English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sensory Experience Alters Specific Branches of Individual Corticocortical Axons during Development

MPS-Authors

Bruno,  R. M.
Max Planck Society;

Hahn,  T. T. G.
Max Planck Society;

Wallace,  D. J.
Max Planck Society;

de Kock,  C. P. J.
Max Planck Society;

/persons/resource/persons39046

Sakmann,  B.
Emeritus Group: Cortical Column in silico / Sakmann, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bruno, R. M., Hahn, T. T. G., Wallace, D. J., de Kock, C. P. J., & Sakmann, B. (2009). Sensory Experience Alters Specific Branches of Individual Corticocortical Axons during Development. Journal of Neuroscience, 29(10), 3172-3181.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-209A-4
Abstract
Sensory experience can, over the course of days to weeks, produce long-lasting changes in brain function. Recent studies suggest that functional plasticity is mediated by alterations of the strengths of existing synapses or dynamics of dendritic spines. Alterations of cortical axons could also contribute to functional changes, but little is known about the effects of experience at the level of individual corticocortical axons. We reconstructed individual layer (L) 2/3 pyramidal neurons filled in vivo in developing barrel cortex of control and partially sensory-deprived rats. L2 axons had larger field spans than L3 axons but were otherwise equivalently affected by deprivation. Whisker trimming over similar to 2 weeks markedly reduced overall length of axonal branches in L2/3, but individual horizontal axons were as likely to innervate deprived areas as spared ones. The largest effect of deprivation was instead to reduce the length of those axonal branches in L2/3 oriented toward deprived regions. Thus, the location of a branch relative to its originating soma, rather than its own location within any specific cortical column, was the strongest determinant of axonal organization. Individual axons from L2/3 into L5/6 were similarly altered by whisker trimming although to a lesser extent. Thus, sensory experience over relatively short timescales may change the patterning of specific axonal branches within as well as between cortical columns during development.