MAPPED DS/T-DNA LAUNCH PADS FOR FUNCTIONAL GENOMICS IN BARLEY

Tiehan Zhao1, Margaret Palotta2, Peter Langridge2, Manoj Prasad3, Andreas Graner3, Paul Schulze-Lefert1,* and Thomas Koprek1,*
1Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany,
2Australian Centre for Plant Functional Genomics, Waite Campus, University of Adelaide, South Australia 5064, Australia, and
3Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany

Received 11 January 2006; revised 25 April 2006; accepted 22 May 2006.
*For correspondence (fax +49 221 5062 353; e-mail schleif@mpiz-koeln.mpg.de and koprek@mpiz-koeln.mpg.de).

Summary
A system for targeted gene tagging and local saturation mutagenesis based on maize transposable elements (Ac/Ds) was developed in barley (Hordeum vulgare L.). We generated large numbers of transgenic barley lines carrying a single copy of the non-autonomous maize Ds element at defined positions in the genome. Independent Ds lines were either generated by activating Ds elements in existing single-copy lines after crossing with AcTPase-expressing plants or by Agrobacterium-mediated transformation. Genomic DNA flanking Ds and T-DNA insertion sites from over 200 independent lines was isolated and sequenced, and was used for a sequence based mapping strategy in a barley reference population. More than 100 independent Ds insertion sites were mapped and can be used as launch pads for future targeted tagging of genes in the vicinity of the insertion sites. Sequence analysis of Ds and T-DNA flanking regions revealed a sevenfold preference of both mutagens for insertion into non-redundant, gene-containing regions of the barley genome. However, whilst transposed Ds elements preferentially inserted adjacent to regions with a high number of predicted and experimentally validated matrix attachment regions (nuclear MARs), this was not the case for T-DNA integration sites. These findings and an observed high transposition frequency from mapped launch pads demonstrate the future potential of gene tagging for functional genomics and gene discovery in barley.

Keywords: mapped Ds/T-DNA insertions, barley, functional genomics, transposon tagging.

Introduction
Barley is an agronomically important crop and represents a reference species for the Triticeae. Numerous advantages make barley an ideal candidate for genetic studies. Barley is a true diploid with seven cytologically distinct chromosomes. As such, recessive mutations can be more easily identified in barley than in its polyploid relatives, wheat and oats (Scholtz et al., 2001). Barley chromosomes are homologous with those of wheat (Moore et al., 1995), which allows barley to serve as a reference for the polyploid members of the Triticeae. Although class II transposable elements of the hAT transposon superfamily have recently been discovered in barley (Muehlbauer et al., 2006), and there are large numbers of retrotransposons (Kalander et al., 2000; Waugh et al., 1997) comprising up to 85% of the barley genome (Bennetzen, 1998; Ramakrishna et al., 2002), barley still appears ideal for implementing a gene-tagging system in the Triticeae to accelerate gene identification (‘forward genetics’).

The barley research community has amassed a large array of genomics resources (for review see Hayes et al., 2003), including genetic stocks, linkage maps, quantitative trait loci (QTL) databases, expressed sequence tags (ESTs), single nucleotide polymorphisms (Kota et al., 2003), the Affymetrix barley microarray (Wanamaker and Close, 2003: HarvEST: Triticeae. Release 0.99, http://138.23.191.152:blast/blast.html) and a large-insert bacterial artificial chromosome (BAC) library (Yu et al., 2000). While barley genome sequencing has been precluded to date because of its
large genome size (5300 Mbp; Arumuganathan and Earle, 1991; Bennett and Smith, 1976), the development of methods such as methylation filtration (Rabinowicz et al., 1999) led to a 20-fold gene enrichment with a gene space of about 250 Mbp (R. Martienssen, pers. comm.), permitting sequencing of the gene-containing regions. Further development of the existing gene-tagging system in barley (Cooper et al., 2004) would complement the current genomics tools in barley and greatly facilitate functional gene analysis. Maize Activator (Ac) and Dissociation (Ds) transposable elements have been utilized as mutagens in many heterologous systems. Two-element (Ac/Ds) systems have been developed in order to better control the transposition of the transposon. In a two-element system, the non-autonomous Ds element may be activated by crossing with a stabilized autonomous element containing the transposase gene (AcTPase). After its transposition, the Ds element may be isolated and stabilized by segregation of the elements in the following generation (Koprek et al., 2000). The ability of Ds to transpose to linked sites (Parinov et al., 1999; Ito et al., 1999) allows for targeted mutagenesis of genetically linked loci if the position of a Ds element is known. Ds transpositions that land in genes of interest can be utilized directly, facilitating the functional analysis and cloning of those genes. Mapped Ds elements are expected to be a particularly useful resource in barley, as previous mutagenesis and mapping experiments revealed map positions of several hundred loci controlling a diverse range of traits including agronomically useful characteristics (http://www.untamo.net/cgi-bin/ace/searches/basic).

Initial steps towards gene tagging in barley were the establishment of efficient transformation systems in different barley cultivars (Jähne et al., 1994; Wan and Lemaux, 1994), the demonstration of Ds excision in barley tissue in transient experiments (McElroy et al., 1997), and the stable introduction of Ac and Ds into barley (Koprek et al., 2000; Scholtz et al., 2001). Koprek et al. (2000, 2001) have provided evidence of high transposition frequencies of Ds elements and characterized the transpositional behavior of Ds in barley. Similarly, Scholtz et al. (2001) also demonstrated successful transposition of Ac in barley, aiming at the development of a one-element system.

The establishment of Agrobacterium-mediated barley transformation systems (Tingay et al., 1997; Wang et al., 1998) resulted in very high transformation frequencies with single-copy transgenes. Advanced transformation methods are critical for the generation of large numbers of independent T-DNA lines serving as launch sites for Ds elements in targeted tagging approaches. The frequently observed tendency of T-DNA to insert into gene-containing regions (Barakat et al., 2000; Sha et al., 2004; An et al., 2003; Pan et al., 2005; Szabados et al., 2002) adds the extra bonus of having the launch sites in positions that promise successful gene tagging.

Our long-term objective is to develop and make available to the research community a comprehensive set of Ds insertion lines in barley containing a single Ds element assigned to a general barley linkage map for targeted gene tagging. A total of 101 insertion sites have been mapped and characterized. In order to assess the prospects of our tagging system for functional genomics in barley and to reveal possible shortcomings, we studied more than 200 Ds and T-DNA insertion sites. Whilst both Ds and T-DNA mutagens showed a remarkable preference for integration in genic regions of the barley genome, DNA pattern analysis of flanking sequences revealed seemingly differential integration site selection. This was experimentally supported by in vitro binding assays of DNA fragments from Ds integration sites to the nuclear matrix. Our data demonstrate that the Ds launch pads provide a solid foundation for tagging approaches in the reference species barley.

Results

Generation of a collection of barley lines containing Ds elements and T-DNA insertions

Barley lines containing transposed Ds elements were generated from originally four independent single-copy Ds plants. Two of these (Ds lines A and B) carried the Ds element in its original integration site after transformation, while two more lines (Ds lines C and D) carried a single copy of Ds in a new integration site after one initial transposition. In all lines, transposition of Ds was activated by crossing the starter lines DsA-DsD with AcTPase-expressing plants (Koprek et al., 2000). Resulting F2 progeny were analyzed for transposition events in which the new integration site had segregated away from the old Ds insertion site and the source of AcTPase. In total, 104 of these lines were identified and used for further analysis.

Barley T-DNA insertion lines were generated using a highly efficient Agrobacterium-mediated transformation protocol (Wang et al., 2001). We constructed two T-DNA vectors based on plasmid pWBBvac8 (Tingay et al., 1997) that contained two different Ds insertion cassettes (designated pWBB-Ds-Ubi-bar-Ds and pWBB-Ubi-Ds-bar; Figure S1). In total, 171 independent lines were generated with plasmid pWBB-Ds-Ubi-bar-Ds and 149 lines with plasmid pWBB-Ubi-Ds-bar. Of these, 81 and 50 were found to contain the respective plasmids as a single-copy insert based on genomic DNA blot analysis (data not shown).

Activation of Ds elements from T-DNA launch pads by crossing with plants expressing the Ac transposase gene resulted in high Ds excision frequencies of 49.2% in lines carrying the plasmid pWBB-Ds-Ubi-Bar-Ds (based on the analysis of 18 independent T-DNA integration sites; the activity of each Ds was tested in at least 17 F2 progeny). In F2 lines carrying plasmid pWBB-Ubi-Ds-Bar, excision frequen-
cies were even higher (67.7%; five independent integration sites examined) and exceeded on average the excision frequencies observed in the different Ds starter lines (20.4%; Koprek et al., 2000). In all lines, at least 86% of the excised Ds elements re-inserted in the barley genome as confirmed by Southern blot analysis. Additional re-insertions could be obscured if the Ds element had transposed to an unlinked site that had segregated away from the excision site in the F_2 generation, making it impossible to detect excision and re-insertion in the same plant.

Sequence analysis of Ds and T-DNA flanking regions

We adopted an effective inverse PCR (ICPR) method to retrieve Ds flanking regions of 101 single-copy Ds-containing plants for subsequent DNA sequence analysis. In total, we obtained from 97 plants genomic sequences between 300 and 850 bp in length (average length 550 bp), which were used for subsequent computational analysis. Of these sequences, 78 were isolated from the Ds 3’ end and 19 from the Ds 5’ end. Isolated fragments of four additional Ds-containing plants were less than 100 bp in length and were therefore omitted from further analysis. Interestingly, BLASTN search results showed that 33% of the Ds insertions had a significant sequence homology to monocot ESTs, with an E value threshold of <10^{-5} (Table S1).

We used a modified adaptor-ligation PCR (ALPCR) method to isolate T-DNA flanking sequences from 132 T-DNA lines. This enabled us to isolate longer genomic fragments with an average size of 830 bp (ranging between 200 bp and 2.0 kb). We recovered T-DNA flanking sequences from both the left (LB) and the right border (RB) of the T-DNA from 21 insertion lines, whilst from the other lines, only LB (66 lines) or RB flanking sequences (35 lines) were isolated. BLASTN searches using the same e value threshold of <10^{-5} as for the Ds elements showed that 40% of the T-DNA insertion sites had significant homology to monocot EST database entries. Lines from which LB and RB sequence information was available showed consistent BLASTN search results for both flanking regions in six cases, while the other lines had no homology to cereal ESTs for one or both flanking regions. Inconsistencies between LB and RB were not discovered in cases where BLASTN hits were found on both sites of the insert. All sequences have been deposited in Genbank and the accession numbers are given in Table S1.

Both Ds and T-DNA preferentially integrate into genomic regions of low redundancy

The results obtained by sequence analyses of integration sites and by DNA hybridization experiments using isolated fragments from these sites demonstrated a clear preference of the Ds element and T-DNA for integration in genomic regions of low redundancy (Figure 1a). Of all Ds elements analyzed, 41% were found to be re-inserted in single-copy genomic regions after transposition, whereas 31% were re-inserted in regions of low redundancy of less than five copies (estimated value based on hybridization results). Only 28% of the transposed Ds elements had re-inserted in regions of moderate to high repetitiveness based on BLASTN search results, revealing that these elements had either re-inserted in a gene of a large gene family (e.g. DsA5 in a receptor-like kinase gene) or in retrotransposons (DsA24 in a BARE-1 retrotransposon). Although the latter mobile elements comprise more than 70% of the barley genome (Vicent et al., 2001), these served as integration sites in only 23% of the Ds lines and 29% of the T-DNA lines (Figure 1b). Insertions in other repetitive elements were rare (2% and 4%, respectively; Figure 1b). Similar overall results were found for the primary T-DNA insertion sites (36% of the insertion sites were found in single-copy regions, 27% in areas of low redundancy, and 36% in repetitive regions; Figure 1a). We conclude that both Ds and T-DNA preferentially insert into barley genomic regions of low redundancy.

In-depth sequence analysis of genomic DNA directly adjacent to the Ds and T-DNA inserts showed that 33% of the transposed Ds elements and 41% of the T-DNA had inserted in coding regions (Figure 1b). Such unambiguous assignments to coding regions failed for a relatively high percentage of sequenced integration sites (23% of the Ds insertions and 20% of the T-DNA insertions, excluding insertions in retrotransposons). This could be a consequence of the limited genomic sequence information that is available for *H. vulgare*, which complicates the identification of insertions in non-coding 5’ and 3’ gene regulatory regions as well as in introns. In 24 lines, genomic sequences immediately adjacent to the insertion site did not show recognizable relatedness to expressed genes but significant homology to ESTs was detected further upstream or downstream. In those cases, we inferred that the insertion sites were within an intron or presumptive 5’ or 3’ regulatory region of a gene. The low number of such events restricts conclusive statements about preferred insertions in those regulatory regions.

Analysis of the DNA structure around insertion sites

In order to detect DNA motifs or other structural characteristics that might facilitate Ds and T-DNA insertion, we conducted a computational analysis of the flanking genomic regions. Genomic regions adjacent to 83 Ds integration sites have been further studied. A large proportion (60%) of the flanking sequences contained an unusually high AT content, ranging between 65% and 70% compared to an overall AT content in barley of about 54–57% (Melzer and Kleinhofs, 1987). The disproportionate share of AT content in Ds flanking regions appeared to be mainly because of distinct AT-rich motifs such as A-boxes, T-boxes and DNA unwinding motifs. These were found in 33 Ds flanking
sequences. Such motifs are frequently found in nuclear matrix attachment regions (MARs), and prompted us to analyze the isolated sequences for other typical matrix binding motifs using the software program MAR-WIZ (Singh et al., 1997). Interestingly, 25 out of 33 sequences contained multiple copies of up to six different typical MAR motifs. In addition to the above mentioned motifs, we found Ori-patterns, topoisomerase II binding sites, and kinked and curved DNA structures. The frequency of some of these motifs (kinked DNA, curved DNA and AT-richness patterns) was significantly higher in the Ds flanking sequences than in 2.23 Mb available contiguous barley genomic DNA derived from BAC clones (Figure 2). DNA motifs of curved and kinked DNA structures in particular were over-represented in the Ds flanking sequences. Because of the high number of these motifs, the MAR-WIZ program predicted high matrix binding strengths between 0.70 and 0.96 for 25 Ds flanking regions (scale between 0.00 and 1.00; default threshold level of 0.60).

Similar analyses were performed with T-DNA flanking sequences derived from 122 integration sites. Unlike Ds flanking regions, T-DNA flanking sequences contained in general neither unusually high numbers of MAR or other motifs, and the predicted MAR binding strength was only above the threshold level of 0.60 for 12 sequences. This is not significantly different from the frequency of MAR motifs in available contiguous genomic barley DNA sequences. However, the number of predicted kinked DNA structures was higher in T-DNA flanking sequences than in barley BAC DNA (Figure 2). In order to detect less evident differences between the two mutagens and to obtain a reference value, the number of motifs has been calculated per 500 base pairs (Figure 2b). Apart from these DNA motif differences at T-DNA and Ds integration sites, the average AT content of T-DNA flanking regions (58%) was lower than the AT content in Ds flanking regions and more similar to the average AT content in the barley genome.

In vitro binding assay to corroborate preferential Ds insertion in regions flanking MAR motif clusters

In vitro matrix binding studies were carried out to test the significance of computationally predicted MARs using is-
lated nuclear matrixes derived from barley leaf tissue (Nomura et al., 1997). In total, 36 Ds flanking sequences were used for the in vitro binding studies, including 25 sequences that contained five or more different MAR motifs. Three sequences had a nuclear matrix binding affinity between 0.10 and 0.60 and served as negative controls. The other sequences contained MAR motifs of only one or two out of eight different motifs, which were evenly distributed across the isolated fragments and had a predicted MAR binding strength of just above 0.60. Typical results for the nuclear matrix binding assays are shown in Figure 3. For 22 Ds flanking sequences, significant binding to the nuclear matrix preparations was detected (Table 1). Fragments without detectable binding affinity had a predicted binding strength below or just above the 0.60 threshold. Only three sequences with relatively high predicted matrix binding affinity (0.74, 0.76 and 0.83) did not bind to the matrix. These fragments contain typical MAR motifs that are evenly distributed over the whole sequence of the fragment, whereas validated matrix binding fragments often contain multiple MAR motifs clustered within a short stretch of DNA. Collectively, the experimentally determined ‘binding activity’ of

Figure 2. Frequency of DNA motifs in Ds and T-DNA flanking regions.
(a) Frequency of motifs in Ds and T-DNA flanking regions compared with their incidence in genomic barley DNA (the latter has been set as 100%). Genomic sequence information is derived from 2.23 Mb BAC sequences.
(b) Incidence of sequence motifs within 500 bp of flanking DNA. Light-gray columns represent Ds insertions, dark-gray columns represent T-DNA insertions, and genomic sequences are shown as black columns.

Figure 3. Nuclear matrix binding assay for predicted matrix attachment regions flanking Ds insertions.
Lanes marked ‘T’ represent aliquots of the total radiolabeled probe used in the assay. Lanes marked ‘P’ represent aliquots of the probe found in the pellet, i.e. bound to the nuclear matrix. Lanes marked ‘S’ represent aliquots of the probe found in the supernatant, i.e. not bound to the nuclear matrix. A1, A6, A11, B11, B6, C3 and C8 designate DNA fragments flanking Ds insertions in the respective plant lines.
Table 1: Predicted and measured matrix attachment regions binding strength of Ds flanking genomic regions

<table>
<thead>
<tr>
<th>Line</th>
<th>Predicted binding strength</th>
<th>Measured binding strengthb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>A2</td>
<td>0.86</td>
<td>69.5</td>
</tr>
<tr>
<td>A4</td>
<td>0.87</td>
<td>80.3</td>
</tr>
<tr>
<td>A5</td>
<td>0.89</td>
<td>84.7</td>
</tr>
<tr>
<td>A6</td>
<td>0.96</td>
<td>87.5</td>
</tr>
<tr>
<td>A7</td>
<td>0.84</td>
<td>69.9</td>
</tr>
<tr>
<td>A9</td>
<td>0.74</td>
<td>–</td>
</tr>
<tr>
<td>A10</td>
<td>0.78</td>
<td>33.0</td>
</tr>
<tr>
<td>A11</td>
<td>0.81</td>
<td>45.1</td>
</tr>
<tr>
<td>A12</td>
<td>0.84</td>
<td>66.3</td>
</tr>
<tr>
<td>A13</td>
<td>0.91</td>
<td>88.5</td>
</tr>
<tr>
<td>A15</td>
<td>0.82</td>
<td>91.8</td>
</tr>
<tr>
<td>A17</td>
<td>0.83</td>
<td>–</td>
</tr>
<tr>
<td>A20</td>
<td>0.86</td>
<td>–</td>
</tr>
<tr>
<td>A21</td>
<td>0.70</td>
<td>55.9</td>
</tr>
<tr>
<td>B1</td>
<td>0.72</td>
<td>18.1</td>
</tr>
<tr>
<td>B2</td>
<td>0.84</td>
<td>70.9</td>
</tr>
<tr>
<td>B3</td>
<td>0.82</td>
<td>60.0</td>
</tr>
<tr>
<td>B4</td>
<td>0.84</td>
<td>83.3</td>
</tr>
<tr>
<td>B5</td>
<td>0.86</td>
<td>54.5</td>
</tr>
<tr>
<td>B8</td>
<td>0.61</td>
<td>16.9</td>
</tr>
<tr>
<td>B9</td>
<td>0.78</td>
<td>59.2</td>
</tr>
<tr>
<td>B11</td>
<td>0.94</td>
<td>95.1</td>
</tr>
<tr>
<td>B12</td>
<td>0.64</td>
<td>32.2</td>
</tr>
<tr>
<td>B15</td>
<td>0.76</td>
<td>45.3</td>
</tr>
<tr>
<td>C3</td>
<td>0.94</td>
<td>89.0</td>
</tr>
<tr>
<td>C4</td>
<td>0.86</td>
<td>86.5</td>
</tr>
<tr>
<td>C6</td>
<td>0.66</td>
<td>–</td>
</tr>
<tr>
<td>C8</td>
<td>0.73</td>
<td>8.8</td>
</tr>
<tr>
<td>D3</td>
<td>0.78</td>
<td>31.5</td>
</tr>
<tr>
<td>D5</td>
<td>0.84</td>
<td>84.2</td>
</tr>
<tr>
<td>D8</td>
<td>0.62</td>
<td>–</td>
</tr>
<tr>
<td>F2</td>
<td>0.68</td>
<td>–</td>
</tr>
<tr>
<td>F6</td>
<td>0.76</td>
<td>–</td>
</tr>
</tbody>
</table>

aBinding strength predicted by MAR-WIZ program.
bIn vitro binding strength as a percentage of total labeled input DNA measured using IMAGEQUANT software.

Ds flanking regions to barley nuclear matrix preparations corresponds well with computationally predicted motifs for MARs.

Nucleotide composition at the insertion sites

To reveal additional characteristic features at the insertion sites based on the nucleotide composition, we plotted the nucleotide frequency versus the position of the nucleotide relative to the insertion site (Figure 4). The increased AT content and specific MAR motifs near Ds insertions sites did not appear to be prominent at specific positions next to the insertion sites, and the overall AT content was approximately the same in all positions. Likewise, the nucleotide composition next to the T-DNA LB and RB seems to lack specific characteristics. However, the two nucleotide positions immediately adjacent to the T-DNA RB are clearly biased. In the first position next to the T-DNA RB sequence, 47% of the sequences contain an adenine residue; the average A content over 100 bp upstream and 100 bp downstream is 29%. Likewise, in 40% of all sequences, a guanidine residue was found in the second position flanking the RB (average G content is 21%). The high number of A and G residues in these positions may result from the mechanism of T-DNA insertion or may indicate a preferred target site (Brunaud et al., 2002).

Mapping of Ds and T-DNA insertion sites

Using two different mapping procedures, 225 Ds and T-DNA flanking sequences (98 from Ds lines, 122 from T-DNA lines and five transposed Ds elements derived from T-DNA lines) have been analyzed for polymorphisms in different mapping populations. Most of the Ds elements were genetically mapped by RFLP analysis using isolated flanking regions as hybridization probes for the detection of polymorphisms in seven different barley mapping populations. Flanking regions were isolated from either the 3’ or 5’ end of each Ds element. Sixty-five Ds insertions sites were analyzed, of which 27 were derived from starter line DsA, 29 from starter line DsB, 21 from DsC and 17 from DsD. In addition, the four initial single-copy start positions were mapped. Thirty of these lines produced single hybridization bands, and four fragments produced two or three analyzable bands (DsA, DsD, DsB9, DsB10) that mapped to the same locus. Three flanking regions produced two bands that mapped to two different positions.

Because the linkage map positions were determined in different mapping populations, we integrated these based on the presence of common markers in the general barley bin map (Kleinhofs and Graner, 2001) (Figure 5a,b). The insertion site of starter line DsA was found on chromosome 6H, and five transposed Ds elements derived from this line mapped to the same position or were very close within the same bin. However, 11 other transposition events derived from the same line mapped to other chromosomes. Transposed Ds elements derived from the starter line DsB had also re-inserted to linked and unlinked sites (4 and 10, respectively; Figure 5a). All but one re-insertion site of transposed Ds elements derived from starter lines DsC and DsD were unlinked to the original insertion sites. This might indicate starter line-specific quantitative differences in transposing to linked and unlinked sites.

For genetic mapping of T-DNA insertions and some of the transposed Ds elements, we adopted a restriction digest-based assay of PCR products (CAPS assay). PCR amplicons were separated on high-resolution SSCP gels to detect even the smallest differences in fragment lengths. Polymor-
Figure 4. Relative base composition of the H. vulgare DNA at Ds and T-DNA insertion sites.
(a) Nucleotide composition of the 5' and 3' sides of Ds insertion sites.
(b) Nucleotide composition of left border (LB) and the right border (RB) T-DNA flanking sequences.
(c) High-resolution nucleotide composition 10 bp upstream and downstream of the T-DNA insertion site.
Phisms were detected in 54 T-DNA and 29 Ds flanking regions, of which in total 46 T-DNA and 17 Ds insertion sites could be mapped unambiguously in the Oregon Wolfe barley (OWB) mapping population and were integrated into the general barley bin map (Figure 5a,b). Other fragments were either present on multiple barley chromosomes or were homomorphic.

Discussion

Generation of single-copy Ds lines

We have described here two complementary approaches to generate single-copy Ds-containing barley plants. In the first approach, Ds elements in existing single-copy plants were
reactivated by crossing with AcTPase-expressing plants. Resulting F₂ plants carrying a transposed Ds element were then used for further analysis. This approach allows the generation of numerous independent Ds lines that can serve as starter lines. Our mapping results show that the Ds reinsertion sites are well distributed on all seven barley chromosomes and are mostly unlinked to the original integration site. This seeming discrepancy from earlier findings in other species (Chen et al., 1987; Chomet et al., 1987; Parinov et al., 1999; Ito et al., 1999) is probably because of the relatively small number of transposition events analyzed from only four starter lines. In addition, in two out of the four Ds lines examined (DsA and DsB), the transposition frequencies to linked sites were significantly higher than expected from a random distribution (31% and 29%, respectively). In addition, our selection process of transposition events by Southern blot analysis may have eliminated very close transposition events (within a few kb).

The introduction of T-DNA carrying Ds elements via Agrobacterium-mediated transformation has the advantage of mostly random integration in all chromosomes. Even though there are preferences for integration in specific chromosomal areas, it appears to be more likely that an even distribution of T-DNA insertions as launch pads for further transposition will be obtained than with Ds elements generated from just a few original starter lines. In this study, we have shown that both approaches have the inherent advantage that Ds elements as well as T-DNA insert preferentially in gene-containing regions (An et al., 2003; Barakat et al., 2000; Chen et al., 1987; Chomet et al., 1987; Enoki et al., 1999; Greco et al., 2001; Jeon et al., 2000; Kolesnik et al., 2004; Sha et al., 2004). Considering the expected bias of Ds for transpositions to linked sites, these locations promise to be efficient starting points for gene tagging after activation of Ds. Furthermore, gene-containing areas are in general not permanently methylated, and reactivation from these positions is therefore more efficient than from launch pads generated by direct gene transfer methods, which frequently result in integrations in methylated regions (Kohli et al., 1999; reviewed in Greco et al., 2003; Martienssen and Colot, 2001). These considerations are corroborated by results obtained from our activation experiments for Ds elements from T-DNA launch pads, showing high transposition frequencies (average of 51.8% from T-DNA launch pads versus 20.4% from Ds starter lines generated by direct DNA transfer). The observed, and in some cases significant, differences in Ds excision frequencies in different Ds starter lines may be a consequence of different chromatin structures as well as differences in the methylation status at the integration site (reviewed in Okamoto and Hirochika, 2001). Interestingly, Ds transposition frequencies reported from T-DNA launch pads in rice and in this study in barley are similar (50–74% and 51.6%, respectively; Chin et al., 1999; Greco et al., 2001; Kolesnik et al., 2004; Nakagawa et al., 2000), indicating that genome complexity does not affect Ds activity as long as the start sites are located in genic regions. The observed high transposition frequencies in Ds lines and especially of T-DNA lines are a prerequisite for a targeted gene-tagging strategy. Therefore, the insertion lines presented here are a potentially powerful tool for functional genomics in barley.

Preferential insertion of Ds and T-DNA into single-copy regions of the barley genome

For both Ds and T-DNA, we observed a striking preference for integration in single-copy genomic regions or regions of low redundancy. Considering the abundance of repetitive DNA, which accounts for about 90% of the barley genome (Schulman and Kalander, 2005) and consists mostly of transposable elements of various classes (Schulman and Kalander, 2005), the observed insertions of either mutagen in non-repetitive regions are approximately sevenfold overrepresented (Figure 1a). This coincides with a preferential integration into gene-containing regions (accounting for about 10% of the barley genome; Sandhu and Gill, 2002). The successful application of the methylation filtration method (Rabinowicz et al., 1999) in maize (Palmer et al., 2003) and sorghum (Bedell et al., 2005) enabled the enrichment of gene-containing sequences with a gene space of only 425 Mbp in maize and 245 Mbp in sorghum. In barley, methylation filtration resulted in a 20-fold gene enrichment, and suggests a gene space of only about 250 Mbp (R. Martienssen, pers. comm.) compared with the whole genome of about 5300 Mbp (i.e. 4.7% of the genome). Taking this into account, the observed percentage of Ds and T-DNA integrations into gene-containing regions is even more remarkable, thus indicating the feasibility of saturation mutagenesis in plants with large genomes such as barley.

Why do both mutagens preferentially insert in gene-rich regions? We cannot exclude the possibility that the selection process after T-DNA transformation might favor integration events into open chromatin structures that are non-methylated and therefore allow for stable expression of the selectable marker gene. Consequently, transgenic plants carrying the T-DNA insert in or near genic regions will be predominantly recovered. This would explain the high percentage of T-DNA insertions in coding regions. However, this cannot explain the observed biased insertion of transposed Ds elements into genic regions, because these were mostly re-insertion events in progeny of starter lines without marker selection. This rather suggests that integration site selectivity is an inherent Ds feature or a consequence of the chromatin structure of barley gene islands (e.g. open and non-methylated chromatin structure). A bias of insertion of Ds and T-DNA into hypomethylated and gene-rich regions has indeed been observed in various plants species including rice, barley and Arabidopsis, and suggests accessibility.
of DNA as one determinant of the integration process (Barakat et al., 2000; Greco et al., 2001; Jeon et al., 2000; Koprek et al., 2001; Nakagawa et al., 2000; Parinov et al., 1999; Yamazaki et al., 2001; Sha et al., 2004; An et al., 2003; Greco et al., 2003; Kuromori et al., 2004; Pan et al., 2005; Raina et al., 2002; Szabados et al., 2002).

Despite the fact that both Ds and T-DNA mainly integrate into gene-rich regions, our analysis of flanking genomic sequences suggests mutagen-specific preferences to insert into specific regions of genes (Figures 1b and 2). The observed higher frequency of Ds element re-insertion adjacent to a high density of predicted MAR motifs might be linked to the finding that this mutagen disrupted coding regions with lower frequency in comparison to T-DNA (33% and 40%, respectively; 225 integration sites analyzed), whilst integrations close to coding regions were found twice as often (19% and 8%, respectively). Thus, the effectiveness of Ds elements in producing null mutations of single genes in barley might be somewhat lower than using T-DNA integrations. Considering the high efficiency of Agrobacterium-mediated transformation of barley and the high frequency of T-DNA insertion in coding regions, the establishment of a system for T-DNA-based saturation mutagenesis in barley appears to be feasible and may serve as an alternative to targeted gene tagging. Our findings contrast with those reported for Arabidopsis. While in this unusually small plant genome Ds elements insert more often into coding regions (Pan et al., 2005), T-DNA was preferentially found to insert in the 5′- and 3′-regulatory regions of genes (Pan et al., 2005; Szabados et al., 2002). Similar differences in insertion site preference have also been observed in rice for T-DNA and the retrotransposon Tos17 (Sallaud et al., 2004). In fact, T-DNA insertions in regulatory regions are two to three times more frequent than those in coding regions (Szabados et al., 2002). In contrast, analysis of the insertion positions within genes demonstrated that Ds transposed equally into exons and introns, and there is no preference toward the 5′ end of the gene as described in Arabidopsis (Parinov et al., 1999). A similar Ds distribution has been reported in rice (Kuromori et al., 2004). Moreover, in maize, the majority of Ac insertions occurred at the middle of the gene (75% in exons), and no bias was observed near the ATG start codon (Cowperthwaite et al., 2002). Whether this seemingly unusual behavior of Ds in barley is a consequence of its genome composition (e.g. frequency and density of MARs, relative abundance and classes of retrotransposons) remains to be validated once more contiguous barley genomic sequences can be directly assigned to Ds integration sites.

Insertion site composition

In-depth computational analysis of Ds and T-DNA flanking regions failed to unveil an insertion site preference conforming to specific consensus sequences as has been described for some transposable elements (reviewed by Craig, 1997). Nonetheless, we observed in many of the Ds flanking sequences an unusually high AT content as a consequence of repeatedly occurring AT-rich motifs such as A-boxes, T-boxes and AT-DNA unwinding motifs. AT-rich Ds flanking regions had on average an AT content of 67.3%, while the AT content in T-DNA flanking regions (58.1%) was similar to the overall AT content of the barley genome (54–57%, Melzer and Kleinholfs, 1987). Because these AT-rich motifs are frequently found in MARs, and certain transposable elements show a pronounced tendency for insertion near MARs (Bruni et al., 1995; Romig et al., 1994; Stephanova et al., 1993; Tikhonov et al., 2001), we analyzed the AT-rich Ds flanking regions for other typical MAR motifs using the MAR-WIZ algorithm that has been developed for the prediction of MAR binding activity of DNA sequences in silico (Singh et al., 1997). We identified other MAR motifs in Ds flanking sequences, such as kinked and curved DNA structures, topoisomerase II binding sites and Ori patterns, and these occurred in the AT-rich Ds flanking regions more often than in T-DNA flanking regions and in contiguous barley genomic DNA of sequenced BACs.

Our data using in vitro binding assays confirmed for most of the sequences the calculated binding capacity to isolated nuclear matrices, suggesting that the Ds flanking regions are functional MARs or contain functional elements of MARs. The integration of Ds elements in the vicinity of MARs is not unparalleled. Various reports have shown that various classes of foreign DNA have a tendency to be integrated next to MARs. Several Long Terminal Repeats (LTR) and non-LTR retrotransposons in plants and animals appear to have a strong tendency to insert into or near MARs (Bruni et al., 1995; Romig et al., 1994; Stephanova et al., 1993; Tikhonov et al., 2001). The close vicinity of transposed Ds elements to MARs strongly suggests that structural DNA features of the target site are significant determinants for integration rather than primary nucleotide sequences adjacent to the integration site. Despite the fact that MARs are frequently associated with gene-containing regions, we did not observe a significant correlation between MAR binding properties and hits in BLASTN search results. Ds flanking regions with MAR binding capacity had significant BLASTN results as often as Ds flanking regions without MAR binding properties. This may be a result of the relatively low number of lines analyzed, and may be different after analysis of additional insertion sites. Although 12 T-DNA lines exhibited some MAR binding property, those lines were not further analyzed in binding assays because the predicted binding strength was just above the threshold level of 0.6 and typical motifs were not more common than in genomic barley DNA.

At T-DNA insertions, we found immediately adjacent to the T-DNA RB an abrupt change in the nucleotide composition that differs significantly from the regional composition (Figure 4). Adenine and guanine residues were clearly over-represented in the first and second positions adjacent to the
RB sequence. These differences might reflect the previously proposed role of micro-homologies between the host DNA and T-DNA sequences in the integration process (Tinland, 1996). Large-scale analysis of T-DNA integration sites in Arabidopsis showed that sequences flanking the T-DNA borders share similarity with the complement at the end of the T-DNA (Brunaud et al., 2002). Our data are consistent with these findings in that complementary nucleotides are predominantly found in the first and second position flanking the T-DNA right border, and are therefore in accordance with the suggested models of T-DNA integration by Brunaud et al. (2002). However, unlike in Arabidopsis (Brunaud et al., 2002), we did not observe an elevated number of short AT-rich sequences that are known to exert strong bending properties of the DNA (Bolshoy et al., 1991) and are thought to play a role in the integration of foreign DNA in eukaryote genomes (Liao et al., 2000; Müller and Varmus, 1994).

The observed differences in the insertion site preferences both at the nucleotide and the structural level between the transposed Ds elements and the T-DNA insertions may be a consequence of the different size and structure of both mutagens. Despite the very similar structure of both mutagens, the T-DNA constructs contain additional right and left border sequences that are required for Agrobacterium-mediated transformation. This, and the different integration processes (transposition versus T-DNA integration), could have an influence on target site preferences.

Mapping and distribution of insertion sites

Using an RFLP and an SSCP analysis-based mapping strategy, we determined the location of 55 independent single-copy Ds insertions and 46 T-DNA integration sites (Figure 5a,b). The integration of the mapped Ds and T-DNA integration sites into the barley bin map (Kleinhofs and Graner, 2001) appears to be useful as it will facilitate the integration of functional and structural genomics resources in barley. By assigning the Ds and T-DNA loci to bins on the OWB map, researchers can identify the insertions closest to mapped morphological loci, genes of known function or QTL regions identified in other cultivars. These Ds insertions can then serve as targets for reactivation in order to tag linked genes. In addition, use of the bin map allows integration of mapped insertion sites obtained from other mapping populations (Cooper et al., 2004).

Our data suggest a relatively even distribution of the insertions in the barley genome, without significant gaps, although this remains to be re-evaluated when the density of starter lines increases further. Similarly, the relatively small number of starter lines does not allow us to draw conclusions about differences in the transpositional behaviour in different starter lines. Although the origin of the four Ds starter lines differed (original integration versus primary transposition of Ds), we did not observe significant differences concerning the transposition to linked sites or preferences for integration in genic regions.

Considering the observed high reactivation frequency of Ds elements after crossing with ActPase-expressing plants, the system offers great potential as a tool for targeted tagging of a plethora of mapped loci with known mutant phenotypes. As existing barley TILLING populations and comparable methods cannot be utilized in such ‘forward genetics’ experiments (Caldwell et al., 2004), and map-based cloning in barley remains both costly and time-consuming (Buschges et al., 1997; Collins et al., 2003; Shirasu et al., 1999; Zhou et al., 2001), the mapped Ds launch pads described here help to close a significant gap in the barley functional genomics toolbox.

Experimental procedures

Plant material

Two different populations containing the maize transposable elements Ac and Ds were generated. In one population, the transposons were introduced into barley (cv. Golden Promise) as described previously (Koprek et al., 2000). Barley plants containing single-copy transposed elements were generated from originally two independent single-copy Ds lines (Ds starter lines A and B). In these two lines, which had been produced by particle bombardment, the Ds elements resided in their original integration site after transformation. Transposition of Ds was initiated by crossing the starter lines with previously described ActPase-expressing plants (Koprek et al., 2000). F2 progeny resulting from these crosses were analyzed for transposition events. Two lines carrying a single-copy transposed Ds element were used as additional starter lines (Ds starter lines C and D), in which the Ds element was reactivated for a secondary transposition as explained above. In order to simplify the subsequent isolation of Ds flanking genomic regions and to make interpretation of sequence analysis unambiguous, we selected plants carrying only a new single-copy insert site. In total, 104 lines were identified in which the Ds insertion site had segregated away from the original Ds integration site and the ActPase gene. In all of these plants, the structure of the transposed Ds element is identical (corresponding to the Ds cassette as shown in Figure S1). From these plants, as well as from the original lines DsA, DsB, DsC and DsD, Ds flanking DNA was isolated, sequenced, and used for mapping.

The second population consists of barley T-DNA insertion lines that were generated by Agrobacterium-mediated transformation with two different plasmids carrying the Ds element (Figure S1). The transformation was carried out according to the method described by Wang et al. (2001). Integration of complete T-DNA cassettes was validated by genomic Southern analysis using two vector-derived hybridization probes. Ds elements were activated by crossing the T-DNA containing plants with ActPase-expressing plants. In most cases, the ActPase-expressing lines were the same as for the activation in the Ds starter lines.

All Ds-, T-DNA- and ActPase-containing barley lines are available upon request from the corresponding authors.

Growth of donor plant material for barley transformation

Barley (Hordeum vulgare L. cv. Golden Promise) was grown in growth chambers at 15–16°C/12°C day per night temperatures with a
16 h photoperiod (cool white 215W, Silwana, Danvers, MA, USA) and an 8 h dark period at an average relative humidity of about 50%. Plants were fertilized once per week with NPK (20–20–20).

Vector construction

pWBV-Ds-Ubi-bar-Ds. The HindIII and ClaI fragment (blunted) of pSP-Ds-Ubi-bar-Ds (Koprek et al., 2000), which contains the Ds element carrying a bar gene under the control of the maize ubiquitin 1 promoter, was ligated to the NotI-digested (blunted) pWBV-Vec8-A (Wang et al., 1998), resulting in construct pWBV-Ds-Ubi-bar-Ds.

pWBV-Ubi-Ds-Bar. The Ubi-bar cassette from pSP-Ds-ubi-bar-Ds was removed by digestion with NotI. Into the NotI site of the resulting pSP-Ds and into the NotI-digested vector backbone pWBVec8-N, we cloned additional I-SceI sites. The ubiquitin promoter and first intron and the bar gene were released from pSP-Ds-ubi-bar-Ds, blunt-ended and ligated into the PstI-digested and blunt-ended fragments of pSP-Ds, to result in pSP-Ds-Ubi-bar-Ds, which was cloned into the multiple cloning site of pWBV-Vec8-N resulting in pWBV-Ubi-Ds-Bar.

pWBV-AcAcPase. The PstI fragment of pUC-codA-Ac-Ac-Ac, which contains AcPase under the control of a putative Ac promoter, was ligated to the PstI site of pBlue-AN to result in pBlue-Ac-Ac. The Ascl- and NotI-digested cassette from pBlue-Ac-Ac was inserted into the Ascl and NotI restriction site of pWBV-Vec8-A to generate pWBV-AcAc-Ac.

Isolation of Ds flanking genomic regions

Genomic DNA was isolated according to the method described by Cone et al. (1989). Ds flanking regions were isolated using PCR or adaptor-ligation PCR (ALPCR). For PCR, 5 μg of genomic DNA were digested with BstXI (10 U, Invitrogen, Karlsruhe, Germany) and isolated in a 100 μl reaction mixture at 60°C overnight, purified with nucleospin columns (Machery & Nagel, Dueren, Germany), and ligated in a total volume of 100 μl with T4 ligase (10 U, Invitrogen) at 16°C for 12–16 h. Ligation products were again column-purified and used directly for PCR in the following reaction mixture: 5 μl ligated DNA, 5 μl PCR-buffer (10 x), 4 μl dNTPs (2.5 mM), 3 μl MgCl2 (25 mM), 1 μl (10 pmol/ml) of each primer, and 2 μl Taq polymerase (Invitrogen) in a total volume of 50 μl. PCR conditions for the first PCR were: 94°C for 2 min, then 30 cycles of 94°C for 1 min, 56°C for 1 min and 72°C for 3 min; after a final extension at 72°C for 10 min. First-cycle PCR products were diluted 1:20 in sterile ddH2O and used for a second round of PCR using nested primers and the same PCR conditions. Primers for the first PCR were as follows: for the 5’ end of Ds: Ds5F1: 5’-ATTCCTTTGCGGGAAG-3’, Ds5R1: 5’-GGCGCCGCGTGGTCG-3’. For the secondary PCR reaction, the following nested primers were used: for the 5’ end: Ds5F2: 5’-ATCCGGTATATCCGTCGG-3’, Ds5R2: 5’-CGAGGCTAGCTTTGTCG-3’. The PCR products were separated on agarose gel and purified with gel extraction kit. For sequencing, the PCR products were subcloned into the pGEM-T-Easy cloning vector (Promega, Mannheim, Germany).

Isolation of barley nuclei

Five grams of young leaves of plants carrying a single copy of a transposed Ds element were ground in liquid N2; the powder was resuspended in 25 ml of Hamilton buffer (10 mM Tris-HCl, pH 7.6, 1.14 M sucrose, 5 mM MgCl2 and 5 mM β-mercaptoethanol; Hamilton et al., 1972). The slurry was gently stirred and filtered through three layers of Miracloth (Calbiochem, La Jolla, CA, USA) in 10 ml of...
the same buffer containing 0.3% of Triton X-100. The suspension was kept in a centrifuge tube on ice for 15 min with occasional gentle inversion of the tube. After centrifugation for 10 min at 1000 g, the pellet was washed twice more in same buffer to remove chloroplasts and mitochondria. The final pellet was resuspended and washed in 5 ml of extraction buffer without Triton X-100. The quality and number of intact nuclei were determined after staining with 4,6-diamino-phenylindole (DAPI) and inspection under a fluorescence microscope, and were diluted and stored at a density of 10^7 nuclei ml^-1.

Isolation of nuclear matrices

Nuclear matrices for the binding assay were essentially prepared according to the method described by Nomura et al. (1997) using a high salt concentration extraction treatment. Nuclei of 10^7 cells were washed once in 10 ml MES buffer (50 mM MES, pH 7.0, 50 mM NaCl, 5 mM MgCl2 and 1 mM dithiothreitol), centrifuged at 2000 g for 10 min at 4°C, and digested with EcoRI (500 U for 10^7 nuclei) at 37°C for 2 h. After centrifugation at 2000 g for 10 min, the pellet was washed with 50 mM MES, pH 7.0, 5 mM MgCl2, and 1 mM PMSF. For complete removal of nucleic acids, the suspension was treated with 50 μg ml^-1 DNase I and 20 μg ml^-1 RNase A at 37°C for 1 h. An equal volume of ice-cold 4 mM NaCl in 50 mM MES, pH 7.0, 5 mM MgCl2 and 1 mM PMSF was added, and the samples were incubated at room temperature for 10–20 min with several inversions of the tube. Insoluble nuclear proteins containing the nuclear matrix fraction were pelleted by centrifugation (10 000 g) for 10 min at 4°C. The supernatant was carefully removed and the pellet was washed twice with 2 ml of NaCl in 50 mM MES, pH 7.0, 5 mM MgCl2 and 1 mM PMSF to remove all residual nucleases. The nuclear matrices were washed three times as described above in the matrix binding buffer (20 mM Tris–HCl, pH 7.4, 70 mM NaCl, 20 mM KCl, 10 mM MgCl2, 0.125 mM spermidine and 0.05 mM spermine).

Binding assays

Determination of the binding of the Ds flanking genomic fragments to isolated nuclear matrices was performed by the exogenous binding assay as previously described (Allen et al., 1996). The cloned fragments were released from the plasmid by EcoRI digestion. Both the released insert and the plasmid backbone were [α-32P]dCTP end-labeled with the Klenow fragment of DNA polymerase I (Promega) and included in the binding assay. The radioactively labeled vector in an equimolar ratio served as an internal control (non-MAR-binding DNA fragment) and allowed better quantification of the ratio between bound and unbound fragments. Nuclear matrices isolated from 50 000 nuclei and approximately 20 ng of labeled probe (insert and vector) were incubated with sheared *Escherichia coli* competitor DNA (final concentration 100 μg ml^-1) in a total volume of 500 μl at 37°C overnight with gentle agitation. After separation into pellet (bound DNA fragments) and supernatant (unbound DNA fragments) fractions by centrifugation (10 000 g in a benchtop microcentrifuge for 30 min at 4°C), DNA was purified by incubation at 37°C for 60 min with 0.1% SDS and 50 μg ml^-1 proteinase K, followed by phenol–chloroform extraction. The DNA precipitate was dissolved in 30 μl TE. For all experiments we have used the ‘equal fractions’ method of presenting data as described by Kay and Bode (1995), i.e. an equal fraction of the total volume of each of the supernatant and resuspended pellet fractions is subjected to electrophoresis. With this approach, the amount of radioactivity in a band from the pellet or supernatant is directly proportional to the amount of labeled probe DNA in each fraction. Therefore, the ratio of matrix-bound probe to unbound probe can be directly compared from lane to lane. In the experiments presented here, we loaded 10 μl of pellet, 10 μl of supernatant and 20 μl total fraction (consisting of 10 μl of each, pellet and supernatant) on 1.0% agarose gels. After electrophoresis, the gels were dried onto nylon membranes, followed by overnight autoradiography.

Image analysis

Exposed X-ray films were analyzed by IMAGEQUANT version 5.0 (Molecular Dynamics, Sunnyvale, CA, USA). The mean gray value for each fragment (vector backbone or insert) was computed, and the values for the local background were subtracted to obtain the relative band intensity of the fragment. Mean gray values for the background were determined by measuring the gray value of a same-sized area adjacent to the band. Mean gray values of the bands from the ‘total’ fraction representing equimolar amounts of the labeled empty vector and labeled insert DNA were used as a reference and were set as 100%. MAR binding strength was calculated as a percentage value for the matrix-bound fraction relative to the value in the ‘total’ fraction. Comparison between the band intensities of the vector in the total and supernatant fraction and between the vector backbone and the matrix-bound fraction in the total fraction was used to control the recovery of labeled fragments from the binding assay.

Genetic mapping of T-DNA and Ds insertion sites by PCR-SSCP

The distribution of T-DNA insertions on barley chromosomes was determined by PCR analysis of wheat-barley addition lines (Islam et al., 1981). The sequences of isolated T-DNA and Ds flanking regions were used to design primers for the amplification and identification of polymorphisms of the corresponding alleles in different mapping populations. PCR amplifications were carried out using conditions that are appropriate for the amplification of the expected PCR product. All PCR reagents were from Bioline (Luckenwalde, Germany). Plant lines carrying the isolated flanking region on one chromosome only were further used for mapping. PCR products were amplified from OWB parents Dom and Rec. Resulting PCR fragments were digested with various restriction enzymes (*Alu*, *Bstul*, *Haell*, *HhaI*, *Hinfi*, *Msal*, *MspI*, *RsaI*, *Sau3A*, *Sau96I*, *ScfI*, *TaqI* and *Tsp509I*) and analyzed for polymorphisms on high-resolution Mutation Detection Enhancement (MDE) gels (Sentinelli et al., 2000). Once a polymorphism was detected, the corresponding sequence was amplified from each member of the Oregon-Wolfe-Barley Doubled Haploid (OWB DH) mapping population and digested with the appropriate restriction enzyme. Depending upon the size difference of the generated DNA fragments, individual members of the mapping population were assayed and scored for the polymorphisms on MDE gels or on 2–3% agarose gels stained with ethidium bromide.

Mapping of Ds insertion sites by RFLP

Genomic DNA samples from 14 different genotypes that are the parents of seven mapping populations were each digested with six restriction enzymes (*BamHI*, *DraI*, *EcoRI*, *EcoRV*, *HindIII*, *XbaI*) and a Southern blot was performed with these samples as described by Kleinhofs et al. (1993). The following mapping populations were used to detect RFLP polymorphisms and for subsequent mapping: OWB-Dom × OWB-Rec, Steptoe × Morex (Kleinhofs et al., 1993),
Igri × Franka (Graner et al., 1994, Galleon × Haruna Nijo (Karakousis et al., 2003a), Chebec × Harrington (Barr et al., 2003), Clipper × Sahara (Karakousis et al., 2003b), Sloop × Halcyon (Read et al., 2003). Membranes were hybridized with 32P-labeled probes generated using genomic DNA flanking single-copy Ds insertion sites. The procedure used for RFLP analysis has been described by Kleinhofs et al. (1993). Linkage map construction was performed using the program MAP MANAGER (Manly et al., 2001).

Acknowledgements

This work was supported by the Deutsche Forschungs Gemeinschaft (DFG grant number 1791/2-1/2-2) and by the Plant Genome Programme (GABI) of the Federal Ministry of Education and Research (BMBF grant number PTJ-BIO/0312858). Unpublished data have been provided by Dr Robert Martienssen, Cold Spring Harbor Laboratory (NY, USA).

Supplementary Material

The following supplementary material is available for this article online:

Figure S1. Schematic representation of plasmids used for Agrobacterium-mediated transformation. Only restriction sites which were relevant for Southern analysis are shown. The black bar indicates the size standard, red bars indicate the probes used for Southern hybridization. RB, right border; LB, left border; Nos, Nos terminator; the size standard, red bars indicate the probes used for Southern analysis. The black bar indicates

Table S1 Summary of Ds and T-DNA insertion site mapping in barley based on chromosome and bin location, cereal EST matches and E values

This material is available as part of the online article from http://www.blackwell-synergy.com

References

© 2006 The Authors