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Abstract

Given a compact domain of a 3-dimensional hypersurface on a vacuum spacetime, a scalar
(the “non-Kerrness”) is constructed by solving a Dirichlet problem for a second order elliptic
system. If such scalar vanishes, and a set of conditions are satisfied at a point, then the
domain of dependence of the compact domain is isometric to a portion of a member of the
Kerr family of solutions to the Einstein field equations. This construction is expected to be
of relevance in the analysis of numerical simulations of black hole spacetimes.

PACS: 04.20.Ex, 04.20.Jb, 04.25.dg

1 Introduction

The present article is concerned with the problem of measuring how different a given initial
data set for the Einstein vacuum field equations is from a Kerr initial data set. In [1, 2, 4] this
problem has been addressed by the construction of a geometric invariant —the non-Kerrness— on
hypersurfaces with at least one asymptotic end. This setting, although convenient for theoretical
discussions, is not ideal for numerical considerations where very often one needs to make use of
bounded computational domains on an hypersurface. The purpose of this article is to provide a
construction of non-Kerrness on bounded domains.

The construction of the non-Kerrness given in [1, 2, 4] is based on a very strong property
of the Kerr spacetime: the existence of a Killing-Yano tensor. A Killing-Yano tensor is an
antisymmetric, rank 2 tensor Yµν satisfying the equation

∇(µYν)λ = 0.

Let ζµ ≡ ǫµ
νλρ∇νYλρ denote the codifferential of Yµν . If Yµν is a Killing-Yano tensor, then ζµ

satisfies the Killing vector equation. As discussed in [8], the theory of Killing-Yano tensors can
be conveniently reformulated in terms of the existence of a valence 2 Killing spinor, κAB = κ(AB),
satisfying the equation

∇A′(AκBC) = 0. (1)

The spinorial analogue of the codifferential ζµ is the spinor ξAA′ ≡ ∇A′
BκAB. In general, if κAB

satisfies the Killing spinor equation, then ξAA′ is a complex Killing vector. In the case of the
Kerr spacetime the real and imaginary parts of this vector are proportional —and by multiplying
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with a complex constant, the imaginary part can be set to zero. In general, the existence of a
Killing-Yano tensor is equivalent to existence of a Killing spinor κAB such that ξAA′ is real.

Killing spinors (or alternatively, Killing-Yano tensors) are useful in the characterisation of the
Kerr spacetime as the existence of one of these objects severely restricts the algebraic type of the
curvature of the spacetime. Furthermore, the implied existence of a real Killing vector allows to
make contact with the theory of the Mars-Simon tensor —see [5, 6]. As a result of this analysis,
it is possible to provide a purely local characterisation of the Kerr spacetime —see Theorem 1 in
[6]. Alternatively, one can obtain a somewhat simpler characterisation if one combines local and
global requirements: the existence of a stationary, asymptotically flat region with non-vanishing
mass —see Theorem 2 in [6]. Precisely this result was used in the constructions of non-Kerrness
on non-bounded 3-manifolds described in [1, 2, 4].

The construction of the non-Kerrness on bounded domains discussed in the present article
makes use of the local spacetime characterisation of the Kerr spacetime given in Theorem 1
of [6] to show that if the non-Kerrness vanishes on some 3-dimensional bounded domain, then
the initial data prescribed on that region is locally isometric to data for a Kerr spacetime. We
expect that this result will be of utility to assess in a quantitative way how a given numerically
constructed dynamical black hole spacetime evolves towards a stationary state described by the
Kerr spacetime. In the process, it will be shown that the general theory of Killing spinor initial
data sets used in [1, 2, 4] can be simplified.

Overview of the article

The content of this article is structured as follows: Section 2 provides a summary of key properties
of spacetimes with Killing spinors. It also contains a reformulation in terms of spinors of a local
characterisation of the Kerr spacetime by M. Mars. Finally, a brief discussion of the notion of
Killing spinor candidates is provided. Section 3 provides a brief summary of the theory of the
Killing spinor initial data equations which encode the existence of a Killing vector at the level
of initial data. Section 4 gives a brief discussion of the notion of approximate Killing spinors,
the approximate Killing spinor equations and the elliptic theory required to discuss the existence
of solutions to this equation with Dirichlet boundary conditions. Section 5 provides a result
regarding the realness of the Killing vector constructed from the Killing spinor, which will be
required in our subsequent discussion. Section 6 provides our main result: a theorem which
characterises Kerr initial data on a compact domain of a 3-dimensional manifold using the notion
of approximate Killing spinors. Finally Section 7 provides some concluding remarks. There is an
appendix (Appendix A) providing a proof of a theorem discussed in Section 3, which tells that
one of the Killing spinor initial data equations can be omitted.

2 A local spacetime characterisation of the Kerr spacetime

Given a spacetime (M, gνν), let Cµνλρ denote the Weyl tensor of the metric gµν . Let CAA′BB′CC′DD′

denote the spinorial counterpart of Cµνλρ. There exists a completely symmetric spinor ΨABCD

such that:
CAA′BB′CC′DD′ = ΨABCDǭA′B′ ǭC′D′ + Ψ̄A′B′C′D′ǫABǫCD.

We recall that the two classical invariants of the Weyl tensor are given by:

I ≡ 1
2ΨABCDΨ

ABCD, J ≡ 1
6ΨABCDΨ

CDEFΨEF
AB.

2.1 Properties of spacetimes with Killing spinors

In what follows it is assumed one has a region N of the spacetime (M, gµν) where one has a
solution κAB of the Killing spinor equation (1). It is then well known that the spacetime must
be of Petrov type D, N or O —see e.g. [10]. In the sequel we will concentrate our attention to
the case when (M, gµν) is of Petrov type D. In such case, there exist spinors αA, βA, αQβ

Q = 1,
such that

ΨABCD = ψα(AαAβCβD), (2)
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where
ψ ≡ −18J /I. (3)

The valence 2 Killing spinor is then given by

κAB = ψ−1/3α(AβB). (4)

As in the introduction, let
ξAA′ ≡ ∇Q

A′κAQ.

Then ξAA′ is (in general) a complex solution to Killing equation

∇AA′ξBB′ +∇BB′ξAA′ = 0.

If ξAA′ is real, we define the Killing form of ξAA′ by

FAA′BB′ ≡ 1
2 (∇AA′ξBB′ −∇BB′ξAA′) = ∇AA′ξBB′ .

Vacuum spacetimes admitting a Killing spinor such that ξAA′ is real will be said to belong to the
generalised Kerr-NUT class. In the rest of this section it is assumed that (M, gµν) is a generalised
Kerr-NUT spacetime.

As a consequence of the symmetries of FAA′BB′ , there exists a symmetric, valence 2 spinor
φAB such that

FAA′BB′ = φAB ǭA′B′ + φ̄A′B′ǫAB, φAB ≡ 1
2FAQ′B

Q′

.

Using (4) one finds the following expressions for ξAA′ , and φAB in terms of ψ and the principal
spinors:

ξAA′ = 1
2ψ

−4/3
(

αAβ
Q + βAα

Q
)

∇QA′ψ,

φAB = 1
4ψ

2/3α(AβB).

For later use, we introduce the norm of the Killing form, the norm of the Killing vector and
the twist 1-form via

Φ ≡ φPQφ
PQ, λ ≡ ξAA′ξAA′

, ωAA′ ≡ ǫAA′BB′CC′DD′ξBB′

∇CC′

ξDD′

,

where
ǫAA′BB′CC′DD′ ≡ i (ǫACǫBD ǭA′D′ ǭB′C′ − ǫADǫBC ǭA′C′ ǭB′D′)

is the spinorial counterpart of the completely antisymmetric volume form, ǫµνλρ, of gµν . Locally,
ωAA′ is exact, so that there exists ω (the twist potential) such that ωAA′ = ∇AA′ω. Using λ and
ω we define the Ernst potential, σ, by

σ ≡ λ+ iω.

Using expressions (2) and (4) one readily finds the following expressions for Φ, λ and ωAA′ :

Φ = − 1
32ψ

4/3, (5a)

λ = − 1
4ψ

−8/3∇AA′ψ∇AA′

ψ, (5b)

ωAA′ = Im(4φA
BξBA′), (5c)

In order to obtain an expression for the Ernst potential in terms of ψ, we notice the identities

∇AA′(ψ1/3) = 16
3 φA

BξBA′ , (6a)

∇AA′∇AA′

ψ = ψ2 + 2
3ψ

−1∇AA′ψ∇AA′

ψ, (6b)

∇AA′λ = Re(4φA
BξBA′). (6c)

Thus, one concludes that
∇AA′λ+ iωAA′ = 3

4∇AA′ψ1/3.

The latter can be integrated to give
σ − c = 3

4ψ
1/3, (7)

with c a complex constant. The real part of c is not arbitrary: using equations (6a) and (6c) one
obtains that

Re(c) = λ− 3
4Re(ψ

1/3). (8)
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2.2 A local characterisation of Kerr

The analysis of the so called Mars-Simon tensor presented in [5, 6] gives rise to a local character-
isation of the Kerr spacetime among the class of spacetimes endowed with a Killing vector. This
characterisation involves the Weyl tensor, the Killing form and the Ernst potential —see Theo-
rem 1 in [6]. For the convenience of our subsequent analysis, here we present a slight generalisation
of this result in the language of spinors.

Theorem 1 (Mars, 2000). Let (M, gµν) be a smooth, vacuum spacetime admitting a Killing
vector ξµ. Let N ⊂ M be a non-empty open subset satisfying:

(i) There is a point p ∈ N where Φ 6= 0.

(ii) The Killing form and the Weyl tensor are related by

ΨABCD = ̟φ(ABφCD),

where ̟ is a complex scalar function.

Then there exist two complex constants c̃ and k such that

̟ = −
12

c̃− σ
, Φ = −k(c̃− σ)4, on N .

If, in addition, Re(c̃) > 0 and k = Re(k) > 0 then (N , gµν) is locally isometric to a portion of
the Kerr spacetime.

Remark. This result follows from —and is equivalent to— Theorem 1 in [6] by introducing a
different normalisation in the Killing vector and exploiting the ambiguity in the definition of the
Ernst potential1.

2.3 Killing spinor candidates

The construction of non-Kerrness on a bounded domain requires the notion of a Killing spinor
candidate introduced in [4]:

Definition 1. Let (M, gµν) be a vacuum spacetime. Consider N ⊂ M and on N a symmetric
spinor ζAB satisfying

ζAB 6= 0, ψ−1ΨPQRSζ
PQζRS − 1

6ζPQζ
PQ 6= 0 on N .

The symmetric spinor given by

κ̆AB = ψ−1/3Ξ−1/2
(

ψ−1ΨABPQζ
PQ − 1

6ζAB

)

, (9)

with
Ξ ≡ ψ−1ΨPQRSζ

PQζRS − 1
6ζPQζ

PQ,

will be called the ζAB-Killing spinor candidate on N .The scalar ψ is obtained from the Weyl
spinor ΨABCD using formula (3).

Formula (10) can be evaluated for any vacuum spacetime (M, gµν). The name Killing spinor
candidate is justified by the following result also proved in [4]:

Proposition 2. Let (M, gµν) be a vacuum spacetime. If on N ⊂ M, the spacetime is of Petrov
type D and ζAB is a symmetric spinor satisfying

ζAB 6= 0, ψ−1ΨPQRSζ
PQζRS − 1

6ζPQζ
PQ 6= 0 on N ,

then
κAB = ψ−1/3Ξ−1/2

(

ψ−1ΨABPQζ
PQ − 1

6ζAB

)

(10)

is a Killing spinor on N . The formula (10) is independent of the choice of ζAB.

1We thank M. Mars for pointing this out to us.
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3 The Killing spinor initial data equations

Key for the construction of the non-Kerrness discussed in [1, 2, 4], is the idea of how to encode
that the development of an initial data set (S, hij ,Kij) admits a solution to the Killing spinor
equation (1). This question can be addressed by means of the space-spinor decomposition of the
Killing spinor equation (1). For a more detailed description see [2].

The space-spinor decomposition of equation (1) renders a set of 3 conditions intrinsic to the
hypersurface S:

ξABCD = 0, (11a)

Ψ(ABC
FκD)F = 0, (11b)

3κ(A
E∇B

FΨCD)EF +Ψ(ABC
F ξD)F = 0, (11c)

where we have written

ξABCD ≡ ∇(ABκCD), ξAB ≡
3

2
∇(A

DκB)D, ξ ≡ ∇PQκPQ, (12)

and ∇AB denotes the spinorial version of the Sen connection associated to the pair (hij ,Kij) of
intrinsic metric and extrinsic curvature. It can be expressed in terms of the spinorial counterpart,
DAB of the Levi-Civita connection of the 3-metric hij , and the spinorial version, KABCD =
K(AB)(CD) = KCDAB, of the second fundamental form Kij . For example, given a valence 1
spinor πA one has that

∇ABπC = DABπC + 1
2KABC

QπQ,

with the obvious generalisations to higher valence spinors. In equations (11b)-(11c), the spinor
ΨABCD denotes the restriction to the hypersurface S of the self-dual Weyl spinor. Crucially, the
spinor ΨABCD can be written entirely in terms of initial data quantities via the relations:

ΨABCD = EABCD + iBABCD,

with

EABCD = −r(ABCD) +
1
2Ω(AB

PQΩCD)PQ − 1
6ΩABCDK,

BABCD = −i DQ
(AΩBCD)Q,

and where ΩABCD ≡ K(ABCD), K ≡ KPQ
PQ. Furthermore, the spinor rABCD is the Ricci tensor,

rij , of the 3-metric hij .

In Appendix A it is shown that the second algebraic condition (11c) is, in fact, redundant and
a consequence of the conditions (11a)-(11b). In particular it follows then that

Theorem 3. Let equations (11a)-(11b) be satisfied for a symmetric spinor κ̌AB on an open set
U ⊂ S. Then the Killing spinor equation (1) has a solution, κAB, on the future domain of
dependence D+(U).

Remark. This means that the term I2 in the invariants of [1, 2, 4] can be omitted.

4 Approximate Killing spinors

4.1 The approximate Killing spinor equation

The spatial Killing spinor equation (11a) can be regarded as a (complex) generalisation of the
conformal Killing vector equation. As in the case of the conformal Killing equation, equation
(11a) is clearly overdetermined. However, one can construct a generalisation of the equation
which under suitable circumstances can always be expected to have a solution. One can do this

5



by composing the operator in (11a) with its formal adjoint —see [1]. This procedure renders the
equation

LκCD ≡ ∇AB∇(ABκCD) − ΩABF
(A∇|DF |κB)C − ΩABF

(A∇B)FκCD = 0, (13)

which will be called the approximate Killing spinor equation. One has the following result proved
in [2]:

Lemma 4. The operator L defined by the left hand side of equation (13) is a formally self-adjoint
elliptic operator.

In order to discuss the solvability of equation on a bounded domain, U ⊂ S, (13) one has to
supplement it with appropriate boundary conditions. On ∂U we will consider the homogeneous
Dirichlet operator B given by

Bu(y) = u(y), y ∈ ∂S.

The combined operator (L,B) satisfies the so-called Lopatinski-Shapiro compatibility conditions
—see [11] for detailed definitions and discussion. Thus, (L,B) is L-elliptic —see again [11],
Theorem 10.7. Moreover, one has the following theorem —see also [7].

Theorem 5. Let L denote a smooth second order homogeneous elliptic operator on U . Further-
more, let ∂U be smooth and let B denote the Dirichlet boundary operator. Then for s ≥ 2 the
map

(L,B) : Hs(U) → Hs−2(U) ×Hs−1/2(∂U)

is Fredholm. Furthermore, the boundary value problem

Lu(x) = f(x), f ∈ H0(U), x ∈ U ,

u(y) = g(y), g ∈ H0(∂U), y ∈ ∂U ,

has a solution u ∈ H2(U) if
∫

U

f · νdµ = 0,

for all ν ∈ H2(U) such that

L∗ν(x) = 0, x ∈ U ,

ν(y) = 0, y ∈ ∂U .

Remark. If L has smooth coefficients and Lu = 0, then it follows from Weyl’s Lemma —see e.g.
[11]— that if a solution to the boundary value problem exists and the boundary data is smooth,
then the solution must be, in fact, smooth —this is the so-called elliptic regularity.

In what follows let nAB = n(AB) denote the spinorial counterpart of the inward pointing
normal to ∂U . As a consequence of our signature conventions one has that nPQn

PQ = −1.
Theorem 5 will be used to establish the existence of solutions to the approximate Killing spinor
equation (13) with Dirichlet boundary data given by the nAB-Killing spinor candidate. In order
to ensure that the Killing spinor candidate can be constructed on ∂U , we define the set

Q ≡ {z ∈ C | z = Ξ(p), p ∈ ∂U},

and make the assumption:

Assumption 1. The initial data set (S, hij ,Kij) and the compact set U are such that Ξ is a
smooth function over ∂U satisfying

(i) 0 6∈ Q;

(ii) Q does not encircle the point z = 0.

6



As a consequence of this assumption one can choose a cut of the square root function on the
complex plane such that Ξ1/2(p) is smooth for all p ∈ ∂U .

One has the following result:

Proposition 6. Let (S, hij ,Kij) be an initial data set for the Einstein vacuum field equations.
Furthermore, let U ⊂ S be a compact subset with boundary ∂S satisfying Assumption 1. Then,
there exists a unique smooth solution, κAB, to the approximate Killing spinor equation (13) with
boundary value given by the nAB-Killing spinor candidate given by equation (9).

Proof. The proof of this result follows directly from the second part of Theorem 5. Notice that
as the equation is is homogeneous, there is no potential obstruction to the existence of solutions
and one does not need to verify the triviality of the Kernel of the adjoint operator as it is in the
case with asymptotically Euclidean ends —see [1, 2, 4].

5 Reality of the Killing vector

As discussed in the introduction, the existence of a Killing spinor is not enough to single out the
generalized Kerr-NUT family from the type D solutions. We also need that the Killing vector
constructed from the Killing spinor is real. This section provides some tools to determine that.

5.1 Imaginary part of the Killing vector data

In what follows, let κAB solve the Killing spinor equation (1) in a spacetime domain D, and let
ξ and ξAB be defined as in (12). In this section we only study what happes in the domain D.
A computation using the suite xAct for Mathematica starting from equations (11a)-(11c) shows
that

DABIm(ξAB) = − 1
2 Im(ξ)K, (14a)

D(ABIm(ξCD)) = − 1
2 Im(ξ)ΩABCD. (14b)

The equation (1) implies ∇κAB = − 2
3ξAB , where ∇ denotes the normal derivative τAA′

∇AA′ .
Commuting derivatives and simplifying one obtains

∇Im(ξ) = Im(ξAB)KAB, (15a)

∇Im(ξAB) = − 1
2 Im(ξ)KAB + 1

3 Im(ξAB)K +ΩABCDIm(ξCD)

−DABIm(ξ)− Im(ξ(A
C)KB)C . (15b)

Making a space spinor split of ξAA′ = ∇B
A′κAB and using equation (1), we find

Im(ξAA′) = 1
2 Im(ξ)τAA′ − Im(ξAB)τ

B
A′ .

After differentiating once more, making a further space spinor split, and using equation (14a)
and (14b) we have:

Lemma 7. Let κAB solve the Killing spinor equation (1) in a spacetime domain D. Assume that

Im(ξ) = 0, Im(ξAB) = 0, DABIm(ξ) = 0, D(A
CIm(ξB)C) = 0 (16)

at a point p ∈ D. Then Im(ξAA′) = 0 and ∇AA′Im(ξBB′) = 0 at p.

6 The non-Kerrness invariant

The approximate Killing spinor κAB obtained in Proposition 6 will now be used, in the spirit
of [1], to construct a geometric invariant measuring the non-Kerrness of the initial data on the
compact set U . More precisely, we define

I ≡

∫

U

∇(ABκCD)
Ÿ�∇ABκCDdµ+

∫

U

Ψ(ABC
PκD)P

¤�ΨABCQκDQdµ. (17)
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6.1 The main result

The main result of our analysis is the following theorem:

Theorem 8. Let (S, hij ,Kij) be an initial data set for the Einstein vacuum field equations, and
let U ⊂ S be a compact connected subset with boundary ∂U satisfying Assumption 1. Let I be as
defined by equation (17) where κAB is given as the only solution to equation (13) with boundary
behaviour given by the nAB-Killing spinor candidate κ̆AB where nAB is the inward pointing normal
to ∂U . If:

(i) I = 0;

(ii) there exists a point on U for which

Im(ξ) = 0, Im(ξAB) = 0, DABIm(ξ) = 0, D(A
CIm(ξB)C) = 0;

then the future domain of dependence, D+(U), of U is isometric to a subset of a generalised
Kerr-NUT spacetime. If, in addition:

(iii) there exists a point on U for which Φ 6= 0;

(iv) there exists a point on U for which

λ− 3
4Re(ψ

1/3) > 0, (18)

then D+(U) is isometric to a portion of a Kerr spacetime.

Remark 1. If D+(U) is isometric to a portion of a Kerr spacetime, the conditions (ii), (iii) and
(iv) are satisfied on every point. Hence, the choice of which point to check the conditions in, is
not important.

Remark 2. If U is not connected, the conditions (ii), (iii) and (iv) needs to be checked for each
connected component of U .

Remark 3. The conditions (iii) and (iv) can be replaced by an asymptotic flatness condition.

Proof. If I = 0 then it follows from our smoothness assumptions that equations (11a)-(11b)
are satisfied on U . Hence, from Theorem 3 it follows that D+(U) will contain a Killing spinor
κAB. Then ξAA′ is the spinor counterpart of a (possibly complex) Killing vector. Now, using
assumption (ii) together with Lemma 7 gives Im(ξAA′) = 0 and ∇AA′Im(ξBB′) = 0 at a point.
Using a standard result about Killing spinors (see Appendix C.3 in [9]), one concludes that
Im(ξ) = Im(ξAB) = 0 everywhere on D+(U) so that ξAA′ is, in fact, real. Thus, D+(U) is
isometric to a portion of a generalised Kerr-NUT spacetime.

As in the main text, let φAB denote the spinorial counterpart of the Killing form for of ξAA′ .
From the discussion in Subsection 2.1 one concludes that

ΨABCD = ̟φ(ABφCD),

for some function ̟. Now, if Φ 6= 0 on U , then using Theorem 1, one has that

̟ = −
12

c̃− σ
, Φ = −k(c̃− σ)4,

for some (possibly complex) constants c̃ and k. Using formulae (7) and (5a), one can identify the
constants c and c̃ and set k = 8

81 . Evaluating c at the point where (18) holds one obtains that
Re(c) > 0. Thus, the hypothesis of Theorem 1 hold and one concludes that D+(U) is isometric
to a portion of the Kerr spacetime.
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7 Conclusions and discussion

In this paper we have devised a way to measure the deviation from Kerr initial data for bounded
domains. The main result is presented in Theorem 8. In the previous papers [1, 2, 4], a similar
result was obtained for cases where the computational domain reached spatial infinity. For such
cases the asymptotic behaviour of the approximate Killing spinor could be specified in a way
that helped us to exclude all other Petrov type D solutions. Therefore we could conclude that
the data was Kerr data if and only if I = 0. As the present paper deals with bounded domains,
we constructed the boundary data for the approximate Killing spinor from the curvature. The
drawback is that this gives I = 0 for all type D solutions. Therefore, one requires conditions
(ii), (iii), (iv) in Theorem 8 to single out the Kerr solution. An effort was put into formulating
the conditions so they can be verified at a single arbitrarily chosen point of the computational
domain. Furthermore, we have shown that a part of the invariant constructed in [1, 2, 4] can be
omitted in the case of a bounded domain as well the unbounded case.

The results of this paper can be used to numerically evaluate how much any slice of a spacetime
deviates from Kerr data. This gives a tool to quantify decay towards Kerr data for a numerically
evolved spacetime. A project along these lines have been initiated.
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A Redundancy of the second algebraic condition

The purpose of the present appendix is to prove the assertion made in Theorem 3 that the second
algebraic condition given by equation (11c) is a consequence of the conditions (11a) and (11b). As
a consequence of this result, the conditions required on an initial data set to have a development
with a valence 2 Killing spinor become completely analogue to those required to have a valence
1 Killing spinor —see e.g. [3].

The analysis in this appendix proceeds by discussing the various possible algebraic types that
the spinor κAB can have. Our first result is the following:

Lemma 9. Assume that the symmetric spinor κAB satisfies

κABκ
AB 6= 0, ∇(ABκCD) = 0, Ψ(ABC

FκD)F = 0,

on an open subset U ⊂ S. Then the algebraic condition (11c) is satisfied on U .

Proof. The condition κABκ
AB 6= 0 allows us to choose a spin dyad (oA, ιA) and a scalar field κ

such that oAι
A = 1 and κAB = eκo(AιB). Similarly, the condition Ψ(ABC

FκD)F = 0 implies that
there is a scalar field ψ such that ΨABCD = ψo(AoBιCιD).

In the next step we decompose the equation ∇(ABκCD) = 0 into its various components to
obtain:

oAoBoC∇ABoC = 0, (19a)

oAιBoC∇ABoC = − 1
2o

AoB∇ABκ, (19b)

oAoBιC∇ABιC − ιAιBoC∇ABoC = 2oAιB∇ABκ, (19c)

oAιBιC∇ABιC = 1
2 ι

AιB∇ABκ, (19d)

ιAιBιC∇ABιC = 0. (19e)
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These equations imply, in turn, that

e−κξAB = − 3oAoBo
CιDιF∇CDιF − 3ιAιBo

CιDoF∇CDoF

+ 3
2o(AιB)(o

CoDιF∇CDιF + ιCιDoF∇CDoF ). (20)

Now, it is well known that the spacetime Bianchi identity ∇Q
A′ΨABCQ = 0 implies the

constraint
∇CDΨABCD = 0, (21)

on S. Substituting ΨABCD = ψo(AoBιCιD) and contracting with combinations of oA and ιA one
finds that the content of (21) is given by

oAoB∇ABψ = 6ψoAιBoC∇ABoC , (22a)

oBιC∇BCψ = 3
2ψι

AιBoC∇ABoC − 3
2ψo

AoBιC∇ABιC , (22b)

ιAιB∇ABψ = − 6ψoAιBιC∇ABιC . (22c)

Using equation (20) and the Bianchi identities (22a)-(22c) we get

Ψ(ABC
F ξD)F + 3κ(A

F∇B
HΨCD)FH = 3

4e
κψιAιBιCιDo

MoP oQ∇PQoM

− 3
4e

κψoAoBoCoDι
M ιP ιQ∇PQιM .

Finally using the information about the derivatives of the spin dyad contained in equations (19a)-
(19e) one finds that we get that the second algebraic condition, equation (11c), is satisfied on U .
Notice that in this argument one could have had ψ = 0.

Using similar methods as before, one obtains the following lemma:

Lemma 10. Assume that the symmetric spinor κAB satisfies

κABκ
AB = 0, κABκ̂

AB 6= 0, ∇(ABκCD) = 0, Ψ(ABC
FκD)F = 0,

on an open subset U ⊂ S. Then the algebraic condition (11c) is satisfied on U .

Proof. By assumption the κAB is algebraically special —that is, it has repeated principal spinors.
Thus, there exists oA such that κAB = oAoB. We then complete oA to a normalised spinor dyad
(oA, ιA). The equation ∇(ABκCD) = 0 is equivalent to

oAoBoC∇(ABoC) = 0, (23a)

oAoBιC∇(ABoC) = 0, (23b)

oAιBιC∇(ABoC) = 0, (23c)

ιAιBιC∇(ABoC) = 0. (23d)

These equations imply, in turn, that

ξAB = −2oAoBι
C∇CDo

D + 2o(AιB)o
C∇CDo

D. (24)

The condition Ψ(ABC
FκD)F = 0 implies that there is a scalar field ψ such that ΨABCD =

ψo(AoBoCoD). Using this together with (24) yields

Ψ(ABC
F ξD)F + 3κ(A

F∇B
HΨCD)FH = − 3oAoBoCoDψo

P oQιR∇(PQoR)

+ 3o(AoBoCιD)ψo
P oQoR∇(PQoR). (25)

Finally using the relations (23a)-(23d) we get that the second algebraic condition, equation (11c),
is satisfied on U .

With the aid of the previous two lemmas, one can provide a proof of Theorem 3 in the main
text.
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Proof. Let U1 be the set of all points in S where κABκ
AB 6= 0 and U2 be the set of all points in S

where κABκ̂
AB 6= 0. The scalar functions κABκ

AB : S → C and κABκ̂
AB : S → R are continuous.

Therefore, U1 and U2 are open sets. Now, let V1 and V2 denote, respectively, the interiors of S \U1

and V1 \ U2. On the open set V1 ∩ U2 we have that κABκ
AB = 0 and κABκ̂

AB 6= 0. Hence, by
Lemma 10 the second algebraic condition, equation (11c), is satisfied on V1 ∩ U2. Similarly, by
Lemma 9 the condition (11c) is satisfied on U1. On the open set V2 we have that κAB = 0 and
therefore equation (11c) is trivially satisfied on V2. Using the above sets, the 3-manifold S can
be split as

S = U1 ∪ ∂(S \ U1) ∪ V1,

= U1 ∪ ∂(S \ U1) ∪ (V1 ∩ U2) ∪ ∂(S \ U2) ∪ V2.

As the sets ∂(S\U1) and ∂(S\U2) have measure zero, one has that the second algebraic condition,
equation (11c), is satisfied almost everywhere on S. The left hand side of equation (11c) is
continuous and we can therefore conclude that (11c) is satisfied everywhere on S. Finally, using
Theorem 2 in [2] one obtains the existence of a valence-2 Killing spinor on D+(S).
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