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Black hole Area-Angular momentum inequality in non-vacuumspacetimes
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We show that the area-angular momentum inequality: 8x|J| holds for axially symmetric closed outer-
most stably marginally trapped surfaces. These are hogeotions (namely, apparent horizons) contained in
otherwise generic black hole spacetimes, with non-negatsmological constant and whose matter content
satisfies the dominant energy condition.
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Introduction. Isolated stationary black holes cannot rotatelated to thestably outermostondition imposed on marginally
arbitrarily fast. The total angular momentumin Kerr so-  trapped surfaces contained in spatial 3-sli€eghen proving
lutions that are consistent with cosmic censorship is bednd the existence of dynamical trapping horizond [17]. Ssizh
from above by the square of the total mags The heuris-  bly outermostondition means that the variation@f) along
tic standard picture of gravitational collapgdl] suggests a some outward deformation &¥in the sliceX is non-negative.
more generic validity of this bound. The total mass-angulafThat is,d,0*) > 0 for some spacelikeutgoingvectorv tan-
momentum inequality/ < M? has been indeed extended gent toX (see the generalization to spacetime normal vectors
to the dynamical case of vacuum axisymmetric black holen [18]). Regarding now the vacuum dynamical case in [14],
spacetimes| [217]. Together with this inequality involving the inequality4 > 8r|J| is first proved for stable minimal
global quantities, a quasi-local version of it is desiratifece  surfacesS in a spatial maximal slic&, i.e. S is a local mini-
it would offer a valuable insight into the gravitational €ol mum of the area when considering arbitrary deformatiorts of
lapse process in the presence of matter and/or multiple horin X, and then generalized for arbitrary surfaces, in particula
zons. However, this attempt encounters immediately the anhorizon sections.
biguities associated with the quasi-local definition ofvifes The present discussion of the inequality> 8x|.J| closely
tional mass and angular momentum. In this context, an alfollows the strategy and steps in_[14], adapting them to the
ternative (but related) bound on the angular momentum cause of a stability condition in the spirit of those i [9) L@8-1
be formulated in terms of a horizon area-angular momentu8], i.e. based on marginally trapped surfaces rather than o
inequality A > 8x|.J|. This inequality was conjectured for minimal surfaces. In the line of [17, 18] we will refer to a
the non-vacuum axisymmetric stationary case (actuallizén t marginally trapped surfacg as(spacetime) stably outermost
more general charged case)lih [8] and then proved in [9, 10)see Definition 1 below) if for some outgoing space-like vect
whereas its validity in the vacuum axisymmetric dynamicalor outgoing past null vectak ® it holdsdx6) > 0. Then, it
case was con'ec'ﬁred and discusse [11], partial resultsllows:
were given in 3] and a complete proofinl[14]. Equal- : . . .
ity holds in the extremal case. Here we reconciliate both re- The(érem fl‘ aSleep an aX|§ymm¢tr|c close(_j margmgllly
sults by extending the validity of the inequality to dynaatic UaPPed surfac satisfying the (axisymmetry-compatible)

non-vacuum spacetimes, only requiring axisymmetry on thgpacetlme_ stably outermost condition, in a spacetime W'Fh
non-negative cosmological constant and fulfilling the domi

horizon. nant energy condition, it holds the inequalit
The dynamical non-vacuum caseProofs of A > 8| 9 ’ quatty
require some kind of geometric stability condition chagact A > 8r|J| 1)

izing the surfaceS for which the inequality is proved. On

the one hand, in the non-vacuum stationary case discussgghere 4 and.J are the area and (Komar) angular momentum
in [9, [10] surfacess are taken to be sections of black hole of 5. If equality holds, theis is a section of a non-expanding

horizons modeled as outer trapping horizdns [15]. This entorizon with the geometry of extreme Kerr throat sphere.
tails, first, the vanishing of the expansiét) associated with

light rays emitted fromS along the (outgoing) null normal Note that axisymmetry is only required on the horizon sur-
¢+ [i.e. S is a marginally trapped surface] and, second, thaface (this includes the intrinsic geometry &8fand a cer-
when moving towards the interior of the black hole one findstain component of its extrinsic geometry, see below), st tha
fully trapped surfaces, so that the variatiordd? along some .J accounts solely for the angular momentum of the black
future ingoing null normak® is negative (outer condition): hole (horizon) in an otherwise generically non-axisymigetr
6,09 < 0 (seel[15] for a detailed discussion of this condition spacetime. Actually, no other geometric requirement is im-
in the context of black hole extremality). The latter inelifya  posed outsideS. Regarding the topology of the marginally
acts as a stability condition ot and, actually, is closely re- trapped surface, this is always a topological sphere (for
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J # 0) as a consequence of the stability condition combined\Ne will refer to/* as theoutgoingnull vector. Third, a stabil-
with the dominant energy condition. Therefore, we can asity condition must be imposed a8, namely we demand the
sume in the following thasS is a sphereS? without loss of  marginally trapped surface to bespacetime stably outermost
generality. in the following sense:

Main steps. The proof in [14] has two parts. First, a geo-

metric part providing a lower bound on the aréaAnd sec- . . : i .
ond, a part making use of variational principles to relat th we will refer to it as spacetime stably outermost if theresei
! i a_Ari a _ a a i
lower area bound to an upper bound on the angular momeny" outgoing ¢“-oriented) vector)_( . 76(@) wk , With
tum J and, in a subsequent step, to prove rigidity. Here w 7y = 0 andy) > 0, such that the variation of" with respect

o "
recast the first geometric part in the new setting and recovthX fulfills the condition

exactly the functional needed in the second variationat, par 5x 00 > 0. (7)
so that results il [12, 14] can be directly applied.

Let us first introduce some notation and consider a closetf, in addition, X (in particular ~, 1) and Q,(f) are axisym-
orientable 2-surfacé embedded in a spacetinié with met-  metric, we will refer todx6*) > 0 as an (axisymmetry-
ric gq» and Levi-Civita connectiorV,,, satisfying the dom- compatible) spacetime stably outermost condition.
inant energy condition and with non-negative cosmological
constantA > 0. We denote the induced metric dhasq,,
with Levi-Civita connectionD,,, Ricci scalar’R and volume
elemente,;, (we will denote bydS the area measure a%).
Let us consider null vector&' and £* spanning the normal
plane toS and normalized ag*k, = —1, leaving a (boost) o i . ‘o .
rescaling freedond’® = f¢¢, k'* = f~'k®. The expansion m,?lsg _aln‘j’“ : Indeeq, gl;/enf i 0, f(flr ¢ ,:,afg Iar);j
9(® and the sheas'?) associated with the null normét are e f/ § e cal writex n e Rt =l

) ab (with " = f~'4 > 0 andy’ = f¢ > 0), and it holds
given by 6x0) = f.6x0" > 0. Second, the proof of inequality (1)
© b ©® . . 1 would only require the vectak ¢ in the stability condition to

0% =q"Valy , 04 =4¢°0Veva — 59 gab > (2)  pe outgoing past null. We have, however, kept a more generic

characterization in Definition 1 that directly extends ttaby

Definition 1. Given a closed marginally trapped surfaSe

Here 0 denotes a variation operator associated with a de-
formation of the surfacé (c.f. for example([17,_19]). Two
remarks are in order. First, note that the characterization
of a marginally trapped surface as spacetime stably outer-
most is independent of the choice of future-oriented nuit no

whereas the normal fundamental foﬂff) is outermost condition il [17] (in particulas; is spacetime sta-
® e d bly outermost if there exists a-(*-oriented) vector for which
Q7 = k" Vale . (3)  the surfaceis stably outermost in the sense df [18]).

We can now establish the lower bound on the horizon area
by following analogous steps to thoselinl[14]. First, we aeri
o) = o0 J(? - fg(‘v;) , Q) = 4 D,(Inf). (4) agenericinequality o, provided by the following lemma.

Transformation rules under a null normal rescaling are

Lemma 1. Given a closed marginally trapped surfase
We characterize now the surfacggor which the resultin ~ satisfying the spacetime stably outermost condition foaan
Theorem 1 holds. First, we imposgto be axisymmetric, isymmetricX®, then for all axisymmetrie: > 0 it holds
with axial Killing vectorn®, i.e. £,q. = 0. The associated

1
(Komar) angular momentum is expressed in term@i& as /S [DaaD‘la + 5042 °R| dS > (8)
1 a al
J = Py / Oneds (5) / {aQQfln)Q(") + aﬁaé?a(e) ’ + Gapal®(ak® + ﬁfb)} s,
S s

where the divergence-free characterm@ftogether with the  whereg = avy /v > 0.

. . 0) . . .
transformations properties m in @) guarantee the invari To prove it we essentially follow the discussion in section
ance ot/ under rescaling of the null normals. We also assume; 5 ¢ [20]. First, we evaluatéy 6(") /1) for the vectorX® —

a tetrad(¢%, n%, ¢*, k%) on S, adapted to axisymmetry in the o iy - : . L
sense tkgat Za =L k):“ =0 withpga is a unit zector tz}i/ngent 7 — wk* provided by Definition 1, with axisymmetrie

" i . and (use e.g. Egs. (2.23) and (2.24) in][19]) and impose
to S and orthogonal tg)%, i.e. £%n, = £%%, = %k, = 0, 9() — 0. We can write
£, = 1. We can then write the induced metric dhas '

1 i — na 1 a
Gab = 57a"b + Ea&p, With 1) = 014, SO that E5x9(é) _ _% [a((l?a(") by Gabfafb}
¢
0 = o+l “2Alng — Dolng D%l + 200 Dy (9)
Q((le)Q(é)“ — an)Q(n)“ + Qg&)Q(f)“ 7 (6)

- [—DGQW Lo _ Lp Gabkazb} :
RPN ORI () ©) _ ¢boy(® " ¢ ¢ 2
with Q" = n°Q,/n./n andQy’ = £°Q,7&,. In addition,
we demand)® to be also axisymmetrid;anf) — 0. Sec- We multiply now the expression by? and integrate ors.
. 2 . .
ond, S is taken to be a marginal trapped surfaé€? = 0.  Using [ %6X9(‘3)d5 > 0, integrating by parts to remove
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boundary terms, we can write in axisymmetry[[26]. We can then wrii¢S = e¢dS,, with
dSy = sinfdfdp. In addition, the squared normof the axial

0< / afB [ U U(é) Gabgafb} s Killing vector n* = (9,,)® is given by
n = e’sin’0 . (24)

+ / o? [QEPQ“)“ 4 Lop Gabkaeb] s _ _ _
S 2 Regarding the left hand side in_{12), we proceed exactly as in

" 5 u [14]. In particular, choosing: = e“~“/2, the evaluation of
+ /S[QO‘DaaD In) — a* DeIny D*Iny)] dS the left-hand-side in inequaliti{]12) results in (se€ [14])
+ / 2020 DIngp — 2001 D*a] dS . (10) / [Daapaa + %aQ 23} ds (15)
S S

From the axisymmetry ofa and ¢, QW“D,a =
QM D,y = 0, and using[{B) we can write

— ¢ 47T(c+1)/$<0+ <fl‘;)2> dSo

() _(r)ab b The second key ingredient in the present discussion coscern
0< /3045 [*%b o — Gapt™t } s the evaluation of the right hand side [n112), in particutze t
1 possibility of making contact with the variational funatil

+ / o2 |:_Q((ZU)Q(U)G + 523 _ Gabk:afb] ds M employed inl[12,, 14].

S Due to theS? topology ofS, we can always writé2l” in
+ / [Q(Daa)(apalm/, —a09) (11) terms of a divergence-free and an exact form

s

1
a 0) _ b~
—(aDglnty — o)) (aDnp — aQ© )} ds . 0y = Q_neabD W+ Do, (16)
Making use of the Young’s inequality in the last integral wherew and\ are fixed up to a constant. From the axisym-

metry of g,, and 0 functions@ and A are axially sym-
D®aDga > 2D (aDalng — aQ®)) — [aDlng — aQ® > metric, so thaf)” = %eabD% is the divergence—free part

inequality [B) follows for all axisymmetria: > 0. Whereaﬂf) Is the exact (gauge) part. Inlpgrtlcula‘m
Inequality [8) constitutes the first key ingredient in the 35 €ab?)* D' and expressing® as¢, =1 /2eapt)”, we have

present discussion and the counterpart of inequality (45) i

[14] [inserting their Egs. (30) and (31)]. In this spacetime QOpe =

version, the geometric meaning of each term in inequallty (8

is apparent. For our present purposes, we first disregard tfRjugging this expression into EqJ (5) and using (13) we find

positive-definite gravitational radiation shear squaremnt .

Imposing Einstein equations, we also disregard the cosmo- J= l/ Dpiw df = 1 (@(7) — @(0)) (18)

logical constant and matter termis|[25], under the assumptio 8 8

of non-negative c_o_smological cobnstahtbz_ 0 and the do“_"i' which is identical to the relation betweehand thetwist po-
hant energy condition (note thak” + 5¢” is a non-spacelike  yontia|, in Eq. (12) of [12]. As a remark, we note that if the

vector). Therefore axial vectom® on S extends to a spacetime neighbourhood of
S (something not needed in the present discussion), we can
/ [D aD% + =a? QR] ds >/ QMOM*qs. (12)  define thetwist vector ofn® asw, = eqpean’Ven? and the
S s relation¢®w, = £*D,w holds. In the vacuum case, a twist
potentialw satisfyingw, = V,w can be defined, so that
andw coincide onS up to a constant. Note however tliabn

Wgwaw . (17)

This geometric inequality completes the first stage towtrels
lower bound orA.

In a second stage, under the assumption of axisymmetry Can be defined always.
we evaluate inequality{12) along the lineslinl[14]. Firse w  From Egs.[(IB) and(13) and the choicegfve have
note that the sphericity of follows from Lemma 1 under o2 1 /de
the outermost stably and dominant energy conditions tegeth ~ 2QVQ"* = — D,&Dw = o <—> . (19
with A > 0 since, upon the choice of a constanin Eq. (8), An do
it implies (for non-vanishing angular momentum) a posmveUSmg this and[{T5) if(d2) we recovexactlythe bound
value for the Euler characteristic . Then, the following
form for the axisymmetric line element @his adopted A> Are™5T , (20)

ds? = qupdada’ = ° (e2qd92 + sin29d<p2) . (13)  with the action functional

2 N\ 2
yvith o andq functi_ons on9_ satisfyingo + ¢ = ¢, wherec M = 1 (d_a) + 4o + iz (d_w) dSy, (21)
is a constant. This coordinate system can always be found 27 do n* \ do
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in Ref. [14], so that the rest of the proof reduces to thatim th condition in [15], essentially implies that outer trappimayi-
reference. Namely, the upper bound/inl[12] for zons (non-necessarifyiture) satisfy the area-angular momen-
tum inequality [1). If in addition &%) < 0 condition is im-
posed, then inequality](1) implies that the surface grawity
of dynamical and isolated horizorls [21] is non-negative un-
together with inequality (20) lead to the area-angular meme der A > 0 and the dominant energy condition, with= 0
tum inequality[(1) and, in addition, a rigidity result folls: if ~ corresponding to the extremal case. Finally, in Ref] [14] th
equality in [3) holds, first, the intrinsic geometry 8fis that  following question is posediow small a black hole can be?
of an extreme Kerr throat sphefe[11] and, second, the vanisiThough, according to inequalitffl(1) rotating classicalckla
ing of the positive-definite terms ifil(8), implies in pari@u  holes cannot be arbitrarily small, under the light of EQl (8)
the vanishing of the sheat,), so thats is aninstantaneous it seems also reasonable to expect violationsiof 87|J|
(non-expanding) isolated horizdn [21]. in near extremal semi-classical collapse due to correstion
Discussion. We have shown that axisymmetric stable olating the dominant energy condition, in particular rele
marginally trapped surfaces (in particular, apparentzums) when the black hole is small. This is also consistent with the
satisfy the inequalityd > 8r|J| in generically dynamical, Violations of inequality[(1) found in Ref.[[22], in the con-
non-necessarily axisymmetric, spacetimes with matteer@h text of black holes accreting matter that violates the rarid(
are two key ingredients enabling the shift from the initiatal ~ therefore the dominant) energy condition. Equat[dn (8) pro
discussion of inequality[{1) in_[14] to a spacetime context.vides a tool to estimate such possible violations.
First, the derivation of the geometric inequalify (8) where
spacetime interpretation of each term in the right hand side
is transparent and, more importantly, the global sign is conAcknowledgmentsilt is a pleasure for J.L.J. to thank M. An-
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