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Neutrino loops from neutrino mixing
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We show how neutrino mixing leads to a softening of the UV behavior of neutrino loops, and can
give rise to anomaly-like, but manifestly UV finite amplitudes. This mechanism may be of special
significance for the coupling of dark matter-like particles to the Standard Model, as we illustrate
with a one-loop example involving the coupling to W-bosons.
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In this letter we explain a mechanism specific to neu-
trino loop diagrams in the minimally extended Stan-
dard Model (SM) with right-chiral neutrinos. This effect
not only improves the UV behavior of loop amplitudes
but, more importantly, can lead to anomaly-like ampli-
tudes and effective couplings in processes involving dark
matter-like particles. Although elementary (and used im-
plicitly in our previous work [1]) this mechanism has not
been spelled out explicitly so far in the existing liter-
ature to the best of our knowledge. It relies crucially
on neutrino mixing, and on the simultaneous presence of
Majorana- and Dirac-like mass and Yukawa terms for the
right-chiral fields. While reminiscent of Pauli-Villars reg-
ularization, it involves only real particles, and no ghosts
appear. Remarkably, this appears to be the only context
where anomaly-like effects can arise from triangle dia-
grams without the linear UV divergences that one com-
monly associates with anomalous amplitudes.

The relevant diagrams typically involve amplitudes
with ‘dark matter’ (axion-like) particles on one side of the
diagram, and ‘visible’ SM particles on the other. Our re-
sults pertain in particular to scenarios where the ‘heavy’
neutrinos are not so heavy after all [1, 2], in contradis-
tinction to the more common see-saw scenarios with Ma-
jorana mass scales of O(101° GeV) or more [3]. For these
we arrive at amplitudes which are not only UV and IR
finite, but also can explain in a perfectly natural manner
the extreme smallness of dark matter couplings to SM
particles, and this without any fine-tuning or the need to
adduce the kind of ‘shadow matter’ invoked by numerous
other currently popular scenarios.

For simplicity, we consider a one family model with
right-chiral neutrinos. Using Weyl spinors to express the
4-component neutrino spinor N' = (N7, Ng) = (va, N¢)
and its conjugate in terms of SL(2,C) spinors, the neu-
trino part of the kinetic Lagrangian reads
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where we have included both Dirac and Majorana mass
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terms (for the two-component formalism see e.g. [4]). In
the SM these are supposed to arise via spontaneous sym-
metry breaking, such that m = Y, (H) and M = Y (¢)
with appropriate Yukawa couplings Y, and Y3, and non-
vanishing vacuum expectation values for the SM Higgs
field H(z) and a further complex (electroweak singlet)
scalar field ¢(x) [9]. We assume m and M real, as this
can be achieved by appropriate phase rotations.

The standard procedure to deal with (2) consists in
diagonalizing the mass matrix, introducing new fields
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A simple calculation gives
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and the mass eigenvalues m’ and M’
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Notice that m’M’ < 0, so m’ and M’ always come with
opposite signs. The propagators then take the standard
diagonal form,
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with analogous expressions for the N’ propagators af-
ter replacing m’ — M’'. With the redefinitions (2) the
SM interaction vertices involving neutrinos are now off-
diagonal, and any Feynman diagram computation will
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involve a sum of contributions for each vertex. We will re-
fer to this description (diagonal propagators, off-diagonal
vertices) as the ‘propagation picture’, because it is more
natural if we ask about the eigenstates of propagation.

As shown in our previous work [5], however, there is
another description (which we refer to as the ‘vertex pic-
ture’) where the vertices remain diagonal, while instead
the propagators are off-diagonal. This picture is better
adapted to the fact that the weak interactions in the SM
involve only left-chiral particles. In that picture all di-
agrams with both heavy and light neutrinos circulating
in the loops are manifestly UV finite, due to the unusual
fall-off properties of the propagator components for large
momenta. More specifically, the propagators are deter-
mined by inverting the kinetic matrix

0 g me® 0
P8 —meth
A 16“[3 0 0 .ms‘ (8)
me® 0 Me*P igh
0 —me®® igpf  —MevB
with the result (in momentum space)
(vavs) = iMm*D(p)eas
(valg) = i(p” — M?> —m®) D(p)p,s
(NaNg) = iMp*D(p)eas 9)
(NaNg) = i(p® —m®) D(p)p,4
(vaNg) = im (p* —m?) D(p)eas
(vaNg) = —imMD(p)p 4
where D(p) := [(p?)? — p*(2m? + M?) + mﬂil. In this

description the finiteness of the neutrino loop diagrams is
a consequence of the fall-off properties of the propagators
(Vovg) and <1/a]\73> which both decay faster than 1/p?.
Alternatively, this effect can be understood in the
‘propagation picture’, where the propagators have the
usual fall-off properties. Namely, the cancellations are
now due to the fact that off-diagonal vertices give rise to
several propagator contributions that must be summed
over for a given diagram, and thus follow from the for-
mula relating the v, N and v/, N’ propagators via (2),
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Cancellation of the leading terms for large |p| in (10) is
obvious, while cancellation in (11) is due to the relation
m’ cos® 0 + M'sin? § = 0, that is, happens thanks to the
opposite signs of m’ and M’, cf. (5). In both cases the
cancellation is thus due to the fact that there are two
propagator components contributing with opposite signs
in the loop, just like in Pauli-Villars regularization.

Let us illustrate this mechanism with a simple ex-
ample. The SM with right-chiral fermions and sponta-
neously broken SU(2),, x U(1)y symmetry in particular

contains the following vertices (cf. for example [6])
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where the Yukawa interaction arises from a Majoron-like
coupling 1Y/ (¢N® N, + c.c.) [7] upon expanding
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Consequently, the field a(z) carries the charge of a spon-
taneously broken global symmetry, and therefore couples
like a Goldstone boson (in [1] this symmetry is lepton
number symmetry). In this model, we now consider the
one-loop aW W™ amplitude, shown in Fig. 1a, which is
a sum of two diagrams with either N or vN propagators
in the loop in the ‘vertex picture’. It reads
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For small axion momentum ¢*, it suffices to retain only
the leading terms in ¢* and m/, so we get
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where we have now substituted the mass eigenvalues m’
and M’ for m and M. Since the integrand decays as
~ |k|~7 for large k? the integral is UV convergent. There
is no IR divergence either, which justifies taking the limit
m’ — 0 in the denominator.

The similarities with the standard anomalous triangle
diagram are evident, but we here arrive at a perfectly
finite expression, without the need of any regularization.
Because
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the result contains both ‘parity-even’ and ‘parity-odd’
contributions, reflecting the fact that parity is maximally
broken in the SM. In particular, we do get a contribution
o £7#N mimicking the anomaly.
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Using Feynman parameters, we can perform the inte-
gral over momenta and get
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For small p? we obtain (aw = g3, /47, ne = me/M)
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(the singularity for 7. = 1 is spurious). For large p?
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where we have written out the trace. The result contains
the manifestly non-gauge invariant pieces corresponding
to the first three terms in brackets, which are expected in
accordance with the fact that the electroweak SU(2),, x
U(1)y symmetry is broken [10]. In addition, there is an
anomaly-like contribution o ae**?9,W;F9,W, . The
full amplitude falls off linearly in p*, whence this ‘form
factor’ will also improve the UV behavior of higher loop
diagrams when inserted as a subdiagram [5].

Because a(z) is a Goldstone boson, one momentum
factor can always be pulled out of the diagram. With
unbroken gauge invariance, this would only leave the
‘anomaly-like’, but in this case manifestly UV finite am-
plitude, whereas with external W or Z bosons there

also appear the manifestly non-gauge invariant contri-
butions displayed above. By contrast, for higher loop
diagrams with external gluons of the type considered in
[5], only the anomaly-like interaction can survive, be-
cause SU(3). remains unbroken, and the Chern-Simons-
like coupling d,a Jhg = a Tr GG is the only possibility
to reconcile gauge invariance with the Goldstone prop-
erty of a(z). Similar comments apply to the coupling of
a(x) to photons, which comes out proportional to aFF.
This explains why in both cases the amplitude acquires
an ‘axion-like’ form.

We conclude with three remarks. First of all, similar
results and conclusions are obtained for the analogous
diagram with external Z-bosons shown in Fig. 1b, where
the triangle loop is ‘purely neutrino’. Secondly, the mech-
anism exhibited here persists in more realistic scenarios
with three families, as is most easily seen in the ‘ver-
tex picture’. In this case, we have correspondingly more
complicated mass matrices,
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where m is now a compler 3-by-3 matrix, and M a real
diagonal 3-by-3 matrix. With the usual see-saw assump-
tion of a large hierarchy between m and M the heavy
neutrino masses are given approximately by the eigenval-
ues of M, while the squared mass eigenvalues of the light
neutrinos follow by diagonalizing the hermitean matrix
M=12mImM~1/2 (for a recent discussion of corrections
to these formulae see e.g. [8]).

Finally, in [1] we have proposed to actually identify
the field a(z) (usually referred to as the ‘Majoron’) with
the axion, in which case the smallness of various axion
couplings can be explained very naturally, and without
the need to invoke any large intermediate mass scales.
This proposal is based on the fact that the effective cou-
plings of a(z) to gluons and photons assume the standard
axionic form. In this Letter, we have provided a direct
argument explaining why this happens. We hope that
the new effect exhibited here will lend more credence to
this proposal, which in our opinion possesses attractive
features in comparison to other axion models.
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