English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Protein-protein and protein-function relationships in Arabidopsis photosystem I: cluster analysis of PSI polypeptide levels and photosynthetic parameters in PSI mutants

MPS-Authors
/persons/resource/persons40135

Pesaresi,  P.
Dept. of Plant Breeding and Yield Physiology (Francesco Salamini), MPI for Plant Breeding Research, Max Planck Society;

/persons/resource/persons39954

Varotto,  C.
Dept. of Plant Breeding and Yield Physiology (Francesco Salamini), MPI for Plant Breeding Research, Max Planck Society;
Dept. of Molecular Plant Genetics (Heinz Saedler), MPI for Plant Breeding Research, Max Planck Society;

/persons/resource/persons40156

Richly,  E.
Dept. of Plant Breeding and Yield Physiology (Francesco Salamini), MPI for Plant Breeding Research, Max Planck Society;

/persons/resource/persons40180

Salamini,  F.
Dept. of Plant Breeding and Yield Physiology (Francesco Salamini), MPI for Plant Breeding Research, Max Planck Society;

/persons/resource/persons40073

Leister,  D.
Dept. of Plant Breeding and Yield Physiology (Francesco Salamini), MPI for Plant Breeding Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pesaresi, P., Varotto, C., Richly, E., Lessnick, A., Salamini, F., & Leister, D. (2003). Protein-protein and protein-function relationships in Arabidopsis photosystem I: cluster analysis of PSI polypeptide levels and photosynthetic parameters in PSI mutants. Journal of Plant Physiology, 160(1), 17-22.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-3D10-4
Abstract
In flowering plants, photosystem I (PSI) mediates electron transport across the thylakoid membrane and contains at least 14 proteins. The availability of co-suppression and/or mutant lines deficient for individual PSI polypeptides in Arabidopsis thaliana allows one to assign functions to PSI subunits. We have performed cluster analysis on an extensive set of data on PSI polypeptide levels in ten different PSI mutants. This type of analysis serves to group proteins that exhibit similar changes in amount in different genotypes, and also identifies genotypes which show similar PSI compositions. The interdependence of levels of PSI-C, -D and -E, of -H and -L, and of Lhca2 and 3, which was previously proposed based on the study of single genotypes or on cross-linking experiments, was confirmed by our analyses. In addition, the levels of the lumenal subunits F and N are found to be interdependent. The incorporation of photosynthetic parameters into the cluster analysis revealed that the level of photosynthetic state transitions correlates with the abundance of PSI-H in all 8 genotypes tested, supporting the hypothesis that PSI-H serves as a docking site for LHCII during state transitions.