTRUCTION FILE JaramilloShanghai

LOCAL BLACK HOLE HORIZONS IN THE 3+1 APPROACH TO GENERAL RELATIVITY 21

boundary (gauge) conditions. Denoting by si the normal vector to St tangent to Σt,

we write βi = β⊥si + βi
‖, with β⊥ = βisi and βi

‖si = 0. Adapting the coordinate

system to the horizon (i.e. ta = ℓa+βa
‖ ⇔ β⊥ = N) supplies a fourth gauge condition

that, together with the θ(ℓ) = 0 and σ
(ℓ)
ab = 0 NEH conditions, reads70,71,72,26

s̃iD̃iΨ+ D̃is̃
iΨ+Ψ−1Kij s̃

is̃j −Ψ3K = 0

2D̃aβ̃
‖
b + 2D̃bβ̃

‖
a − (2D̃cβ

c
‖) q̃ab = 0 , β⊥ = N , (51)

where q̃ab = Ψ4qab and β̃
‖
a = q̃abβ

‖b. A fifth boundary condition, namely for N , can

be obtained by choosing a slicing inner boundary condition. The (gauge) weakly

isolated horizon structure can be used in this sense73,26.

4.2.2. (Full) Isolated Horizon conditions

The next geometric quasi-equilibrium horizon structure is a (full) IH (cf. sections

3.1.4 and 3.1.5). This involves three additional conditions that cannot be accommo-

dated in system (49) for fixed free initial data. However, we can revert the argument

and employ IH conditions to determine improved quasi-equilibrium free initial data

γ̃ab and ˙̃γab by solving the full set of Einstein equations (49) and (50) under a

quasi-equilibrium Ansatz. Namely, we can set ∂tγ̃
ab and ∂2γ̃ab

∂t2
in (50) to prescribed

functions fab
1 and fab

2 and consider the elliptic system formed by (49) together with

− N2

Ψ4
∆̃γ̃ab + LβLβ γ̃

ab = Sab
γ̃ − fab

2 + 2Lβf
ab
1 . (52)

This extended elliptic system is solved for ten fields: (Ψ, βa, N) and the five γ̃ab.

Geometrically, we need to impose four gauge inner conditions, leaving exactly six

inner conditions to be fixed. Remarkably, this fits exactly the six IH conditions74

Θ
(ℓ)
ab = 0 , Θ

(k)
ab = Θ

(k)
ab (κo, q̃ab,Ω

(ℓ)
a ) ⇔ FΘ(k)

ab (κo,Ψ, βa, N, γ̃ab) = 0 , (53)

where FΘ(k)

ab is determined by the expression for Θ
(k)
ab in Eq. (31), fixed up to the

value of the constant κo. It is interesting to remark that this IH prescription74

completely fixes (up a κo one-parameter family) the extrinsic curvature tensorKc
ab =

kcΘ
(ℓ)
ab + ℓcΘ

(k)
ab [cf. Eq. (8)] of S0 as embedded in the spacetime M.

4.3. Constrained evolutions: Trapping Horizon inner boundary

conditions

The elliptic-hyperbolic system (49)-(50) provides a constrained evolution scheme for

the dynamical construction of the spacetime. Adopting a excision approach to black

holes, we need five inner boundary conditions for the elliptic part of the system. In

principle, dynamical trapping horizon conditions on the inner boundary worldtube

H = ∪tSt provide a geometric prescription guaranteeing that H remains in the

black hole region. However, imposing FOTH conditions on H can be too stringent
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in generic evolutions. The reason is that the constructed worldtube of MOTS H, re-

garded as a hypersurface in spacetime, can change signature. This is in conflict with

the outer condition in 2.2 (something related to jumps occurring generically75,76,77

in AH evolutions; see 5.1.1) so that the resulting PDE system can become ill-posed.

In this context, trapping horizon conditions together with the requirement of recov-

ering NEH inner conditions at the equilibrium limit, provide an appropriate relaxed

set of inner boundary conditions78. More specifically, trapping horizon conditions

provides two geometric conditions θ(ℓ) = 0 and δhθ
(ℓ) = 0, whereas three additional

gauge conditions guarantee the recovery of NEH at equilibrium.

As a first step, as in 4.2.1, we choose a coordinate system adapted to the horizon.

This means that spacetime evolution ta is tangent to H. Decomposing the shift as

βa = β⊥sa+βa
‖ , then ta is written as ta = Nna+βa = (Nna+bsa)+βa

‖+(β⊥−b)sa =

ha + βa
‖ + (β⊥ − b)sa. Therefore ta is tangent to H if and only if β⊥ = b.

i) Geometric trapping horizon conditions. Condition θ(ℓ) = 0 leads, in terms of the

3+1 quantities in 4.1.2, to the expression in the first line of Eq. (51). Condition

δhθ
(ℓ) = 0 in Eq. (38), using the adapted coordinate system β⊥ = b, leads to

[

−2Da
2Da − 2La2Da +A

]

(β⊥ −N) = B(β⊥ +N) , (54)

where La = Kijs
iqja, A = 1

2
2R − 2DaL

a − LaL
a − 4πTµν(n

µ + sµ)(nν − sν), and

B = 1
2σ

(ℓ̂)
ab σ

(ℓ̂)ab + 4πTab(n
a + sb)(nb + sb), with ℓ̂a = na + sa.

ii) Gauge boundary conditions I. Aiming at recovering NEH boundary conditions

for βa
‖ , we first express δhqab = θ(h)qab+2σ

(h)
ab in adapted coordinates (ha = ta−βa

‖ )

2σ
(h)
ab =

(

∂qab
∂t

− ∂

∂t
ln
√
q qab

)

−
(

2Daβ
‖
b + 2Dbβ

‖
a − 2Dcβ

c
‖ qab

)

, (55)

Then, the coordinate choice ∂tqab − ∂t ln
√
q qab = 0 leads to the condition on β

‖
a

2Daβ
‖
b + 2Dbβ

‖
a − 2Dcβ

c
‖ qab = −2σ

(h)
ab , (56)

that is completed by using the evolution equation for σ
(h)
ab on H

δhσ
(h)
ab = −qdaq

f
bC

c
def ℓcℓ

e − C2qdaq
f
bC

c
defkck

e

− 8πC

[

qcaq
d
bTcd −

1

2
(qcdTcd)qab

]

+ · · · (57)

iii)Gauge boundary conditions II. The slicing condition for N is essentially free.

However, from Properties 1 and 2 in section 3.2.1, such a choice is equivalent to

choosing a dynamical horizon H. Since each H is a genuine geometric object, this

suggests the possibility of recasting into geometric terms the gauge choice of inner

boundary condition for N , by selecting a trapping horizonH satisfying some specific

geometric criterion for H. As an example of this, maximizing the area growth rate

Ȧ of H leads48,78 to the condition β⊥ −N = −const · θ(k̂), with k̂a = na − sa.
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5. A posteriori analysis of Black Hole spacetimes

We address here the application of dynamical trapping horizons to the a posteriori

analysis of spacetimes, their main application in the Initial Value Problem approach.

5.1. “Tracking” the black hole region: Apparent Horizon finders

As discussed in 1.2, event horizons cannot be located during the spacetime evo-

lution. However, in applications such as numerical relativity, assessing if a region

of spacetime lays inside the black hole region can be crucial during the evolution.

Under the assumption of cosmic censorship, the location of AHs in spatial sections

Σt and the worldtubes constructed by piling them up (see 1.3.1) are extremely use-

ful to determine the evolutive properties of the black hole. In this sense, apparent

horizon finders prove to be extraordinary practical tools. These are algorithms for

searching surfaces St ⊂ Σt that satisfy the MOTS condition θ(ℓ) = 0. There are

many approaches to this problem79, but all of them aim at solving the condition

Dis
i−K+Kijs

isj = 0. For instance, assuming spherical topology, we can character-

ize the surface in an adapted (spherical) coordinate system as F (r, θ, ϕ) = r−h(θ, ϕ)

with F = const, so that the normal vector to St is given by si =
1√

DiF ·DiF
DiF with

DiF = (1,−∂θh,−∂ϕh) in the spherical coordinate system. The MOTS condition

becomes then a non-linear elliptic equation on h that can be solved very efficiently.

5.1.1. Understanding apparent horizon jumps

Non-continuous jumps of AHs occur generically in 3+1 black hole evolutions. The

dynamical trapping horizon framework sheds light76,77,80 on these AH jumps, sug-

gesting a spacetime picture where the jumps are understood as multiple spatial cuts

of a single underlying spacetime MOTS worldtube. Jumps are associated with the

change of metric type of the horizon hypersurface (see Fig. 2). This is particularly

dramatic in binary black hole simulations, where at a given time t the two individual

non-connected horizons jump to a common one. A specific prediction of the dynami-

cal horizon picture is that new (common) horizons form in pairs35,80: the outermost

(apparent) horizon growing in area and a dual inner one whose area decrease in the

time t. Apart from providing a better understanding of the underlying geometry

of the trapped region, this spacetime picture can be of use in the study of flows

interpolating between a given MOTS and the eventual event horizon, something of

potential interest for studies of the Penrose inequality (see below 5.2.2).

5.2. Horizon analysis parameters

Assigning parameters to (individual) black holes can offer crucial insight into the

dynamical evolution. These can be physical parameters like the mass or the angular

momentum, or diagnosis parameters informing of relevant dynamical properties.

Given the generic absence of background rigid structures, first-principles parameters

are often out of reach and one must follow non-rigorous or pragmatic approaches.
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Fig. 2. Illustration of AH jumps as multiple cuts of a single spacetime MOTS-worltube H. In
particular, timelike sections of H produce jumps (null hypersurfaces are represented with 45o).

5.2.1. Mass and Angular Momentum. IH and DH multipoles

In our discussion we have avoided entering into first-principles physical issues, stress-

ing rather the geometric properties of dynamical trapping horizons and their appli-

cations. However, mass and angular momentum estimates for individual black holes,

either fundamental or effective, are extremely important in the modeling of astro-

physical systems involving matter or binary systems. The problem has two aspects.

First, one must identify a surface to be associated with the black hole boundary.

Discussion in section 1 shows that this is a delicate question. In any case, AHs

provide surfaces St ∈ Σt tracking the black hole region, that can be employed as

preferred choices for pragmatic estimations. The second problem refers to the ambi-

guities in the quasi-local characterization of the gravitational field mass and angular

momentum in General Relativity81,82. Regarding the angular momentum, the Ko-

mar expression (15) characterizes appropriately the axisymmetric case. Effective

prescriptions83,84,85 exist for generic horizons. Regarding the mass, the irreducible

mass Mirred A = 16πM2
irred provides a purely geometric estimation in terms of the

area. Its physical interpretation as the portion of the black hole mass that cannot

be extracted by a Penrose process, together with its equivalence with the Hawking

energy, MHawking =
√

A/(16π)(1+1/(8π)
∮

θ(ℓ)θ(k)dA) for MOTSs, makes it useful

in numerical applications and in the thermodynamical treatments42,43. Given A

and J one can also consider30 the Christodoulou expression for the Kerr mass

M
Chris

=

(

A

16π
+

4πJ2

A

)
1
2

. (58)

There are many prescriptions for the quasi-local mass81,82. It is therefore crucial to

choose and keep consistently a prescription when comparing different solutions. In

this latter sense, the mass and angular momentum horizon geometric multipoles In
and Ln in (34) offer a useful and refined diagnosis tool in numerical studies35,86.
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5.2.2. Useful diagnosis parameters

Insight into the geometric properties of MOTS worldtubes leads to useful diagnosis

parameters for monitoring dynamical evolutions. Geometric black hole inequali-

ties provide a particular avenue. In particular, the conjectured Penrose’s inequality

A ≤ 16πM2
ADM

for asymptotically flat spacetimes provides a bound to the AH area

(strictly speaking, the bound is on the area of a minimal surface enclosing the AH).

A violation of ǫ
Penrose

≡ A/(16πM2
ADM

) ≤ 1 indicates a more exterior MOTS. In the

axially symmetric case this can be refined in terms of a so-called87,88 Dain number

ǫDain ≡ A

8π
(

M2
ADM

+
√

M4
ADM

− J2
) ≤ 1 . (59)

Moreover, the rigidity part of the conjecture provides an extremely simple character-

ization of Kerr as satisfying ǫ
Dain

= 1. In the same spirit, the geometric inequality89

J ≤ M2
ADM

provides a characterization of (sub)extremality of black holes. However,

these inequalities involve total quantities such as the ADM mass. It is remarkable

that the dynamical horizon structure (actually the outer trapping horizon condition)

provides exactly the needed conditions to prove the quasi-local inequality90,91,39

A ≥ 8π|J | , (60)

in generic spacetimes with matter satisfying the dominant energy condition. The

validity of the area-angular momentum inequality (60) is equivalent to the non-

negativity of the surface gravity κ of isolated and dynamical horizons30, supporting

the internal consistency of their first law of black hole thermodynamics. Inequality

(60) provides a quasi-local characterization of black hole (sub)extremality, that is

directly related to changes in the horizon metric type77 and jumps discussed in

5.1.1. This is also the context of the Booth & Fairhurst extremality parameter77,92

e ≡ 1 +
1

4π

∫

S
dA δkθ

(ℓ) ≤ 1 . (61)

5.3. Heuristic and effective approaches in a posteriori spacetime

analysis

Hitherto we have discussed analysis tools to be applied in numerically constructed

spacetimes, but related to sound geometric structures. However, when developing a

qualitative understanding of the underlying dynamics, involving e.g. a comparison

with Newtonian or Special Relativity scenarios, the available geometric notions are

often not enough. This is manifest in astrophysical contexts requiring estimations

for linear, orbital angular momentum or binding energies. In some cases, a choice

must be done between saying nothing at all or rather adopting a heuristic approach.

An example of the latter is the following heuristic proposal93 for a quasi-local

black hole linear momentum. Given a vector ξa transverse to a MOTS S, applying
on S the linear momentum ADM prescription at spatial infinity leads to

P (ξ) =
1

8π

∫

St

(Kab −Kγab) ξ
asb 2ǫ . (62)
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In spite of its ad hoc nature, this quantity has been successfully applied in the

analysis93 of linear and orbital angular momentum in binary black hole orbits and

in the recoil dynamics of the black hole resulting of asymmetric binary mergers.

5.4. An effective correlation approach to the analysis of spacetime

dynamics

The qualitative and quantitative understanding of strong-field spacetime dynam-

ics represents a challenge in gravitational physics both at a fundamental level and

in applications. In astrophysical settings a natural strategy consists in extending

to general relativistic scenarios the Newtonian celestial mechanics approach. This

has indeed led to fundamental achievements in the understanding of the physics

of compact objects. However, the focus on the properties of individual objects, in

particular in multi-component systems, also meets fundamental obstacles in a grav-

itational theory i) without a priori rigid structures providing canonical structures,

and ii) with global aspects playing a crucial role. The latter encompasses global

causal issues and also the in-built elliptic character of certain objects, both as-

pects relevant in the characterization of black holes. In this context, an approach

to spacetime analysis that explicitly emphasizes the global/quasi-local properties of

the relevant fields, at the price of renouncing to a detailed tracking of the geometry

and trajectories of small compact regions, can offer complementary insights to the

celestial mechanics approach. Such a coarse-grained effective description is much in

the spirit of the correlation approach in the analysis of complex condensed-matter

systems or in quantum/statistical-field theory, where the functional structure of the

(local) dynamical fields is encoded in the associated n-point correlation functionalsh.

Such an approach underlines the relational aspects of the theory, as a complemen-

tary methodology to the isolation of the dynamical properties a compact parts of

the system. In sum, we can paraphrase the strategy as aiming at a functional and

coarse-grained description of the spacetime geometry, by importing functional tools

for the analysis of condensed matter and quantum/statistical field theory systems.

5.4.1. Cross-correlations of geometric quantities at test screens

The strategy outlined above is admittedly vague. We sketch now a particular

implementation94,95 of some of its aspects in a cross-correlation approach to the

analysis of spacetime dynamics. Aiming at studying the gravitational dynamics in

a given spacetime region R, we consider an outer Bo and an inner Bi hypersur-

faces lying in the causal future of R. These hypersurfaces are taken as outer and

inner boundaries of the bulk spacetime region of interest. The geometry of Bo and

Bi is causally affected by the dynamics in R, so that Bo and Bi can be under-

stood as balloon probes into the spacetime geometry. In other words, Bo and Bi

hN-point correlation functions encode the functional structure of the local fields. A coarse-grained
description appear as a truncation to a finite number of n-point functions.
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Fig. 3. Carter-Penrose diagram representing a generic (spherically symmetric) collapse and illus-
trating the cross-correlation approach to near-horizon gravitational dynamics.

provide test screens (they do not back-react on the bulk dynamics) on which we can

construct geometric quantities ho and hi to be cross-correlated. Choosing causally

disconnected screens Bo and Bi, a non-trivial correlation between ho and hi encodes

geometric information about the common past region R. We can think of this as

the reconstruction of the interaction region from the debris in a scattering experi-

ment (inverse scattering picture). Let us now restrict to the study of near-horizon

spacetime dynamics94,95. In an (asymptotically flat) black hole spacetime setting,

null infinity I + and the (event) black hole horizon E provide canonical choices

for Bo and Bi, respectively (cf. Fig. 3). Retarded and advanced null coordinates

u and v provide good parameters for quantities ho and hi calculated as integrals

on sections Su ⊂ I + and Sv ⊂ E . A meaningful notion for the cross-correlation

between ho(u) and hi(v), considered as time series, requires the introduction of a

(gauge-dependent) mapping between u and v at I + and E . We refer to this point

as the time-stretching issue.

5.4.2. Cross-correlations in an Initial Value Problem approach: dynamical

horizons as canonical inner probe screens

The adopted Initial Value Problem approach has a direct impact in the cross-

correlation picture above. In particular, the event horizon is not available during



August 15, 2011 18:21 WSPC/INSTRUCTION FILE JaramilloShanghai

28 J.L. JARAMILLO

i
−

t1

t3

t2

I −

r = 0

u

i
+

r
=
0

i
0

I +

v

H+

R

t4

Fig. 4. Carter-Penrose diagram for the cross-correlation picture in a Cauchy IVP approach.

the evolutioni. Instead, the (outermost) DH H fixed by the chosen 3+1 foliation

stands as a natural spacetime inner boundary Bi. Although any hypersurface cov-

ering the black hole singularity could be envisaged for the present cross-correlation

purposes, the DH H provides a natural geometric prescription. Regarding the time-

stretching issue, the time function t defining the 3+1 spacetime slicing automatically

implements a (gauge) mapping between retarded and advanced times u and v. Cross-

correlations between geometric quantities at H and I + can then be calculated as

standard time-series hi(t) and ho(t) (cf. Fig. 4). Due to the gauge nature of t, the

geometric information in quantities hi(t) and h2(t) is not encoded in their local (ar-

bitrary) time dependence, but rather in the global structure of successive maxima

and minima. The calculation of cross-correlations must take this into account94,95.

This means, in particular, that quantities to be correlated must be scalars.

5.4.3. Application to black hole recoil dynamics: towards DH news functions

In the context of the study of black hole recoil dynamics after an asymmetric merger,

let us take ho(u) as the Bondi flux of linear momentum along a (preferred) direction

dPB[ξ]

du
(u) = lim

(u,r→∞)

r2

8π

∮

Su,r

(ξisi) |N (u)|2dΩ , N (u) =

∫ u

−∞
Ψ4(u

′)du′ . (63)

iRegarding I +, a pragmatic choice in a Cauchy approach consists in substituting it by a timelike
worldtube of large radii spheres. However, I + can be kept if using a hyperboloidal foliation.
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Here N is the news function at I +, and ξa is a given spacelike transverse direction

to Su,r, so that (dPB/du)[ξ] is a scalar. A natural choicej for hi(v) would be given

by the expression (63) with Ψ4 at I + substituted by some Ψ0 at H. A preferred

null tetrad on Sv is then needed, something that for DHs is provided by ℓaN and kaN
in (41). Using them in (20), the preferred Weyl scalar ΨN

0 is employed to construct

K̃N [ξ](v) = − 1

8π

∮

Sv

(ξisi)
∣

∣

∣
Ñ (0)

N (v)
∣

∣

∣

2

dA , with Ñ (0)
N (v) =

∫ v

v0

ΨN
0 (v′)dv′ . (64)

In spite of the formal similarity between (63) and (64) there is a fundamental dif-

ference: whereas (dPB/du)[ξ] is an instantaneous flux through I +, this is not true

for K̃N [ξ](v). The function N (u) can be written in terms of geometric quantities

on sections Su. This local-in-time behaviour is a crucial feature of any valid news

function and it is not shared by Ñ (0)
N (v). However, it suffices to modify Ñ (0)

N (v)

with terms completing the integrand ΨN
0 (v′) to a total differential in time. Noting

qcaq
d
bClcfdℓ

lℓf = Ψ0mamb +Ψ0mamb, inspection of Eq. (22) [actually its dynam-

ical version with ha instead of ℓa] suggests the identification of a correct news-like

function at H as proportional to the shear σ
(h)
ab (see also Refs. 97, 98 for the discus-

sion of the news in quasi-local contexts). In tensorial notation, we write

dPN

dv
[ξ](v) = − 1

8π

∮

Sv

(ξisi)
(

NN,g
ab N ab

N,g

)

dA, with NN,g
ab = − 1√

2
σ
(h)
ab , (65)

where the coefficient in NN,g
ab guarantees the correct factor in the leading-term.

This (dPN/dv)[ξ] provides a natural quantity to be correlated with (dPB/du)[ξ].

The notation underlines the local character in time as the flux of a quantity PN [ξ],

but no physical meaning is given to the latter. It is worthwhile, though, to remark

the formal similarity of the monopolar part of the square of the news NN,g
ab , i.e

dEN

dv
(v) =

1

16π

∮

Sv

σ
(h)
ab σab

(h)dA =
1

16π

∮

S

[

σ
(ℓ)
ab σ

(ℓ)ab − 2Cσ
(ℓ)
ab σ

(k)ab + C2σ
(k)
ab σ(k)ab

]

dA(66)

with the expression of the flux of gravitational energy41,24 through a DH, in partic-

ular with its transverse part42,43. The identification of σ
(h)
ab as a news-like function

suggests a further step, by introducing a heuristic notion of Bondi-like 4-momentum

flux through H. Considering the unit normal τ̂a to H (τ̂a = τa/
√

|τbτb| =

(ℓa + Cka)/
√
2C = (bna +Nsa)/

√
2C), and for a generic spacetime vector ηa

dPN
τ

dv
[η] = − 1

16π

∮

Sv

(ηaτ̂a)σ
(h)
ab σab

(h)dA , (67)

jAn effective curvature vector?,96 constructed from the Ricci scalar 2R on sections Sv of H provides
an intrinsic prescription for hi(v) leading to non-trivial94 cross-correlations with (dPB/du)[ξ].
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has formally the expression of a Bondi-like 4-momentumk. The flux of energy asso-

ciated with an Eulerian observer na would be

dEN
τ

dv
(v) ≡ dPN

τ

dv
[na] =

1

16π

∮

S

b√
2C

(

σ
(h)
ab σ(h)ab

)

dA ,

(68)

where b√
2C

=
√

1 +N2/2C. The flux of linear momentum for ξa ∈ TΣt would be

dPN
τ

dv
[ξ] = − 1

16π

∮

Sv

N√
2C

(ξasa)
(

σ
(h)
ab σ(h)ab

)

dA . (69)

Near equilibrium (C → 0), we have σ
(h)
ab σab

(h) ∼ C on DHs [cf. Eq. (17)] so that

expressions (68) and (69) are regular (O(
√
C)). Integrating (69) in time would lead

to a Bondi-like counterpartl of the heuristic ADM-like linear momentum in (62).

Before finishing this section, let us mention that the present discussion on hori-

zon news-like functions can be related95 to a viscous fluid analogy for quasi-local

horizons21,48. In particular, geometric decay and oscillation timescales (respec-

tively, τ and T ) can be constructed on the horizon95 from the expansion θ(h) and

shear σ
(h)
ab , respectively related to bulk and shear viscosity terms. In the context

of black hole recoil dynamics, this provides an instantaneous geometric prescrip-

tion for a slowness parameter99 P = T/τ controlling the qualitative aspects of the

dynamics.

5.4.4. The role of the inner horizon in the integration of fluxes along H
Flux integrations along H require appropriate parametrizations of H, such as an

advanced time v. Then, given the flux FQ(v) of a quantity Q(v), we can writem

Q(v) = Q(v0) + sign(C)

∫ v

v0

FQ(v
′)dv′ , (70)

this requiring an initial value Q(v0). However, such coordinate v is not natural in an

Initial Value Problem approach. As discussed in 5.1.1, the 3+1 slicing {Σt} induces

a splitting of the DH into internal and external sections. The integration in (70)

can then be split into external and internal horizon parts (cf. Fig. 5)

Q(t) = Q(v0) + sign(C)

∫ t

tc

(FQ)
int

(t′)dt′ + sign(C)

∫ t

tc

(FQ)
ext

(t′)dt′ +Res(t) ,(71)

where the error Res(t) is Res(t) = sign(C)
∫∞
t

(FQ)
int (t′)dt′. If the growth of Q is

kAn alternative expression would follow by using in (67), instead of σ
(h)
ab

σ(h)ab, the integrand in

the DH energy flux41,24,42,43, that would also include the longitudinal part Ω
(ℓ)
a Ω(ℓ)a.

lA related prescription for a DH linear momentum flux would be given by angular integration of
the appropriate components in the effective gravitational-radiation energy-tensor of Ref. 43.
mThe coefficient sign(C), +1 for spacelike H and −1 for timelike H, takes into account the possible
integration of fluxes happening when timelike sections of H occur; cf. Fig. 2.
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Fig. 5. Illustration of the splitting of a DH into internal and external sections by a 3+1 slicing.

understood as ultimately associated with some flow into the black hole singularity,

the actual essential role of the horizon H would be that of capturing the associated

fluxes. This assumes that the worldtube H begins at the formation of the singularity.

More complex singularity structures (as those coming from a binary merger) would

require a more detailed analysis of this point. From this perspective, there is noth-

ing intrinsically special about dynamical horizons: any hypersurface separating the

black hole singularity from past null infinity I − (e.g. the event horizon) would be

appropriate for fluxes evaluation. However, from a quasi-local perspective, if DHs

are shown to cover systematically the black hole singularity (or, more generally, the

inner Cauchy horizon), they actually provide excellent geometric prescriptions for

such test screens (this is the motivation for the point iii) in section 3.2.6).

5.4.5. Auxiliary test-field evolutions in curved backgrounds

In 5.4.3 we have considered cross-correlations between different contractions of the

Weyl tensor at distinct hypersurfaces. It is legitimate to question if such cross-

correlations are meaningful at all, given their a priori different geometric contents.

Let us consider the following approach to this issue: evolve, together with the gravi-

tational degrees of freedom in Einstein equations, an auxiliary (set of) scalar field(s)

Φi without back-reaction on the geometry (i.e. test fields) and whose evolution on
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the dynamically evolving background spacetime closely tracksn its relevant geomet-

ric features. Then, the correlation approach outlined in 5.4 for a (coarse-grained)

extraction of geometric content, can be applied directly on Φi. We can paraphrase

this approach as pouring sand on a transparent surface. On the one hand, this

removes the ambiguity in the choice of quantities hi and ho at inner and outer hy-

persurfaces. On the other hand, and more importantly, it also permits to extend to

the bulk spacetime the (cross-)correlation strategy between spacetime boundaries.

6. General perspective

We have presented an introduction to some aspects of quasi-local black holes in an

Initial Value Problem approach to the spacetime construction. From a fundamental

perspective, quasi-local black hole horizons provide crucial insights into the geome-

try of the black hole and trapped regions and a sound avenue to black hole physics

in generic scenarios. However, quasi-local black holes also meet challenges when con-

sidered as physical surfaces of a compact object. We have adopted a pragmatic or

effective approach in which quasi-local black hole horizons are understood as hyper-

surfaces with remarkable geometric properties that provide worldtubes of canonical

surfaces in a given 3+1 slicing of the spacetime. We have shown how they can be

used as an a priori ingredient in evolution schemes to Einstein equations, where

they provide inner boundary conditions for black hole spacetimes. Then we have

illustrated their use as a posteriori analysis tools tracking and characterizing quasi-

locally the black hole properties and providing, through their rigidity properties,

excellent test-screen probes into the near-horizon black hole spacetime geometry.
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13. Chruściel, P.T.: Black holes. In: J. Frauendiener, H. Friedrich (eds.) The conformal
structure of spacetime: Geometry, Analysis, Numerics, Lecture Notes in Physics, p. 61.
Springer (2002)

14. Hayward, S.: General laws of black-hole dynamics. Phys. Rev. D 49, 6467 (1994)
15. Nielsen, A.B.: The Spatial relation between the event horizon and trapping horizon.

Class.Quant.Grav. 27, 245,016 (2010). DOI 10.1088/0264-9381/27/24/245016
16. Eardley, D.M.: Black hole boundary conditions and coordinate conditions. Phys. Rev.

D57, 2299 (1998)
17. Schnetter, E., Krishnan, B.: Non-symmetric trapped surfaces in the schwarzschild and

vaidya spacetimes. Phys. Rev. D73, 021,502 (2006)
18. Ben-Dov, I.: Outer trapped surfaces in vaidya spacetimes. Phys. Rev. D75, 064,007

(2007)
19. Aman, J.E., Bengtsson, I., Senovilla, J.M.M.: Where are the trapped surfaces? J.

Phys. Conf. Ser. 229, 012,004 (2010). DOI 10.1088/1742-6596/229/1/012004
20. Bengtsson, I., Senovilla, J.M.M.: The region with trapped surfaces in spherical sym-

metry, its core, and their boundaries (2010) arXiv:1009.0225
21. Gourgoulhon, E.: A generalized damour-navier-stokes equation applied to trapping

horizons. Phys. Rev. D72, 104,007 (2005)
22. Booth, I., Fairhurst, S.: Isolated, slowly evolving, and dynamical trapping horizons:

geometry and mechanics from surface deformations. Phys. Rev. D75, 084,019 (2007)
23. Racz, I.: A simple proof of the recent generalisations of Hawking’s black hole topology

theorem. Class. Quant. Grav. 25, 162,001 (2008). DOI 10.1088/0264-9381/25/16/
162001

24. Ashtekar, A., Krishnan, B.: Dynamical horizons and their properties. Phys. Rev. D
68, 104,030 (2003)

25. Booth, I.: Black hole boundaries. Can. J. Phys. 83, 1073 (2005)
26. Gourgoulhon, E., Jaramillo, J.L.: A 3+1 perspective on null hypersurfaces and isolated

horizons. Phys. Rept. 423, 159 (2006)
27. Krishnan, B.: Fundamental properties and applications of quasi-local black hole hori-

zons. Class. Quant. Grav. 25, 114,005 (2008). DOI 10.1088/0264-9381/25/11/114005
28. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping hori-

zons. Phys. Rev. Lett. 95, 111,102 (2005)
29. Ashtekar, A., Beetle, C., Lewandowski, J.: Mechanics of rotating isolated horizons.

Phys. Rev. D64, 044,016 (2001)
30. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications.

http://www.livingreviews.org/lrr-1998-6
http://www.livingreviews.org/lrr-1998-6
http://arxiv.org/abs/1103.2089
http://arxiv.org/abs/1009.0225


August 15, 2011 18:21 WSPC/INSTRUCTION FILE JaramilloShanghai

34 J.L. JARAMILLO

Liv. Rev. Relat. 7, 10 (2004). URL http://www.livingreviews.org/lrr-2004-10 .
URL (cited on 28 January 2008): http://www.livingreviews.org/lrr-2004-10

31. Ashtekar, A., Beetle, C., Lewandowski, J.: Geometry of generic isolated horizons.
Class. Quant. Grav. 19, 1195 (2002)

32. Penrose, R., Rindler, W.: Spinors and space-time. Volume 1. Two-spinor calculus and
relativistic fields. Cambridge University Press (1984)

33. Owen, R., Brink, J., Chen, Y., Kaplan, J.D., Lovelace, G., Matthews, K.D., Nichols,
D.A., Scheel, M.A., Zhang, F., Zimmerman, A., Thorne, K.S.: Frame-dragging vor-
texes and tidal tendexes attached to colliding black holes: Visualizing the curvature
of spacetime. Phys. Rev. Lett. 106(15), 151,101 (2011). DOI 10.1103/PhysRevLett.
106.151101

34. Ashtekar, A., Engle, J., Pawlowski, T., Van Den Broeck, C.: Multipole moments of
isolated horizons. Class. Quant. Grav. 21, 2549 (2004)

35. Schnetter, E., Krishnan, B., Beyer, F.: Introduction to dynamical horizons in numer-
ical relativity. Phys. Rev. D74, 024,028 (2006)

36. Jasiulek, M.: A new method to compute quasi-local spin and other invariants on
marginally trapped surfaces. Class. Quant. Grav. 26, 245,008 (2009). DOI 10.1088/
0264-9381/26/24/245008

37. Ashtekar, A., Galloway, G.J.: Some uniqueness results for dynamical horizons. Adv.
Theor. Math. Phys. 9, 1 (2005)

38. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces
and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853–888
(2008)

39. Jaramillo, J.L., Reiris, M., Dain, S.: Black hole Area-Angular momentum inequality
in non-vacuum spacetimes (2011) arXiv: 1106.3743

40. Cao, L.M.: Deformation of Codimension-2 Surface and Horizon Thermodynamics.
JHEP 03, 112 (2011). DOI 10.1007/JHEP03(2011)112

41. Ashtekar, A., Krishnan, B.: Dynamical horizons: Energy, angular momentum, fluxes
and balance laws. Phys. Rev. Lett. 89, 261,101 (2002)

42. Hayward, S.: Energy conservation for dynamical black holes. Phys. Rev. Lett. 93,
251,101 (2004)

43. Hayward, S.A.: Energy and entropy conservation for dynamical black holes. Phys.
Rev. D70, 104,027 (2004). DOI 10.1103/PhysRevD.70.104027

44. Booth, I., Fairhurst, S.: The first law for slowly evolving horizons. Phys. Rev. Lett.
92, 011,102 (2004)

45. Hayward, S.A.: Dynamics of black holes (2008) arXiv:0810.0923
46. Wu, Y.H., Wang, C.H.: Gravitational radiations of generic isolated horizons and non-

rotating dynamical horizons from asymptotic expansions. Phys. Rev. D 80, 063,002
(2009). DOI 10.1103/PhysRevD.80.063002

47. Wu, Y.H., Wang, C.H.: Gravitational radiation and angular momentum flux from a
slow rotating dynamical black hole. Phys. Rev. D83, 084,044 (2011). DOI 10.1103/
PhysRevD.83.084044

48. Gourgoulhon, E., Jaramillo, J.L.: Area evolution, bulk viscosity and entropy principles
for dynamical horizons. Phys. Rev. D74, 087,502 (2006)

49. Gourgoulhon, E., Jaramillo, J.L.: New theoretical approaches to black holes. New
Astron. Rev. 51, 791–798 (2008). DOI 10.1016/j.newar.2008.03.026

50. Hawking, S.W., Hartle, J.B.: Energy and angular momentum flow into a black hole.
Commun. Math. Phys. 27, 283–290 (1972). DOI 10.1007/BF01645515

51. Hayward, S.A.: Angular momentum conservation for dynamical black holes. Phys.
Rev. D74, 104,013 (2006). DOI 10.1103/PhysRevD.74.104013

http://www.livingreviews.org/lrr-2004-10
http://www.livingreviews.org/lrr-2004-10
http://arxiv.org/abs/0810.0923


August 15, 2011 18:21 WSPC/INSTRUCTION FILE JaramilloShanghai

LOCAL BLACK HOLE HORIZONS IN THE 3+1 APPROACH TO GENERAL RELATIVITY 35

52. Hayward, S.A.: Conservation laws for dynamical black holes. In gr-qc/0607081 (2006)
53. Booth, I., Heller, M.P., Spalinski, M.: Black Brane Entropy and Hydrodynamics. Phys.

Rev. D83, 061,901 (2011). DOI 10.1103/PhysRevD.83.061901
54. Nielsen, A.B., Jasiulek, M., Krishnan, B., Schnetter, E.: The Slicing dependence of

non-spherically symmetric quasi-local horizons in Vaidya Spacetimes. Phys.Rev. D83,
124,022 (2011). DOI 10.1103/PhysRevD.83.124022

55. Booth, I., Heller, M.P., Plewa, G., Spalinski, M.: On the apparent horizon in fluid-
gravity duality. Phys. Rev. D83, 106,005 (2011). DOI 10.1103/PhysRevD.83.106005

56. Williams, C.: Asymptotic Behavior of Spherically Symmetric Marginally Trapped
Tubes. Annales Henri Poincare 9, 1029–1067 (2008). DOI 10.1007/s00023-008-0385-5

57. Williams, C.: Marginally trapped tubes generated from nonlinear scalar field initial
data. Commun. Math. Phys. 293, 589–610 (2010). DOI 10.1007/s00220-009-0921-2

58. Williams, C.: A black hole with no marginally trapped tube asymptotic to its event
horizon (2010)

59. Friedrich, H.: Is general relativity ‘essentially understood’ ? Annalen Phys. 15, 84
(2005)

60. Jaramillo, J.L., Valiente Kroon, J.A., Gourgoulhon, E.: From Geometry to Numer-
ics: interdisciplinary aspects in mathematical and numerical relativity. Class. Quant.
Grav. 25, 093,001 (2008). DOI 10.1088/0264-9381/25/9/093001

61. Gourgoulhon, E.: 3+1 formalism and bases of numerical relativity. lectures delivered
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