Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The multiphase physics of sea ice: A review

MPG-Autoren
/persons/resource/persons37281

Notz,  D.
Max Planck Research Group The Sea Ice in the Earth System, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

tc-5-989-2011.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hunke, E., Notz, D., Turner, A., & Vancoppenolle, M. (2011). The multiphase physics of sea ice: A review. Cryosphere, 5, 989-1009. doi:10.5194/tc-5-989-2011.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0012-2449-9
Zusammenfassung
Rather than being solid throughout, sea ice contains liquid brine inclusions, solid salts, microalgae, trace elements, gases, and other impurities which all exist in the interstices of a porous, solid ice matrix. This multiphase structure of sea ice arises from the fact that the salt that exists in seawater cannot be embedded into the water-ice crystal lattice upon formation of sea ice, but remains in liquid solution. Depending on the ice porosity (determined by temperature and salinity), this brine can drain from the ice, taking other sea ice constituents with it. Thus, sea ice salinity and microstructure are tightly interconnected and play a significant role in polar ecosystems and climate. As large-scale climate modeling efforts move toward earth system simulations that include biological and chemical cycles, renewed interest in the multiphase physics of sea ice has strengthened research initiatives to observe, understand and model this complex system. This review article provides an overview of these efforts, highlighting known difficulties and requisite observations for further progress in the field. We focus on mushy-layer theory, which describes general multiphase materials, and on numerical approaches now being explored to model the multiphase evolution of sea ice and its interaction with chemical, biological and climate systems. © 2011 Author(s)