日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Structural Long-Term Changes at Mushroom Body Input Synapses

MPS-Authors
/persons/resource/persons38944

Kremer,  M. C.
Research Group: Dendrite Differentiation / Tavosanis, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38964

Leiss,  F.
Research Group: Dendrite Differentiation / Tavosanis, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38930

Knapek,  S.
Research Group: Dendrite Differentiation / Tavosanis, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38838

Förstner,  F.
Department: Systems and Computational Neurobiology / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39095

Tavosanis,  G.
Research Group: Dendrite Differentiation / Tavosanis, MPI of Neurobiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Kremer, M. C., Christiansen, F., Leiss, F., Paehler, M., Knapek, S., Andlauer, T. F. M., Förstner, F., Kloppenburg, P., Sigrist, S. J., & Tavosanis, G. (2010). Structural Long-Term Changes at Mushroom Body Input Synapses. Current Biology, 20(21), 1938-1944.


引用: https://hdl.handle.net/11858/00-001M-0000-0012-1F53-3
要旨
How does the sensory environment shape circuit organization in higher brain centers? Here we have addressed the dependence on activity of a defined circuit within the mushroom body of adult Drosophila. This is a brain region receiving olfactory information and involved in long-term associative memory formation [1]. The main mushroom body input region, named the calyx, undergoes volumetric changes correlated with alterations of experience [2-5]. However, the underlying modifications at the cellular level remained unclear. Within the calyx, the clawed dendritic endings of mushroom body Kenyon cells form microglomeruli, distinct synaptic complexes with the presynaptic boutons of olfactory projection neurons [6, 7]. We developed tools for high-resolution imaging of pre- and postsynaptic compartments of defined calycal microglomeruli. Here we show that preventing firing of action potentials or synaptic transmission in a small, identified fraction of projection neurons causes alterations in the size, number, and active zone density of the microglomeruli formed by these neurons. These data provide clear evidence for activity-dependent organization of a circuit within the adult brain of the fly.