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Abstract

We study the prospects of pinning down the effects of non-standard antineutrino interactions

in the source and in the detector at the Daya Bay neutrino facility. It is well known that if the

non-standard interactions in the detection process are of the same type as those in the production,

their net effect can be subsumed into a mere shift in the measured value of the leptonic mixing

angle θ13. Relaxing this assumption, the ratio of the antineutrino spectra measured by the Daya

Bay far and near detectors is distorted in a characteristic way, and good fits based on the standard

oscillation hypothesis are no longer viable. We show that, under certain conditions, three years of

Daya Bay running can be sufficient to provide a clear hint of non-standard neutrino physics.
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I. INTRODUCTION

The past and ongoing neutrino oscillation experiments provide a firm evidence that the

neutrino flavor is changing throughout the neutrino propagation. Except for some recent

signals reported by MINOS [1] and MiniBooNE [2] (and also previously by LSND [3]) the vast

majority of the data is consistent with the hypothesis of neutrino flavor oscillations driven by

a pair of mass-squared differences: ∆m2
31 = 2.45±0.09×10−3 eV2 (or ∆m2

31 = −(2.34+0.10
−0.09)×

10−3 eV2 if an inverse neutrino mass hierarchy is realized), often called the atmospheric

mass-squared difference, and the solar mass-squared difference ∆m2
21 = 7.59+0.20

−0.18×10−5 eV2,

together with a pair of the corresponding mixing angles: sin2 θ23 = 0.51±0.06 (or sin2 θ23 =

0.52±0.06 the inverse hierarchy case) and sin2 θ12 = 0.312+0.017
−0.015 [4]. This, however, requires

at least two of the oscillating neutrinos to be massive.

By construction, neutrinos are massless in the Standard Model (SM). Thus, a lot of

effort has been spent on devising SM extensions that could not only accommodate the

unprecedented smallness of the light neutrino mass scale and all the peculiarities of the

leptonic mixing pattern, but also provide specific new physics signals, thus admitting for

a further experimental scrutiny. In some cases, such new physics effects could even be

expected to be within the reach of near future experimental facilities. In this respect, the

seesaw approach [5–12], in which the smallness of the absolute neutrino mass scale is usually

linked to a very specific type of high energy dynamics, represents a particularly plausible

model-building paradigm.

Each dynamical realization of the seesaw picture makes some kind of new physics effects

appear, at least at a certain level. This, in turn, makes the neutrino sector an ideal probe to

physics beyond the SM. For instance, the Majorana nature of the light neutrinos inherent to

the seesaw framework provides characteristic lepton-number-violating signals at low energies

like, e.g., the neutrinoless double beta decay, or, if kinematically accessible, same-sign di-

lepton production at colliders, see, e.g., [13]. Similarly, besides neutrino oscillations, the

flavor structure of the lepton sector can be tested in lepton-flavor-violating processes such

as µ → eγ or, for example, trilepton collider events, c.f., [14].

A full exploration of such new physics signals generally requires a very good knowledge of

the leptonic flavor mixing angles governing the neutrino oscillation phenomena. In partic-

ular, the smallest mixing angle θ13, which plays a central role in the leptonic CP violation,
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is still to be determined (with a current 90% C.L. upper bound of sin2 2θ13 . 0.17 reported

by the CHOOZ collaboration [15]).

The Daya Bay neutrino oscillation experiment [16] is designed to perform a precision

determination of θ13 with a potential to improve the CHOOZ limit by one order of magnitude.

Its main virtue consists in a very good control over the systematics because of the unique

set of eight identical detectors deployed at three different locations optimized for monitoring

the antineutrino rates from the six reactors. A similar experimental setup is also adopted

by the upcoming Double Chooz experiment [17] and RENO [18] experiments.

In combination with the large statistics due to the huge flux of antineutrinos produced in

the nearby nuclear reactors, the unprecedented accuracy of this new generation of reactor

experiments can make them sensitive to the new physics effects, at least at a certain level.

For instance, if the new physics sector couples to hadrons and the relevant scale is not

very high, one can expect non-standard interactions (NSI’s) in the antineutrino production

and detection processes as well as non-standard matter effects the antineutrinos experience

throughout the propagation process. Similarly, new neutral fermions can mix with the three

SM active neutrinos, which would result in an effective non-unitarity of the leptonic mixing

matrix entering the relevant oscillations probabilities.

The NSI’s in reactor neutrino experiments have been discussed previously in, e.g., [19, 20],

especially when the production and detection processes (and the corresponding non-standard

effects) are assumed to be just inverse of each other. In particular, it has been shown that

in such a case the NSI effects can be subsumed into a mere shift in the measured value of

the effective mixing angle θ13.

In this work, we study the NSI’s in reactor antineutrino experiments in a general case

when the assumption that the source and at the detector processes including the non-

standard effects are just inverse of each other is dropped. This, in turn, leads to a specific

distortion in the ratio of the antineutrino spectra measured in the far and in the near

detectors which can not be entirely transformed away by mere shifts in the relevant oscillation

parameters, i.e., θ13 and ∆m2
31. We show that, under certain conditions, three years of Daya

Bay running can be sufficient to provide a clear hint of non-standard neutrino physics.

The remainder of the manuscript is organized as follows: In Sec. II, we present the

general formalism and derive the relevant antineutrino survival probability formulas used in

the subsequent analysis. Two basic scenarios corresponding to qualitatively different shapes
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of NSI’s are specified in Sect. III, and a detailed analysis of the observability of such effects

at Daya Bay is performed in Sect. IV. Finally, we conclude in Sect. V.

II. NON-STANDARD INTERACTIONS IN REACTORANTINEUTRINOOSCIL-

LATIONS

A. Non-standard interactions in the antineutrino sources and detectors

In what follows, we adopt the standard SPD (source, propagation, and detector) ap-

proach [21] to consider the antineutrino oscillation process in a reactor antineutrino exper-

iment. In the presence of NSI’s, the antineutrino states produced in the source as well as

those observed in the detector can be treated as superpositions of pure orthonormal flavor

states

|νs
α〉 = |να〉+

∑

β=e,µ,τ

εs∗αβ|νβ〉 , 〈νd
β| = 〈νβ|+

∑

α=e,µ,τ

εd∗αβ〈να| , (1)

where the superscripts ‘s’ and ‘d’ denote the source and the detector, respectively. Note that

there is no need to include the appropriate normalization factors in expressions (1) because

we are going to be interested only in ratios of the survival probabilities in the near and far

detectors where such factors cancel.

The current experimental bounds on the NSI parameters mainly come from the lepton

flavor violating decays ℓα → ℓβγ, the universality test of weak interactions and the invisible

decay width of the Z-boson. Model-independent studies indicate that the upper limits on

the NSI parameters εs,dα,β are typically in the ballpark of 10−1 to 10−2, see e.g. [22] and

references therein.

Furthermore, let us also remark that the NSI parameter matrices εs and εd† need not

be identical in view of the different conditions under which the antineutrino production

and detection processes generally take place. This assumption, i.e., the non-equality of εs

and εd†, is, indeed, the key assumption adopted in this work. At the microscopic level,

it can for instance correspond to non-standard antineutrino interactions with more than a

single nucleon in the source or with a different kinematics of the production and detection

processes. For further comments, an interested reader is deferred to Sect. III B.
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B. Non-standard interactions in the antineutrino propagation

The propagation of antineutrino flavor eigenstates from the sources to the detectors is

governed by the effective Hamiltonian

Ĥ = H0 +Hm +HNSI =
1

2E
U∗diag(m2

1, m
2
2, m

2
3)U

T − diag(VCC, 0, 0)− VCCε
m∗ , (2)

where εm is a Hermitian matrix parametrizing the NSI’s throughout the antineutrino propa-

gation and VCC =
√
2GFNe arises due to effects of the coherent forward scattering in matter

(with Ne denoting the electron number density along the antineutrino trajectory). Bar-

ring the irrelevant Majorana phases, the vacuum leptonic mixing matrix U is conveniently

parametrized by three mixing angles θ12, θ23 and θ13 and one Dirac CP phase δ [23]

U =











c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13











, (3)

with cij ≡ cos θij and sij ≡ sin θij (for ij = 12, 13 and 23). The full effective Hamiltonian

(2) is diagonalized via a unitary transformation

Ĥ =
1

2E
Û∗diag

(

m̂2
1, m̂

2
2, m̂

2
3

)

ÛT , (4)

where m̂i (i = 1, 2, 3) denote the effective masses of neutrinos and Û is the effective leptonic

mixing matrix in matter.

The size of the matter effect driven by the
√
2GFNe term amounts to around 1.1 ×

10−7 eV2/MeV for Earth crust with density of 2.8 g/cm3. Even for the highest values of

reactor antineutrino energies of around 10 MeV, this number is about 40 times smaller

than the value of ∆m2
21/(2E) = 3.8 × 10−6 eV2/MeV and about 1100 times smaller than

∆m2
32/(2E) = 1.2× 10−4 eV2/MeV. This indicates that Earth matter effects are very small

and can be safely neglected. Hence, we take Ĥ ≃ H0 or, equivalently, set VCC = 0 in Eq. (2).

C. The antineutrino survival probability

With the NSI effects at play, the electron antineutrino survival probability amplitude

A(νs
e → νd

e ;L) ≡ Aee(L) is given by

Aee(L) = 〈νd
e |e−iHL|νs

e〉 = (1 + εd∗)ρeAγρ (1 + εs∗)eγ =
[

A+ εs∗A+ Aεd∗ + εs∗Aεd∗
]

ee
, (5)
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where L is the propagation distance and A is a coherent sum over the contributions of all

the mass eigenstates νi

Aαβ =
∑

i

UαiU
∗
βie

−i
m

2
i
L

2E . (6)

The antineutrino survival probability is then given by P (νs
e → νd

e ) = |Aee(L)|2. For com-

pleteness, let us remark that a corresponding neutrino oscillation amplitude can be readily

obtained from (5) with a substitution (U∗, ε∗) → (U, ε). It should also be stressed that only

the first row of εs and the first column of εd are relevant to the ee-type transition amplitude.

Namely, the NSI parameters εs and εd involved in reactor neutrino experiment contain at

least one flavor index e.

Inserting formula (6) into Eq. (5) one arrives at the full antineutrino oscillation probability

P (νs
e → νd

e ) =
∑

i,j

J iJ j∗−4
∑

i>j

Re(J iJ j∗) sin2

(

∆m2
ijL

4E

)

+2
∑

i>j

Im(J iJ j∗) sin

(

∆m2
ijL

2E

)

,

(7)

where ∆m2
ij = m2

i −m2
j , and

J i = UeiU
∗
ei +

∑

γ

εs∗eγUγiU
∗
ei +

∑

γ

εd∗γeUeiU
∗
γi +

∑

γ,ρ

εs∗eγε
d∗
ρeUγiU

∗
ρi . (8)

In the εs,d → 0 limit, Eq. (7) reduces to the standard survival probability.

In this study, the quantity of our main interest is the third term in Eq. (7) which, being

linear in the sine of L/E, does not play any role in the standard oscillation case. In this

respect, a potential deviation from the “standard” quadratic-sine L/E dependence in an

oscillation experiment can be interpreted as a hint of non-standard antineutrino interactions,

in particular if such an anomaly exhibits the characteristic linear-sine L/E shape.

D. Series expansion of the antineutrino survival probability

In practice, given the finite precision of the experimental inputs, it is very convenient

to expand the survival probability (7) around the standard oscillation formula in terms of

the relevant small parameters, in particular εs,d which are all expected to be at most at the

few per-cent level, c.f. [22] and references therein. In addition, θ13 is small compared to the

other mixing angles (with the current CHOOZ upper limit of sin2 2θ13 . 0.17) and, hence, it

amounts to another useful expansion parameter. Moreover, for the Daya Bay far detector,
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also the oscillation term ∆m2
21L/(2E) turns out to be at the level of 10−1 to 10−2 and, as

such, it can also be viewed as a small quantity.

Taking all this into account, we obtain the following expanded form of the relevant

electron antineutrino survival probability

P (νs
e → νd

e ) ≃ P (νe → νe)SM − 4
[

Re
(

εseµe
−iδ + εdµee

iδ
)

s23s13 + Re
(

εseτe
−iδ + εdτee

iδ
)

c23s13

+ Re
(

εseµε
d
µe

)

s223 + Re
(

εseτε
d
τe

)

c223 + Re
(

εseµε
d
τe + εseτε

d
µe

)

s23c23
]

sin2

(

∆m2
32L

4E

)

+ 2
[

Im
(

εseµe
−iδ + εdµee

iδ
)

s23s13 + Im
(

εseτe
−iδ + εdτee

iδ
)

c23s13

+ Im
(

εseµε
d
µe

)

s223 + Im
(

εseτε
d
τe

)

c223 + Im
(

εseµε
d
τe + εseτε

d
µe

)

s23c23
]

sin

(

∆m2
32L

2E

)

+ 2
[

Im
(

εseµ + εdµe
)

c12s12c23 − Im
(

εseτ + εdτe
)

c12s12s23
]

(

∆m2
21L

2E

)

(9)

+ O
[

ε3, s313, ε
2s13, εs

2
13, εs13

(

∆m2
21L

2E

)

, ε

(

∆m2
21L

2E

)2

, s213

(

∆m2
21L

2E

)

]

,

where P (νe → νe)SM corresponds to the standard oscillation probability, i.e., the one without

NSI’s which is approximately given by

P (νe → νe)SM ≃ 1− 4s213 sin
2

(

∆m2
32L

4E

)

− 4s212c
2
12

(

∆m2
21L

4E

)2

+O
[

s313, s
2
13

(

∆m2
21L

2E

)]

.

(10)

Inspecting Eq. (9) one can recognize three qualitatively different non-standard contributions

to P (νs
e → νd

e ): In the first two lines there is a CP-even term quadratic in sine of ∆m2
32L/(4E)

which, as expected, may affect the determination of the mixing angle θ13. The remaining

three lines denote the CP-odd NSI effects corresponding to two different kinematical regimes

characterized by ∆m2
32 and ∆m2

21, respectively. Notice that in the standard parametrization

(3), the Dirac CP-violating phase groups only with the former factor. It is also worth

noticing that the term proportional to ∆m2
21 tends to be further suppressed in the “flavor-

blind” setting (with εs,deµ = εs,deτ ) because of the proximity of s23 and c23.

It shall be noted that both the standard and the NSI transition probabilities depend on

the neutrino mass hierarchy. For the standard oscillations, the hierarchy-sensitive terms are

of the order of s213∆m2
21L/(2E) and thus can be consistently neglected in Eq. (10). The

NSI-dependent terms in Eq. (9), however, contain a term linear in sine of ∆m2
32L/(2E)

which, indeed, differs in sign in the normal and in the inverted hierarchy schemes, respec-

tively. Since, however, we do not expect any distinctive NSI features to be large enough to
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discriminate among these two settings (although they would certainly differ in details), in

what follows, we shall deliberately stick to the normal hierarchy case, i.e., assume ∆m2
32 > 0.

E. Notation and conventions

In what follows we shall adopt the following parametrization:

εseα ≡ |εsα| eiφ
s
α , εdαe ≡

∣

∣εdα
∣

∣ e−iφd
α , (11)

where the universal e index was dropped for simplicity. It is also convenient to define the

source and detector phase averages Φα and differences ∆φα, respectively:

Φα ≡ 1
2
(φd

α + φs
α) , ∆φα ≡ 1

2
(φd

α − φs
α) . (12)

The latter has a clear physical meaning: indeed, for all ∆φα → 0 (together with |εsα| → |εdα|)
one recovers a limit in which the non-standard antineutrino interactions in the detection

process are of the same kind as those in the production.

III. SPECIFIC SETTINGS

In what follows, we shall discuss two simple but phenomenologically interesting shapes

of NSI’s and discuss the relevant effects in the reactor antineutrino experiments.

A. Case I: εsα = εd∗α

We start with the simplest case characterized by the assumption εsα = εd∗α ≡ |εα|eiφα

which corresponds to the situation where the production and the detection processes (in-

cluding the associated non-standard interactions) are just inverse of each other. The relevant

antineutrino survival probability (9) is then reduced to

P (νs
e → νd

e ) ≃ P (νe → νe)SM − 4
{

s223|εµ|2 + c223|ετ |2 + 2s23c23|εµ||ετ | cos(φµ − φτ )

+ 2s13 [s23|εµ| cos(φµ − δ) + c23|ετ | cos (φτ − δ)]} sin2

(

∆m2
32L

4E

)

. (13)

Remarkably, the linear sine-dependent term in Eq. (9) vanishes and the NSI effects enter

the survival probability as a mere global shift of the oscillation amplitude. This amounts to

8



3 4 5 6 7 8
EΝHMeVL

0.85

0.9

0.95

1
PHΝe

s®Νe
d L

FIG. 1: The oscillation probability for sin2 2θ13 = 0.1, δ = 0 and L = 1.8 km with no NSI’s (solid

line) and with NSI’s corresponding to Case I in Sect. IIIA with εsα = εd∗α (dashed line) where we

adopted εµ = ετ = 0.02 (with both φµ and φτ fixed to zero). For the other oscillation parameters,

the best-fit values have been assumed, c.f. Ref. [4].

a shift in the “effective” reactor mixing angle

s213 → s̃213 = s213 + s223|εµ|2 + c223|ετ |2 + 2s23c23|εµ||ετ | cos(φµ − φτ )

+ 2s13 [s23|εµ| cos(φµ − δ) + c23|ετ | cos(φτ − δ)] . (14)

Namely, the oscillation probability is given by the standard formula (10) with θ13 replaced

by the effective mixing angle θ̃13. Thus, there is no way to discriminate such an NSI effect

from standard oscillations in reactor antineutrino experiments. It is also worth noting that

the CP phase differences enter Eq. (14) via cosines only which is, indeed, justified by the

CP properties of the survival probability in the setting under consideration.

In Fig. 1, we display the standard and the modified oscillation probability in the NSI

presence as a function of the antineutrino energy in a detector at the “ideal” distance L = 1.8

km (optimized for the highest count rate at E ∼ 4 MeV) from the source. The “depth” of the

first oscillation minimum (the solid line for the standard oscillations) changes significantly if

the NSI effects are turned on (dashed line); however, the energy of the minimum determined

by the neutrino mass-squared differences remains essentially unchanged.1

1 Let us remark that the energies corresponding to the two relevant minima are not exactly the same due

to the presence of the sub-leading terms proportional to
(

∆m2

21
L/4E

)2

in Eqs. (9) and (10).
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Nevertheless, though the reactor antineutrino experiments in this case cannot distinguish

the NSI’s from a true mixing angle on their own, they can still provide a useful piece

of information in combination with other types of experiments such as, e.g., accelerator

experiments, superbeams, beta-beams, neutrino factories, etc. In particular, if these searches

report different values of θ13, NSI’s could be responsible for the mismatch.

B. Case II: εsα 6= εd∗α

For εsα 6= εd∗α , the production and detection processes and, in particular, the associated

non-standard interactions, are not equivalent. Let us recall that in the reactor experi-

ments the antineutrinos are produced namely by the decays of neutron-rich fission products

whereas, in the detector, the antineutrinos are converted into positrons by the inverse beta

decay process on the essentially free hydrogen protons. In particular, the many-body nucleon

interactions during the fission processes can provide an extra contribution to the neutrino

flux with no counterpart at the detection side. Though such contributions are suppressed

in the SM, new physics may, at least in principle, boost these effects to an observable level.

Thus, we find it legitimate to speculate that εs and εd† might be different. As a conse-

quence, the terms linear in sine in formula (9) are exposed and the relevant NSI effects can

no longer be completely subsumed into a shift of the effective mixing angle θ̃13. This, besides

the change of the “depth” of the first oscillation minimum (c.f. Figure 1), leads also to a

shift in its energy, as illustrated in Figure 2. In particular, the dip can be shifted by as much

as one MeV in both directions, depending on the specific choice of the NSI parameters.

In what follows we shall focus on two specific realizations of this setting, namely, the case

when the magnitude of the NSI parameters differs between the production and detection

processes (Case IIa) and the case when the relevant NSI parameters are of the same size but

differ by their phases (Case IIb). Both these cases are studied numerically in Sect. IV.

1. Case IIa: Non-standard interactions in source only

Let us exemplify the first option on a specific setting where the NSI’s exhibit themselves

only in the production processes, i.e., taking εd = 0. Given that, the general formula (9)

10
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FIG. 2: The theoretical oscillation probability with no NSI (solid line) and with NSI’s (dashed

and dotted lines) for L = 1.8 km. For the sake of illustration, we adopt a flavour-universal scheme

with all the relevant NSI parameters at the same level of |εµ,τ | = 0.04 with ∆φµ,τ = π
2
. The other

neutrino mixing parameters are the same as in Fig. 1. The dashed line corresponds to Φµ,τ = 8
5
π

whereas the dotted one to Φµ,τ = 2
5
π, respectively.

simplifies into

P (νs
e → νd

e ) ≃ P (νe → νe)SM

− 4s13 [s23|εµ| cos(φµ − δ) + c23|ετ | cos(φτ − δ)] sin2

(

∆m2
32L

4E

)

+ 2s13 [s23|εµ| sin(φµ − δ) + c23|ετ | sin(φτ − δ)] sin

(

∆m2
32L

2E

)

+ 2s12c12 (c23|εµ| sinφµ − s23|ετ | sinφτ )

(

∆m2
21L

2E

)

, (15)

where we used εα ≡ εsα and φα ≡ φs
α. It is worth noting that the genuine NSI effect (due

to the last two terms) is proportional to sines of differences of the Dirac CP phase δ and

the CP phases of the NSI parameters φα, as expected for a CP-violating effect beyond the

standard oscillation picture.

2. Case IIb: Same-size source and detector effects with different phases: |εsα| = |εdα|, ∆φα 6= 0

An interesting complementary setting is obtained if the magnitude of the source and

detector effects are assumed to be equal so that the NSI effects can only be distinguished due

to the mismatch between the corresponding CP phases φs
α and φd

α. With |εsα| = |εdα| ≡ |εα|,
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the general formula (9) receives a rather symmetric form2

P (νs
e → νd

e ) ≃ P (νe → νe)SM

− 4
{

s223|εµ|2 cos 2∆φµ + c223|ετ |2 cos 2∆φτ

+ 2c23s23|εµ||ετ | cos(∆φµ +∆φτ ) cos(Φµ − Φτ )

+ 2s13 [s23|εµ| cos∆φµ cos(Φµ − δ) + c23|ετ | cos∆φτ cos(Φτ − δ)]} sin2

(

∆m2
32L

4E

)

− 2
{

s223|εµ|2 sin 2∆φµ + c223|ετ |2 sin 2∆φτ

+ 2c23s23|εµ||ετ | sin(∆φµ +∆φτ ) cos(Φµ − Φτ )

+ 2s13 [s23|εµ| sin∆φµ cos(Φµ − δ) + c23|ετ | sin∆φτ cos(Φτ − δ)]} sin
(

∆m2
32L

2E

)

− 4s12c12 (c23|εµ| sin∆φµ cosΦµ − s23|ετ | sin∆φτ cos Φτ )

(

∆m2
21L

2E

)

, (16)

where the notation specified in Eq. (12) has been used. Again, the relevant phase differences

in the genuine NSI terms enter in sines. Furthermore, the formula above can be simplified

to a yet more compact form

P (νs
e → νd

e ) ≃ P (νe → νe)SM

− 4
{

s223|εµ|2 sin
(

∆m2
32L

4E
+ 2∆φµ

)

+ c223|ετ |2 sin
(

∆m2
32L

4E
+ 2∆φτ

)

+ 2c23s23|εµ||ετ | sin
(

∆m2
32L

4E
+∆φµ +∆φτ

)

cos(Φµ − Φτ )

+ 2s13s23|εµ| sin
(

∆m2
32L

4E
+∆φµ

)

cos(Φµ − δ)

+ 2s13c23|ετ | sin
(

∆m2
32L

4E
+∆φτ

)

cos(Φτ − δ)
}

sin

(

∆m2
32L

4E

)

− 4s12c12 (c23|εµ| sin∆φµ cosΦµ − s23|ετ | sin∆φτ cosΦτ )

(

∆m2
21L

2E

)

, (17)

which does expose the “kinematic” role of the phase differences ∆φα and the “amplitude

modulation” role of their averages Φα.

Let us also remark that for ∆φα → 0 (when the symmetric setting with εs = εd† is

recovered) the last term vanishes and, as expected, the other terms conspire to yield a mere

shift in the effective mixing angle θ̃13 identical to that given in formula (14). This provides

2 Note that the coefficient of the last term in Eq. (16) is optically different from the same in Eq. (9) which

is due to the utilized goniometric identity for a difference of two sines and the definition of ∆φα.
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a nice consistency check of the results. A simple numerical analysis of both Case-IIa and

Case-IIb settings is given in Sect. IV.

IV. NON-STANDARD ANTINEUTRINO INTERACTIONS AT DAYA BAY

A. Experimental setting

The Daya Bay neutrino experiment [16] is designed to perform a precision measurement

of θ13 using antineutrinos produced by the reactors of the Daya Bay Nuclear Power Plant

(NPP) and the Ling Ao NPP. In the detectors, antineutrinos from the reactors are captured

via the inverse beta-decay process, and the deficit from the expected 1/L2 dependence is to

be interpreted as a signature of neutrino oscillations. In particular, near and far detectors

are employed in order to suppress the systematic uncertainties related to the antineutrino

flux from the reactors.

The Daya Bay measurement of sin2 2θ13 is expected to reach the sensitivity of the order of

0.01, an order of magnitude better than the current CHOOZ limit sin2 2θ13 . 0.17. Besides

a high-quality determination of the relevant standard neutrino oscillation parameters, Daya

Bay can be rather efficient in improving some of the current constraints on physics beyond

the SM.

In order to estimate the NSI effects possibly observable at Daya Bay, we perform a basic

numerical analysis making use of a simple model of the detected neutrino spectra. There are

three pairs of nuclear reactor cores of a total thermal power of 17.4 GW at the experiment

site, namely, Daya Bay (DYB), Ling Ao (LA) and Ling Ao II (LAII), providing electron

antineutrinos to three detectors, two near ones called Daya Bay (DYB) and Ling Ao (LA)

with 40 tons and a far detector (FAR) with 80 tons of a Gadolinium-doped liquid scintillator,

respectively. A more detailed breakdown of the relevant Daya Bay parameters can be found

in TABLE I.

B. A simple model of the νe spectra

For the sake of simplicity, we shall assume that each pair of neighboring cores constitute

a single point source. The average energy release per one fission EF is anticipated to be

13



Detectors / Reactors DYB 2×2.9 GW LA 2×2.9 GW LAII 2×2.9 GW

DYB (40 t) 363 1347 1985

LA (40 t) 857 481 1618

FAR (80 t) 1307 526 1613

TABLE I: The basic Daya Bay experiment layout [16]: distances (in meters) between detectors

(rows) and centers of pairs of the neighboring reactor cores (columns).

around 200 MeV [16] so the estimated number of fissions per second in each reactor site NF

is

NF = 2PT/Ef = 2× 2.9 GW/200 MeV = 1.8× 1020 s−1 , (18)

where the extra factor 2 counts the number of reactor cores per site and PT stands for the

thermal power of each core. For the spectrum of the antineutrino flux per fission we shall

use the approximate formula given in Ref. [24] (for E in MeV):

dΦ

dE
= exp

(

0.87− 0.16E − 0.091E2
)

MeV−1 . (19)

Antineutrinos interact with the free protons in the scintillator via the inverse beta decay

process νe + p → n + e+. The cross-section of this reaction has been calculated in Ref. [25]

to be

σ (E) = 9.52× 10−48m2

[

(E − (mn −mp))

√

(E − (mn −mp))
2 −m2

e MeV−2

]

(20)

with the energy threshold E0 = 1.8 MeV. There are 6.29× 1022 free protons in a cm3 of the

scintillator of density ρ = 0.86 g/cm3 [26]. Therefore the number of targets per one ton of

the scintillator is NT = 7.3× 1028 ton−1.

The antineutrino survival probability P (νs
e → νd

e ) is a function of energy, propagation

distance, oscillation parameters and, in general, also the NSI parameters. The expected

total number of antineutrino events in the detector D (with D =DYB,LA,FAR) with mass

MD after three years of running can be estimated as

dND

dE
= t×NT ×MD × Ceff ×NF × Φ(E)× σ (E)×

∑

R=DYB,LA,LAII

P (νs
e → νd

e )

4πL2
DR

, (21)

where t = 3 × 365 × 24 × 3600 s is the duration of a three-years’ run. We sum over three

reactor sites and use LDR for the distance between the detector D and the reactor site R,

14
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FIG. 3: The expected shape of the detected antineutrino spectrum in the DYB (near) detector

after three years of running without NSI’s.

c.f. TABLE I. In addition, we adopt a detection efficiency coefficient Ceff = 0.78 [16]. As

an example, we depict in Figure 3 the expected spectrum of antineutrinos detected in the

DYB detector. It is worth noting that the highest event rate corresponds to E ≃ 4 MeV.

The quantity of our main interest is the ratio of the antineutrino energy spectra between

the considered far and near detectors, which can be obtained readily from Eq. (21). It is

expected that, due to a similar design of the far and near detectors, the systematic uncer-

tainties associated to, e.g., the absolute flux determination, can be greatly reduced in the

ratio of the energy spectra. However, in order to fully account for all the systematic uncer-

tainties, e.g., the backgrounds, energy miscalibration, detection efficiencies etc., a complex

simulation of the Daya Bay experiment is necessary. This, however, is beyond the scope of

this work. Thus, in what follows, we shall focus entirely on the statistical uncertainties.

C. The χ2 analysis

To assess the observability of NSI’s at Daya Bay in practice, we perform a simple numer-

ical χ2 analysis along the following lines: we choose 15 energy bins from 1.8 MeV to 8 MeV

in order to have approximately the same statistics in all bins which are 1-4 times wider than

the energy resolution 15%/
√

E(MeV) [16]. In each bin, we use Eq. (21) to calculate the

ratio R of the antineutrino energy spectra between the far and near detectors (for sake of

illustration, from now on we shall focus in particular onto the FAR and the DYB detectors).

In the case of the standard neutrino oscillations, the expected shape of this ratio between
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FIG. 4: Ratio between the FAR and the DYB detectors for standard oscillations with statistical

errors only. The dotted line corresponds to the case of sin2 2θ13 = 0. The neutrino mixing

parameters are the same as those used in Figure 1.

the FAR and the DYB detectors is depicted in Figure 4.

Since the uncertainties of θ23, θ12 and ∆m2
21 are not expected to play any significant

role in the ratio of our interest, we shall fix these parameters to their central values. This

is not the case of ∆m2
32 because the uncertainty in this parameter (quantified by σ∆m2

32
)

mimics the effects of the NSI’s, namely, it also shifts the position of the first minimum in

R. However, with the increasing precision of the ∆m2
32 determination, these effects become

less important. Therefore, in what follows, we shall mainly focus on two specific situation

corresponding to different choices of σ∆m2

32
: in one case we take σ∆m2

32
= 0.09× 10−3eV2 [4]

as the current experimental value while in the other “ideal case”, we push σ∆m2

32
down to

0.025 × 10−3eV2, respectively (which can be viewed as an optimistic expectation for the

uncertainty in the atmospheric mass-squared difference in several years from now).

For each specific choice of the relevant NSI parameters there are only two unknown

parameters left in R, namely, s13 ≡ sin θ13 and ∆m2
32, c.f., Eq. (10). Denoting the i-th

bin value of R (as a function of s13, ∆m2
32, ε

s and εd) by Ri(s13,∆m2
32, ε

s, εd), we attempt

to fit the simulated data by the NSI null-hypothesis corresponding to the case when Ri

is calculated for standard oscillations with some effective values of the relevant oscillation

parameters, namely, R0
i (s̃13,∆m̃2

32). This is done by minimization of the χ2 function

χ2 =
15
∑

i=1

[

Ri

(

s13,∆m2
32, ε

s, εd
)

− R0
i (s̃13,∆m̃2

32)

σdata

]2

+

(

∆m2
32 −∆m̃2

32

σ∆m2

32

)2

(22)

with respect to s̃13 and ∆m̃2
32, where σdata denotes the three-years’ run statistical error(s).

The s̃13 parameter has been left free (to be determined by Daya Bay) whereas ∆m̃2
32 should
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obey the existing experimental constraints. The value of χ2 in the minimum (χ2
min) then

quantifies the likelihood that the Daya Bay data could be fitted by the standard oscillation

formula. For two fitted parameters, χ2
min = 2.3 and 4.61 corresponds to 68% and 90% C.L.,

respectively.

D. Results

For the sake of simplicity, in what follows we shall consider only the “flavorless” versions

of the oscillation probability formulas relevant to the three cases of our interest, namely

Eqs. (13), (15) and (17). This amounts to setting φµ = φτ ≡ φ and |εµ| = |ετ | ≡ |ε|
everywhere. Let us recall that, besides the standard oscillation parameters, in Case I and

Case IIa the relevant input NSI parameters are, namely, the (universal) magnitude of the NSI

effects |ε| and the corresponding CP phase φ (more precisely, the phase difference φ′ = φ−δ

where δ denotes the leptonic Dirac CP phase) while in Case IIb the NSI parameters entering

the survival probability are |ε|, Φ (again, it is rather Φ′ = Φ− δ) and ∆φ.

Let us also reiterate that only the statistical errors have been taken into account in the

current analysis. A complete study including also the systematic uncertainties would require

a complex simulation of the Daya Bay experiment. This, however, is beyond the scope of

the present study.

1. Case I

As we argued in Sect. IIIA, in the symmetric setting with εs = εd†, the NSI effects cannot

be distinguished from the pure standard oscillations. Even if the underlying mixing angle θ13

is zero, one can still fit the data with a standard oscillation curve corresponding to a nonzero

value of the effective mixing angle θ̃13 given by formula (14). A pair of representative plots

depicting the expected ratio between the FAR and the DYB antineutrino spectra in this

situation are given in Figure 5. One can see that the data are well fitted by the standard

oscillation formula with just the effective mixing angles different from their “true” values.
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FIG. 5: Sample fits of the ratio between the detected antineutrino spectra in the FAR and DYB

near detectors in the case that the production and detection process (including the relevant non-

standard interactions) are just inverse of each other (Case I, Sect. IIIA), i.e., εs = εd†. In the

left panel, sin2 2θ13 = 0, |ε| = 0.04 and φ′ = 0 have been used; in the right panel, sin2 2θ13 = 0.1,

|ε| = 0.02 and φ′ = 0 instead. The dotted lines correspond to the standard oscillations without

NSI’s, while the solid lines are the fits based on the standard oscillation survival probability (10)

used in Eq. (21) with the effective mixing angles given by sin2 2θ̃13 = 0.013 (left panel) and

sin2 2θ̃13 = 0.138 (right panel).

2. Case IIa

In the “flavorless” setting, the relevant Case-IIa formula (15) simplifies into

P (ν̄s
e → ν̄d

e ) ≃ P (ν̄e → ν̄e)SM − 4s13(s23 + c23)|ε| cosφ′ sin2

(

∆m2
32L

4E

)

+ 2s13(s23 + c23)|ε| sinφ′ sin

(

∆m2
32L

2E

)

+ 2s12c12(c23 − s23)|ε| sinφ
(

∆m2
21L

2E

)

, (23)

where φ′ ≡ φ − δ. Note that in most cases the last term can be neglected due to the

experimental proximity of θ23 to π
4
.

We also stress that for φ′ → 0 or π the leading NSI contribution corresponding to the

sine-squared term above essentially mimics the effects of standard oscillations with a shifted

mixing angle because, besides the last negligible term, there is no net NSI induced CP-

violating effect. One can see this on the left panel in Figure 6 where, indeed, the data can

be fitted by the standard oscillation formula with just a shifted effective mixing angle θ̃13.

However, the change is still proportional to s13 and thus no shift is induced if the underlying
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FIG. 6: Sample fits of the ratio between the detected antineutrino spectra in the FAR and DYB

near detectors in the asymmetric setting where the NSI’s are assumed to affect only the production

process (Case IIa, Sect. IIIB 1). We adopt sin2 2θ13 = 0.1 and |ε| = 0.04 in both panels. Further-

more, in the left panel, φ′ = 0 is assumed, while in the right panel we take φ′ = π
2
(maximal CP

phase difference). The dotted lines correspond to the standard oscillations without NSI’s, while

the dashed lines show the fitted curves with the effective mixing angle sin2 2θ̃13 = 0.135 (left panel)

and sin2 2θ̃13 = 0.105 (right panel). In addition, the solid lines stand for the fitted curves with two

parameters θ̃13 and ∆m̃2
32. In the left panel, the solid line coincides with the dashed line, whereas

in the right panel it does not and the best fit corresponding to the values sin2 2θ̃13 = 0.109 and

∆m̃2
32 = 2.20× 10−3 eV2 requires a significant shift in ∆m̃2

32 with rescpect to its central value.

θ13 happens to be zero3.

However, for non-trivial φ′, the NSI effects can no longer be subsumed into a pure shift

in θ13 and the standard oscillation formula no longer fits the data even if one admits for

a certain variation in ∆m2
32, see the right panel in Figure 6. Thus, in this case, one can

in principle attempt to constrain the |ε| and φ′ parameters, at least in some parts of their

parameter space.

In Figure 7 we present the relevant exclusion regions for these parameters. Therein, one

can observe an intersting π-periodicity in φ′, which can be understood from the shape of the

second correction in formula (23). Remarkably enough, even with variable ∆m2
32 and |ε| as

low as 0.02, in some cases the NSI effects can be distinguished from the standard oscillation

at 90% C.L.

3 As we shall see, this is different from the Case IIb setting studied in Sect. IVD3 where a nonzero value

of the effective mixing angle can be generated even for θ13 = 0.
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FIG. 7: Regions of parameters (on the right hand side of the curves), where the Daya Bay exper-

iment can disfavour the standard oscillation hypothesis at 68% (thin curves) and at 90% (thick

curves) C.L. for sin2 2θ13 = 0.1. The solid curves stand for a standard two-parameter fit with

variable θ13 and ∆m2
32 while the dashed curves correspond to the fit with σ∆m2

32

pushed down to

0.025 × 10−3eV2.

3. Case IIb

In the more general case when both the source and detector effects are present there is

an extra set of parameters at play associated to εdα, i.e., the relevant magnitudes |εdα| and
also the extra detector NSI phases φd

α which combine with the source ones into the phase

averages Φα and the phase differences ∆φα, c.f. Eq. (12). As before, we will assume a

“flavorless” form of NSI’s and deliberately put |εd| = |εs| ≡ |ε| in order to simplify the

numerical analysis. Then formula (16) reduces to

P (ν̄s
e → ν̄d

e ) ≃ P (ν̄e → ν̄e)SM

− 4(s23 + c23)
2|ε|2 sin

(

∆m2
32L

4E

)

sin

(

∆m2
32L

4E
+ 2∆φ

)

− 8s13(s23 + c23)|ε| cosΦ′ sin

(

∆m2
32L

4E

)

sin

(

∆m2
32L

4E
+∆φ

)

− 4s12c12(c23 − s23)|ε| sin∆φ cosΦ

(

∆m2
21L

2E

)

, (24)

where, again, Φ′ ≡ Φ− δ. As before, the last term is negligible for θ23 close to π/4.
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FIG. 8: Sample fits of the ratio between the detected antineutrino spectra in the FAR and DYB

near detectors in Case IIb. We adopt sin2 2θ13 = 0.1 and |ε| = 0.02 as well as ∆φ = π
2
in both

panels. Furthermore, in the left panel, Φ′ = π
2
is assumed, while in the right panel we put Φ′ = 3

2
π.

The dotted lines correspond to the standard oscillations without NSI’s, while the dashed lines show

the fitted curves with the effective mixing angle sin2 2θ̃13 = 0.103 (left panel) and sin2 2θ̃13 = 0.092

(right panel). In addition, the solid lines stand for the fitted curves with two parameters, i.e.,

sin2 2θ̃13 = 0.105 and ∆m̃2
32 = 2.20 × 10−3 eV2 in the left panel, and sin2 2θ̃13 = 0.094 and

∆m̃2
32 = 2.72× 10−3 eV2 in the right panel.

For the sake of illustration, in Figure 8 we show two specific examples of the R-fits

obtained in Case IIb. There, the data are fitted by the standard oscillations, first with

variable θ13 and ∆m2
32 (solid lines) and then also with only θ13 as a free parameter (dashed

lines).

In Figure 9, the exclusion plots for the ∆φ and |ε| parameters are given for sin2 2θ13 and

two specific choices of Φ′. The sensitivity in |ε| is similar to that observed in Figure 8 for

Case IIa. Notice, however, that the two leading corrections in Eq. (16) have a very different

∆φ-periodicity. The former is π-periodic in ∆φ while the latter is π
2
-periodic in ∆φ. The

reason is easily seen from the analytic shape of the relevant survival probability (24). Indeed,

for Φ′ = 0, the second correction in formula (24) dominates over the first one while it is the

other way round for Φ′ = π
2
.

Regions in the Φ′−∆φ plane where Daya Bay experiment could distinguish non-standard

effects from standard oscillations (at 68% and 90% C.L.) are shown in Figure 10 for different

values of |ε| and sin2 2θ13. If the value of the underlying θ13 is close to the CHOOZ limit

(sin2 2θ13 < 0.17) and |ε| = 0.02 then the region is relatively large, see the upper-left panel in

Figure 10. With decreasing |ε| (from left to right) or θ13 (from up to down), the observability
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FIG. 9: Regions of parameters (on the right hand side of the curves), where the Daya Bay exper-

iment can disfavour the standard oscillation hypothesis at 68% (thin curves) and at 90% (thick

curves) C.L. for sin2 2θ13 = 0.1 and Φ′ = 0. Here we assume Φ′ = 0 (left panel) and Φ′ = π
2
(right

panel). As before, the solid curves stand for a standard two-parameter fit with variable θ13 and

∆m2
32 while the dashed curves correspond to the fit with σ∆m2

32

pushed down to 0.025× 10−3eV2.

domains become naturally smaller.

The possible NSI effects in an independent Daya Bay determination of the standard

oscillation parameters θ13 and ∆m2
32 are illustrated in Figure 11. One can see that, at least

in some cases, the corresponding global best fit point can differ significantly from the “true”

values of these parameters, potentially leading to a tension between Daya Bay and other

experiments.

Yet another comment is in order here. As we have seen in Case IIa (c.f., Sect. IVD2),

with source effects only there is no way to end up with a significant effective θ13 if the

underlying θ13 was zero, while here one still gets θ̃13 6= 0 even for θ13 = 0 due to the first

term in Eq. (24). Such a qualitative difference in the behavior of these two settings can be

heuristically understood as follows: In the former case, there are effectively only two small

parameters (with their corresponding CP phases) at play, namely |εd| and s13 while there

are three such quantities in the latter case, in particular |εs|, |εd| and s13. In Case IIa,

there is thus only a single relevant phase difference governing the CP-even effects [due to
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FIG. 10: Regions of parameters (interior), where the Daya Bay experiment can disfavour the

standard oscillation hypothesis at 68% (thin curves) and at 90% (thick curves) C.L. for |ε| = 0.02

(left column) and |ε| = 0.01 (right column) and sin2 2θ13 = 0.1 (upper row) and sin2 2θ13 = 0.05

(lower row). Again, the solid curves stand for a standard two-parameter fit with variable θ13 and

∆m2
32 while the dashed curves correspond to the fit with σ∆m2

32

pushed down to 0.025× 10−3eV2.

the first correction in Eq. (23)] which, however, becomes ill defined in the s13 → 0 limit,

and thus its effect can be “rotated away”. Remarkably, this is not so in Case IIb since there

is an observable phase difference ∆φ left even in the s13 → 0 limit and the corresponding

contribution to the effective θ̃13 due to the first term in Eq. (24) cannot be transformed out.
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FIG. 11: The effects of the non-standard interactions in the determination of the standard os-

cillation parameters θ13 and ∆m2
32 at Daya Bay after 3 years of running. The upper cross

denotes the assumed “true” values of the standard oscillation parameters sin2 2θ13 = 0.1,

∆m2
32 = 2.45 × 10−3eV2. Turning on the NSI parameters (fixing, for instance, |ε| = 0.02,

Φ = π/2, ∆φ = π/2 in case IIb, c.f., Sect. IIIB 2), the best standard oscillation fit is shifted to

sin2 2θ̃13 = 0.105 and ∆m̃2
32 = 2.20 × 10−3eV2 (the lower cross) and the corresponding χ2

min = 12.6

indicates a significant incompatibility between the Daya Bay data and the standard oscillation hy-

pothesis. We display three solid curves depicting the χ2 levels around the best-fit point; from thick

to thin, χ2 = 20, 40 and 60, respectively. The shaded bands depict the pull (due to the second

term in Eq. (22)) inflicted by ∆m̃2
32 departing from the “true value”; the dark/light and light/white

boundaries enclose the ∆m̃2
32 = (2.45±0.09)×10−3eV2 and ∆m̃2

32 = (2.45±0.18)×10−3eV2 regions

(about 1σ and 2σ), respectively.

V. SUMMARY AND OUTLOOK

In this work, we have performed a detailed analysis of the non-standard antineutrino

interaction effects in the Daya Bay short-baseline reactor antineutrino experiment.

The NSI’s in reactor antineutrino experiments can exhibit themselves in various ways

depending on the character of the underlying physics. If, for instance, the non-standard

interactions in the production and detection processes happen to be exactly the same, i.e.,
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εs = εd†, the net effect consists in a shift in the depth of the oscillation dip in the measured

ratio of the far and near detector antineutrino spectra corresponding to the extracted value

of the mixing angle θ13. Thus, in this case, the NSI effects can not be distinguished from

the standard oscillations [20].

If, however, this assumption is relaxed, owing to, e.g., non-standard multi-body interac-

tions in the source, the measured antineutrino spectra are distorted in a specific way and

become incompatible with the standard oscillation interpretation – besides the change of

the depth of the first dip, also its energy position is shifted. This can be only partially

accounted for by the standard oscillation formula if the extracted values of the mixing angle

θ13 and, in particular, the corresponding mass-squared difference ∆m2
32, are both allowed

to differ significantly from their genuine values. However, in practice, the effect can not be

entirely subsumed into a shift in the θ13 −∆m2
32 plane due to the strict constraints on these

parameters from other measurements.

In Sect. II, we have derived general formulas for the oscillation probabilities including the

non-standard effects in the antineutrino production and detection processes, arguing that

the matter effects throughout the antineutrino propagation do not play any significant role

in short baseline reactor neutrino experiments such as Daya Bay.

In Sect. III we specified the setting of our main interest corresponding to three different

configurations of the NSI parameters. In Sect. IV we performed an illustrative numerical

analysis of these settings based on an empirical model of the reactor antineutrino spectrum at

Daya Bay assuming for simplicity that the NSI effects are flavour blind. Taking into account

the statistical uncertainties corresponding to three years of running, we have studied how the

NSI’s could modify the antineutrino energy spectra and the measured values of the neutrino

mixing parameters in practice. We observe that, under certain conditions, the Daya Bay

experiment can provide hints of such non-standard effects at more than 90% C.L.

We should also stress the important complementary role the long baseline experiments,

such as, e.g., accelerator experiments, superbeams, beta-beams or a neutrino factory, could

play. Namely, if θ13 or ∆m2
32 as determined by Daya Bay differ significantly from the other

results, one would have to take the NSI effects seriously as one of the possible sources of such

a discrepancy. In that case, a combined analysis of the Daya Bay data together with the

data from the other experiments, including the NSI’s of the kind considered in this study,

would be of utmost importance.
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