Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination

MPG-Autoren

Barski,  J. J.
Max Planck Society;

/persons/resource/persons38994

Meyer,  M.
Emeritus Group: Neurochemistry / Thoenen, MPI of Neurobiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Barski, J. J., Hartmann, J., Rose, C. R., Hoebeek, F., Morl, K., Noll-Hussong, M., et al. (2003). Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. Journal of Neuroscience, 23(8), 3469-3477.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0012-2329-A
Zusammenfassung
Long-term depression (LTD) of Purkinje cell-parallel fiber synaptic transmission is a critical determinant of normal cerebellar function. Impairment of LTD through, for example, disruption of the metabotropic glutamate receptor-IP3-calcium signaling cascade in mutant mice results in severe deficits of both synaptic transmission and cerebellar motor control. Here, we demonstrate that selective genetic deletion of the calcium-binding protein calbindin D-28k ( calbindin) from cerebellar Purkinje cells results in distinctly different cellular and behavioral alterations. These mutants display marked permanent deficits of motor coordination and sensory processing. This occurs in the absence of alterations in a form of LTD implicated in the control of behavior. Analysis of synaptically evoked calcium transients in spines and dendrites of Purkinje cells demonstrated an alteration of time course and amplitude of fast calcium transients after parallel or climbing fiber stimulation. By contrast, the delayed metabotropic glutamate receptor-mediated calcium transients were normal. Our results reveal a unique role of Purkinje cell calbindin in a specific form of motor control and suggest that rapid calcium buffering may directly control behaviorally relevant neuronal signal integration.