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Among the possibly most intriguing aspects of quantum
entanglement is that it comes in “free” and “bound” in-
stances. Bound entangled states require entangled states
in preparation but, once realized, no free entanglement
and therefore no pure maximally entangled pairs can be
regained. Their existence hence certifies an intrinsic irre-
versibility of entanglement in nature and suggests a con-
nection with thermodynamics. In this work, we present
a first experimental unconditional preparation and detec-
tion of a bound entangled state of light. We consider
continuous-variable entanglement, use convex optimiza-
tion to identify regimes rendering its bound character well
certifiable, and realize an experiment that continuously
produced a distributed bound entangled state with an ex-
traordinary and unprecedented significance of more than
ten standard deviations away from both separability and
distillability. Our results show that the approach chosen
allows for the efficient and precise preparation of multi-
mode entangled states of light with various applications
in quantum information, quantum state engineering and
high precision metrology.

The preparation of complex multi-mode entangled states of
light distributed to two or more parties is a necessary start-
ing point for applications in quantum information processing
[1–5], quantum metrology [6–8] as well as for fundamental
physics research. An aggressively pursued example of the lat-
ter is the preparation of the bound instance of entanglement, a
type of entanglement that can only exist in higher-dimensional
or multi-mode quantum states [9]. Bound entanglement is
fundamentally interesting since, in contrast to “free” entan-
glement, it can not be distilled to form fewer copies of more
strongly entangled pure states [9] by any local device allowed
by the rules of quantum mechanics. This irreversible charac-
ter has triggered entire theoretical research programmes [10],
in particular by linking entanglement theory to a thermody-
namical picture, with this irreversibility reminiscent of—but
being inequivalent with—the second law of thermodynam-
ics [11, 12]. In order to investigate such connections both
new theoretical as well as experimental means of constructing
multi-mode states must be innovated.

In recent years, great progress in information process-
ing, metrology and fundamental research has actually been
achieved in the photon counting (discrete variable, DV)
regime using postselection [1–5]. States of light are the
optimal systems for entanglement distribution because they
propagate fast and can preserve their coherence over long
distances. Postselection means that the measurement out-
come of the detectors which characterizes the quantum state

is also used to select the state, conditioned on certain mea-
surement outcomes. In such an approach, conditional appli-
cations are possible, however, an unconditional application of
the states in downstream experiments is conceptually not pos-
sible. Another limitation that any postselected architecture
will eventually face is that without challenging prescriptions
of measurement, quantum memories and conditional feedfor-
ward, the preparation (post-selection) efficiency will exponen-
tially decay with an increasing number of modes. In paral-
lel to postselected architectures of light, unconditional plat-
forms for research in quantum information have been devel-
oped which build on the detection of position and momen-
tum like variables having a continuous spectrum and a Gaus-
sian statistics. In such platforms the preparation efficiency
of one mode is identical to the preparation efficiency of N
modes. In the past, this continuous variable (CV) platform
has been used to demonstrate the Einstein-Podolsky-Rosen
(EPR) paradox [13, 14] and unconditional quantum telepor-
tation [15, 16]. Recently, the CV platform has been extended
to investigate multimode entangled states [17–22]; however,
the significance of their nonclassical properties have typically
been smaller compared to their postselected counterparts.

In this work, we demonstrate the continuous unconditional
preparation of one of the rarest types of multi-mode entan-
gled states – bipartite bound entangled states – using the CV
platform. The property of bound entanglement is verified by
four downstream balanced homodyne detectors with a detec-
tion efficiency of almost unity. Alternatively, our setup can
make available bound entangled states for any downstream
application. The bound entanglement is generated with un-
precedented significance, i.e., with state preparation error bars
small with respect to the distance to the free entanglement
regime and with respect to the distance to the separability
regime. Our result is achieved by the convex optimization
of state preparation parameters, and by introducing the exper-
imental techniques of single-sideband quantum state control
and classical generation of hot squeezed states.

The first ever generation of bound entangled states was
claimed in 2009 [23]. This work used photon counting and
postselection, however, the data presented did not support this
claim, an issue which has been addressed in a comment, see
ref. [24]. In ref. [25] a DV nuclear magnetic resonance state
whose density matrix has a small contribution of bound en-
tanglement has been observed. Such a state has been called
a “pseudo-bound entangled state”. Very recently, the actual
first bound entangled states have been generated in two ex-
periments, both on the basis of discrete variables. In ref. [26]
bipartite bound entangled states of trapped ions have been ver-
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ified by the unconditional detection of resonance fluorescence.
In ref. [27] the first bound entangled states of light have been
generated, albeit of multipartite and not of bipartite nature.
Similar to ref. [23], photon counting and postselection have
been used. An unconditional application of the distributed en-
tanglement in a downstream experiment is hence not possible.
This is now made possible in our work, with a significance of
bound entanglement that has not been achieved using postse-
lection.

Our theoretical search for CV Gaussian bound entangled
states of light begins with three (non-pure) squeezed input
modes and a vacuum mode overlapped on four beam split-
ters acting as phase-gates. This yields several independent
parameters to be chosen that includes three pairs of quadra-
ture variances and the splitting ratios and the relative phases
of the phase-gates. Additional vacuum contributions due to
optical losses at different locations in the experiment have to
be considered as well. As it turns out, bound entanglement
is extremely rare in this multi-dimensional parameter space.
Hence, to theoretically identify suitable regimes for experi-
mental certification is a challenging task: Known examples of
CV bound entangled states, including those of ref. [28], will
have both free entangled and separable states very nearby. Op-
timal entanglement witnesses can be efficiently constructed
for Gaussian states [29], yet to maximize the distance of an
optimal hyperplane separating separable states to the bound-
ary of non-distillable states—hence maximizing robustness of
a preparation—is a non-convex difficult problem. What is
more, a reasonable compromise with the preparation com-
plexity has to be found, with a surprisingly simple feasible
scheme being shown in fig. 1.

We now present the measures required for verifying the
presence of bound entanglement. Since the studied states
are Gaussian they are fully described by their first—which
will not play a role here—and second moments, specified
by the covariance matrix of a state ρ̂ [30–32]. We define
a set of quadratures for each optical mode given by x̂j =

(âj + â†j)/2
1/2 and p̂j = −i(âj − â†j)/21/2 where âj , â

†
j are

the annihiliation and creation operators, respectively. Collect-
ing these 2n coordinates in a vector Ô = (x̂1, p̂1, . . . , x̂n, p̂n),
we can write the commutation relations as [Ôj , Ôk] = iσj,k,
where ~ = 1 and is a matrix σ often known as symplectic
matrix. The second moments are embodied in the 2n × 2n
covariance matrix

γj,k = 2Re tr
(
ρ̂(Ôj − dj)(Ôk − dk)

)
, (1)

with dj = tr(ρÔj), giving rise to a real-valued symmetric
matrix γ, see supplementary material.

Verification of bipartite bound entanglement requires show-
ing that the state is entangled (inseparable) with respect to a
bipartition of the modes and that the state remains positive
under partial transposition [9, 28] proving that the state is not
distillable.

The state is said to be entangled if physical covariance ma-
trices γA and γB exist of states in modes A and B, respec-
tively, so real matrices satisfying γA, γB ≥ −iσ, such that

[31, 32]

γ ≥ γA ⊕ γB . (2)

This idea suggests a natural entanglement measure [33] for
Gaussian states, defined as the solution of

E(γ) = 1− max
γA,γB

x (3)

γ ≥ γA ⊕ γB , γA, γB ≥ −ixσ.

E(γ) > 0 indeed implies that the state is entangled. The
above problem is known as a semi-definite program, a convex
optimization problem that can efficiently be solved.

Non-distillability can be tested by evaluating the par-
tial transposition of a state [34] which physically reflects
time reversal. For covariance matrices, partial transposi-
tion amounts to changing the sign of momentum coordinates
or by applying the operation γΓ = MγM , where M =
(1, 1, 1, 1, 1,−1, 1,−1), with a −1 in all momentum coordi-
nates belonging to B. A covariance matrix γ is said to be PPT
if its partial transpose is positive, i.e. is again a legitimate co-
variance matrix, or equivalently, γΓ + iσ ≥ 0. A measure as
to the quantitative extent a state is PPT can be taken to be the
minimum eigenvalue of this matrix,

P (γ) = min eig(γΓ + iσ). (4)

The continuity of the eigenvalues with respect to variations in
the matrix are enough to guarantee that the measure is mean-
ingful. A strictly positive value of P (γ) unambiguously certi-
fies that the state is not distillable.

Finally, we test whether the reconstructed covariance ma-
trix satisfies the Heisenberg uncertainty relation as this is a
test if the matrix corresponds to a physical state. (Unphysical
states might occur if the error bars of the quantum state prepa-
ration or the tomographic characterization are too large.) This
is performed by checking that the inequality

γ + iσ ≥ 0, (5)

is satisfied for the reconstructed state.

RESULTS

Based on our theoretical parameter search our final experi-
mental setup is realized as shown in fig. 1. In total three opti-
cal parameter amplifiers (OPAs), three phase-gates, consisting
of a beam splitter and a piezo mounted mirror, and a vacuum
mode are utilized as the base setup. The four homodyne detec-
tors are only necessary for the verification of bound entangle-
ment but not for its preparation. We set our OPAs to produce
the minimum and maximum vacuum noise normalized vari-
ances to be: (2.0, 3.46) from OPA1, (0.54, 5.16) from OPA2

and finally from OPA3 (0.63, 2.54). The phase-gates were set
to φ1 = 90◦, φ2 = 41◦ and φ3 = 140◦, respectively. The first
OPA produces a classically squeezed (thermal) state we re-
fer to as hot squeezing. It manifests a non-uniform stationary
noise distribution amongst its two quadratures without hav-
ing the smallest quadrature fall below the vacuum noise level.
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FIG. 1. Experimental setup: The experiment is composed of three
optical parametric amplifiers (OPA1−3), three actively controlled
piezo mounted mirrors forming phase-gates (PG1− 3) and four ho-
modyne detectors which are independent of the preparation. The
inset shows the construction of an OPA as a non-linear crystal inside
a resonator producing a spatial TEM00 mode. The bound entangled
state is obtained through the bipartite splitting such that Alice and
Bob each possess two of the four modes.

Hot squeezing is generated when, for example, two amplitude
squeezed modes of different squeezing factors are overlapped
on a 50/50 beam splitter with a relative phase of 90◦, thereby
producing a two-mode squeezed state, but then discarded one
of the output modes to complete the preparation. Without the
presence of hot squeezing, bound entanglement cannot be pre-
pared; it introduces quantum noise giving rise to the subtle
interplay of quantum and classical correlations close to the
boundary of bound entangled and separable quantum states.
We demonstrate that the same state can also be prepared in
a purely classical way by applying a local random displace-
ment on the phase quadrature of a vacuum mode while para-
metrically amplifying the state’s amplitude quadrature. The
stationary random phase modulation is produced by using an
EOM driven with the output from a homodyne detector mea-
suring shot noise. The amplitude modulation is generated by
operating OPA1 in fig. 1 in amplification mode, effectively
anti-squeezing the amplitude quadrature and deamplifying the
thermal noise phase quadrature of the input state. In principle
the random amplitude noise of the first input mode can also
be provided by a second homodyne detector and an amplitude
modulator, thereby replacing the parametric OPA1 device. It
is important to note that pseudo-random numbers could be in-
sufficient in this scheme since they could introduce artificial
correlations and a non-stationary noise into the final state.

In order to hit the tiny regions in parameter space where
bound entanglement does exist we introduce to our setup a
new technique for precisely controlling phase-gates at arbi-
trary angles. This method relies on an optical single-sideband
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FIG. 2. Experimental results: The state measured after 4 million sets
of raw quadrature data points yields the entanglement E and non-
distillability P indicated by the red cross. Other 104 points are ob-
tained by bootstrapping the original 4 million data points and show
that we are 16σ away from separability and 46σ away from distil-
lability. In the inset we depict the minimum eigenvalue of γ + iσ
of each of the 104 bootstrapped correlation matrices, showing that
they are significantly far away from the boundary of covariance ma-
trices allowed by the uncertainty principle. The fact that the involved
states are Gaussian up to the experimental accuracy reached, as can
be assessed by estimating higher cumulants.

scheme (see supplementary material) that can be used to ar-
bitrarily and independently set the working point of both a
phase-gate network and multiple homodyne detectors. This
scheme reduces setting the relative phase between interfering
modes to selecting the electronic demodulation phase used in
the control loop. A portion of the light leaving the phase-
gates, PG1-3 in fig. 1, is redirected to control photodetec-
tors. We are able to derive a strong error-signal by tapping
only 1µW of power corresponding to no more than 1% of the
signal mode’s optical power. For applications where delicate
quantum states must remain free from losses our method pro-
vides a means by which they can still be used for controlled
interference without significant vacuum contribution due to
loss.

The four balanced homodyne detectors are used for the full
tomographic reconstruction of the covariance matrix. The
results of the reconstruction are used to evaluate two char-
acteristics of the state; namely, its entanglement E eq. (4)
and its PPTness P eq. (4). In order to build the statistics of
these characteristics we first continuously recorded 4 million
data points from the amplitude and phase quadratures of each
mode. Using the bootstrapping method, we then randomly
sampled from the total 4 million points, with uniform distri-
bution, points that were different, and produced a series of
covariance matrices from which the entanglement, PPT and
physical properties were calculated. Our results are repre-
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sented in fig. 2 by the black points. The red cross corresponds
to the average state inferred from the total data set. The ab-
scissa of fig. 2 is the PPTness and the ordinate the entangle-
ment. By projecting the scatter plot onto the respective axes
we calculate a significance of 46σ away from being distill-
able, i.e., P (γ) < 0 and 16σ away from being separable, i.e.,
E(γ) ≤ 0. To demonstrate that the generated state is not close
to the boundary of state space (and to confirm its physicality)
eq. (5) is also depicted: This is shown in the inset as a his-
togram. The fact that it is more than 50σ away from being
unphysical can be seen as an indication of the fact that our
setup was stable over the entire measurement time and that
our measured data exhibited little statistical uncertainty.

DISCUSSION

Our results present the first unconditional preparation of
bound entangled states of a physical system characterized by
(continuous) position/momentum-like variables. With respect
to systems composed of light, we demonstrate the first un-
conditional preparation of bound entanglement, and achieve
an unprecedented significance of its features. Independent of
any postselection, our platforms allows for the distribution of
the entangled states. As other states of light our bound entan-
gled states can be distributed to remote parties, which might
be kilometers apart using optical fibers [35]. The decoher-
ence on bound entangled states due to photon loss and phase
noise [36] and the ineffectiveness of distillation schemes [37]
can be tested, as well as the applicability of thermodynamical
pictures of entanglement be studied experimentally.

Our results clearly exemplify the potential of the continu-
ous variable platform for the precise engineering of complex
multi-mode states of light. We underline that using this plat-
form the state preparation efficiency does not depend on the
number of entangled modes. That is to say, detecting, for ex-
ample, one squeezed mode with one homodyne detector has
exactly the same efficiency as detecting N squeezed states
withN homodyne detectors simultaneously. Furthermore, we
estimate our total quantum detection efficient to be between
90-95% being already considered in the preparation of bound
entanglement. Alternatively, this loss could be mapped di-
rectly onto the measured state by inclusion of neutral density
filters, and verification with perfect detectors would reveal the
same statistics as depicted in fig. 2.

We believe that the precise and unconditional preparation
of (bi-partite) bound entangled states of light demonstrated
uplifts the theoretical and experimental research on the link
between entanglement theory and statistical physics. From
a more general and also technological perspective, the high
efficiency and the high degree of control in multimode
quantum state preparation achieved certainly promotes the
application of the unconditional continuous variable platform
for the preparation of quantum states of light for fundamental
research as well as quantum metrology.

METHODS

Details of entanglement criteria

Explicitly, for n modes the symplectic matrix σ reads as

σ =

n⊕
j=1

(
0 1
−1 0

)
. (6)

The Heisenberg uncertainty relation, expressed in terms of
the covariance matrix [30], is given by

γ + iσ ≥ 0. (7)

Such operator valued inequalities A ≥ B for Hermitian A
and B always refer to operator ordering, meaning that the real
eigenvalues of A − B are non-negative. The above measure
E for covariance matrices, eq. (4), indeed indicates entangle-
ment in states [33], and for two modes this is essentially noth-
ing but the familiar negativity [38–40].

In the above discussion we show that the spectrum of γ +
iσ is bounded from below by ε > 0, hence manifesting the
Heisenberg uncertainty principle. It is worth mentioning that
this also means that the smallest symplectic eigenvalue s1(γ)
of γ is bounded away from 1.

Identifying robust bound entangled states

The relative volume of bound entangled states compared to
all states is very small under every reasonable measure, and
any verification as pursued here necessarily requires a care-
ful analysis as to what parameter regime is most suitable. In
this subsection, we report techniques that have been used to
identify regimes of robust bound entangled states. We explore
the space of correlation matrices considering the most general
correlation matrix, modulo unitary local operations that do not
change the entanglement properties of the system:

In order to find more robust states, we look at all physical
covariance matrices, once the irrelevant parameters are taken
away. The most general such covariance matrix of 4 modes,
up to local unitaries that will not alter any entanglement prop-
erties, is of the form

γ =



λ1 0 0 0 λ5 0 λ9 λ10

0 λ1 0 0 0 λ6 λ11 λ12

0 0 λ2 0 λ13 λ14 λ7 0
0 0 0 λ2 λ15 λ16 0 λ8

λ5 0 λ13 λ15 λ3 0 0 0
0 λ6 λ14 λ16 0 λ3 0 0
λ9 λ11 λ7 0 0 0 λ4 0
λ10 λ12 0 λ8 0 0 0 λ4


. (8)

Once a state is obtained we now search for variations in which
both P (γ) and E(γ) increase. Thus, the state after a success-
ful variation will be “significantly bound entangled”. This
search was performed in a combination of using witnesses
[29], accompanied with Monte Carlo sampling and running
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a semi-definite problem in each step. The most suitable state,
as quantified by the biggest value of min{E(γ), P (γ)}, are
characterized by an entanglement value of E(γ) = 0.054 and
P (γ) = 0.132, giving an idea of the limiting values that one
can achieve.

However, experimentally it is too expensive to engineer a
state with an arbitrary correlation matrix. We thus construct a
circuit which, starting from a product of noisy Gaussian sin-
gle mode states, can produce bound entangled states, but is
simple enough to be producible in the lab with available tech-
nology. A (non unique) example of such a circuit is plotted in
fig. 1. The resulting scheme is a result of a variation within
the above parameterized family of circuits, maximizing the
statistical significance of being bound entangled by running
semi-definite problems in each step. Afterwards we filter the
results allowing only those which require achievable values of
squeezing at the input and which only require a single mode
with hot squeezing, as this is also a precious resource that, at
the moment, can only be input in a single mode. Within the
resulting states we choose the most robust according to the
aforementioned criteria.

Details of the experiment

The three OPAs used to produce the underlying quadrature
squeezing at sideband frequency of 6.4 MHz were constructed
from a type I non-critically phase-matched MgO:LiNbO3

crystal inside a standing wave resonator, similar to the de-
sign that previously has been used in ref. [41]. They were
pumped with approximately 100 mW of green light at 532 nm
each resulting in a classical gain of about 5. The length of
the OPA cavity as well as the phase of the second harmonic
pump beam were controlled using radio-frequency modula-
tion/demodulation techniques.

Balanced homodyne detection was performed on each of
the four modes in order to reconstruct the 8×8 covariance ma-

trix. The optical local oscillator was filtered through a three
mirror ring cavity operated in high finesse mode resulting in
a linewidth of 55 kHz. The detector difference currents were
electronically mixed with a 6.4 MHz local oscillator and low-
pass filtered with a 400 kHz bandwidth. The dark noise sepa-
ration from shot noise was measured to be more than 10 dB for
each detector. The raw data was acquired using a 14 bit Na-
tional Instruments DAQ-card and in total eight measurement
settings including the shot noise measurement were required
in order to reconstruct the covariance matrix.

The hot squeezed states were generated by randomly phase
modulating the control beam used to set the length of the
OPA cavity at the squeezing sideband frequency, 6.4 MHz,
and locking the OPA cavity in amplification. This produces
phase squeezed states whose smallest quadrature can be con-
trolled by varying the strength of the random noise modulated
on the control field and whose amplitude quadrature is con-
trolled by the degree of classical gain.

The single-sideband was generated by overlapping the
output of a second laser operating at around 1064 nm with the
bright output of OPA1. The beams were phase-locked at a
beat frequency of 15 MHz resulting in a field that corresponds
to both a phase and amplitude modulation. The beat was
detected by directing approximately 1% of the phase-gate
outputs to photodetectors placed behind the phase-gates as
well as in each homodyne detector. The relative phase be-
tween the carriers at both the phase-gates and the homodyne
detectors could then be set to an arbitrary phase simply by
changing the demodulation phase of the electronic local
oscillator. We estimate a phase sensitivity at each phase-gate
to be approximately 2 deg.

This work has been supported by the EU (QESSENCE,
MINOS, COMPAS), the EURYI, the grant UNAM-PAPIIT
IN117310 and by the Centre for Quantum Engineering and
Space-Time Research, QUEST. We acknowledge discussions
with P. Hyllus and M. Lewenstein at an early stage of this
project.
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