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ABSTRACT 

Methanol is a hydrogen carrier for fuel cells and its chemical transformations are of great current interest. Methanol 
oxidation by vanadium oxides is well studied, hence, serves as a good measure for catalytic activity. Arrays of VO2 
nanowires grown on r-cut sapphire prove to be unique for the in situ catalytic activity tests. Here, we present size 
and morphology dependent activity of Platinum coated single crystalline VO2 nanowires in methanol oxidation 
reactions using Grazing Incidence Small Angle X-ray Scattering (GISAXS). Our findings show an unexpected 
sintering behavior of Pt at temperatures as low as 200 oC. 
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1. INTRODUCTION  
The performance of a heterogeneous catalyst is a highly sensitive, dynamic function of its surface chemistry since 
the shape, size and step edges determine the activity or selectivity.[1, 2] These “active” sites, particularly the 
structures that form the surface topography, are usually at the levels of several nanometers or smaller.[3]  

Surface X-ray diffraction techniques stand out among the tools to monitor surface state crystal phases with 
nanoscale resolution in situ while a catalytic reaction is taking place.[4, 5] They are advantageous over in situ 
transmission electron microscopy (TEM) and low energy electron diffraction (LEED) since the X-ray transmission 
and penetration depth is greater so that they do not require low pressure environments, nor do they require 
conductive samples to deal with sample charging.[6] High resolution TEM (HRTEM) is another contender but is 
hard to apply to reactive gas mixtures since a significant fraction of the e-beam is deflected by the gaseous phase.[7] 
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Environmental TEM (ETEM), on the other hand, has limitations due to the use of cell windows that create extra 
electron scattering and also can only be done in small volumes and at low temperatures.[7]  

High intensity x-ray beams available at Synchrotron facilities (especially Grazing Incidence X-Ray 
Scattering – GISAXS) are highly precise and require a short (0.1 sec) exposure time to obtain data, enabling real 
time monitoring.[8-11] This, furthermore, minimizes the damage that comes from the x-ray beam since the contact 
time between the sample and the beam is limited.[12] GISAXS is also known to detect structural changes with < 1 
nm sensitivity.[13] 

There is an important dynamic synergy between catalyst and its support[14] that can be monitored using 
GISAXS.  Platinum particles on VO2 nanowires offer an ideal system to study catalyst and support changes since 
platinum is a highly active and robust catalyst. Our group has studied platinum clusters extensively. [5, 11, 13, 15] 
Platinum sintering is not observed below 320 oC for nanoclusters of 12 Å [15] and 500 oC for bulk [16] under 
oxidative gas mixtures. Platinum nanoparticles of <5 nm on a VO2 nanowire surface of ~60 nm could be expected to 
present an excellent opportunity to detect subtle catalyst/support changes in the framework while gas catalysis is 
taking place. To the best of our knowledge, there are also few reports on single crystal VO2 nanowires and none of 
those show direct synthesis under ambient conditions, or direct synthesis with a supported catalyst.[17, 18]  

2. EXPERIMENTAL 
2.1 Synthesis of VO2 nanowires.  

In a horizontal electrical furnace equipped with a quartz tube (Figure 1) substrates of SiO2, Al2O3 are placed with a 
ranging distance to the quartz or alumina boats that contain the source powder. A constant flow of ultra pure grade 
5.0 Helium was passed at a rate of 300 sccm. VO2 nanowire arrays observed on the r-cut sapphire substrate in 2 
hours at 650 oC (Figure 2).    

 

 

Figure 1. Electrical furnace with a quartz tube. 
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Figure 2. The average width of the as synthesized VO2 nanowires. 

 

2.2 Platinum deposition 

5 nm platinum and gold films were deposited over the nanowire arrays using electron beam evaporation at a base 
pressure of 2.0 × 10–6 Torr. 

2.3 Methanol oxidation 

1% Methanol (50 sccm) and oxygen (50 sccm) were fed into a custom built reactor (Figure 3) which was located in 
front of the synchrotron beam of the 12-ID of Argonne National Laboratory’s Advanced Photon Source. The 
exhaust gas was analyzed using a Quadrapole MS.  

 

Figure 3. Our custom built reactor was placed in front of the beam source 12-ID at the APS of Argonne National Laboratory. 
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3. RESULTS AND DISCUSSION  
In order to obtain the desired well defined nanowire array, we developed a catalyst free VO2 growth starting from 
VO2 powder under ambient conditions (Figure 4a). Our earlier mechanistic assessments suggest that super cooled 
droplets are responsible for the catalyst free synthesis of these single crystal VO2 nanowires. 

 

 

Figure 4. Scanning electron micrographs from (a) single crystal VO2 nanowire arrays, (b) scheme of the 
intended platinum presence on the nanowires (c) VO2 nanowire arrays with 5 nm platinum that is deposited via 
e-beam and are pictured after gas catalysis reaction, (d) control experiment with 5 nm gold deposits. 

 

For preparation of a model nanowires supported catalyst (Figure 4b), we deposited a 5 nm platinum film 
onto 60 nm wide VO2 nanowires using electron beam evaporation at a base pressure of 2.0 × 10–6 Torr (Figure 4c). 
In a concurrent study, we deposited 5 nm gold on similar VO2 nanowire arrays (Figure 4d). The catalyst activity and 
changes on the nanowires were monitored at the same time by our custom made reactor (Figure 5). The heating 
profile was defined so that we kept the reactive conditions for at least 5 minutes at each temperature. The 
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temperatures were selected as 25, 50, 100, 150, 200, 230, 250 oC; with 230 oC being the optimum temperature for 
methanol oxidation.[19]  

 

Figure 5. Comparison of the evolved and used gases with respect to time in the reactor. 

In a typical run, platinum particles were observed to grow from 8 nm to 13 nm under reactive conditions at 
temperatures above 200 oC whereas shrinking to 5 nm was observed in an inert atmosphere (Figure 6). Figure 6 
shows the intensity vs. qxy collected via an angular line cut (Figure 6 inset) over the temperature range where size 
changes observed. 200 oC was noted when changes were first noticeable.  
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Figure 6. The evidence of size increase extracted from GISAXS scans. Inset: line cut position (straight 
angular line) is shown on one of the GISAXS images. 

There are several pathways that might cause the observed size change: 1) platinum particles are sintering at 
temperatures as low as 200 oC, 2) oxides of platinum are forming, or 3) platinum and VO2 are forming an alloy that 
preserves the integrity of the crystals but allows the expansion of the grain sizes. Carbon cannot be detected by 
GISAXS and thus is not seemingly a viable explanation for the size changes. 

In order to distinguish these possibilities, we first examined EDX scans on the VO2-Pt structures to assess 
possible compositional transformations. Aside from relatively large amounts of oxygen, the presence of carbon was 
significant (Figure 7, Table 1). Little or no carbon was observed on bare surfaces where there was not any VO2, and 
only Pt on the sapphire (α-Al2O3) substrate. One explanation could be that under reactive conditions carbon species 
are likely to associate with platinum particles.[20] 
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Figure 7. Line Scan EDX data for (a) Pt-VO2 and (b) Au-VO2 systems after methanol oxidation reaction. Elements 
given underneath each SEM picture are from that system following the path given on the pictures. 

Table 1. SEM-EDX values 

 Atomic weight percent (%) 

Position Platinum Vanadium Carbon Aluminum  Oxygen 

Single nanowire (60 
nm)  

0.39  1.08  7.16  24.07  67.30  

Single nanowire  0.40  0.74  6.53  24.82  67.51  

Array of nanowires  0.48  1.93  9.47  36.40  51.72  

Surface far from 
nanowires  

0.43  -  -  39.73  59.84  
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The presence of oxygen in the EDX scan, raised doubts about the existence of VO2 after the gas catalysis 
reaction since VO2 tends to oxidize in oxidative environments.[19] In several thorough scans, however, Raman 
spectroscopy confirmed the retention of VO2 structures (Figure 8). 

 

Figure 8. Raman data. VO2 remains unchanged after reaction 

Clearly, there is much that remains to be studied on this Pt-VO2 nanoparticle-nanowire assembly. For 
example, one can get even greater crystal structure definition with high resolution TEM.  An additional number of 
control reactions might also better resolve the nature of the changes observed. But it is evident that the promises of 
the approach used to study the model system are significant. This study showed us that coupling conventional 
spectroscopic techniques such as STXM and ETEM with in situ GISAXS monitoring on well defined nanostructured 
systems has the potential to answer outstanding questions of heterogeneous catalysis. These answers may, then, lead 
the way to the ultimate goal of catalysis by design.  
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