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The search for gravitational-wave signals in detector data is often hampered by the fact that
many data analysis methods are based on the theory of stationary Gaussian noise, while actual
measurement data frequently exhibit clear departures from these assumptions. Deriving methods
from models more closely reflecting the data’s properties promises to yield more sensitive procedures.
The commonly used matched filter is such a detection method that may be derived via a Gaussian
model. In this paper we propose a generalized matched filtering technique based on a Student-t
distribution that is able to account for heavier-tailed noise and is robust against outliers in the
data. On the technical side, it generalizes the matched-filter’s least-squares method to an iterative,
or adaptive, variation. In a simplified Monte Carlo study we show that when applied to simulated
signals buried in actual interferometer noise it leads to a higher detection rate than the usual
(Gaussian) matched filter.

PACS numbers: 02.50.-r, 04.80.Nn, 05.45.Tp, 95.75.Wx

I. INTRODUCTION

Since the existence of gravitational radiation has been
established as a consequence from general relativity the-
ory, a great amount of effort has gone into the devel-
opment of instruments and methods to detect gravita-
tional waves directly [1, 2]. Gravitational waves (GWs)
are notoriously weak compared to the sources of noise in
today’s ground-based gravitational wave detectors, and
so it takes both extraordinarily sensitive instruments as
well as sophisticated data analysis techniques to measure
them. The output of an interferometric GW detector is
essentially a time series of non-white noise, and — poten-
tially — a superimposed signal whose exact waveform is
determined by several parameters. Data analysis aiming
for GW detection hence requires filtering of time-series
data for rare, weak signals that are often of a known, pa-
rameterized shape. Many commonly used approaches are
based on matched filtering the data. The matched filter
may be derived as a maximum-likelihood (ML) detection
method in the framework of a Gaussian noise model, but
more generally will actually be ML procedure for a wider
class of models. While the method works remarkably well
and is able to discriminate weak signals from the noise,
it commonly runs into problems due to non-Gaussian or
non-stationary behaviour of the actual instrument noise.
For example, the matched filter often is sensitive to out-
liers or loud transient noise events in the data, which,
although showing little similarity with the signal sought
for, also do not look like plain noise either. A lot of effort
needs to go into identifying such false alarms.
We propose a more robust procedure that is based on

a Student-t distribution for the noise, as introduced in
Ref. [3]. Several motivations may be used for introducing
the Student-t model; most obviously it exhibits “heav-
ier tails” and non-spherical probability density contours,
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allowing to accommodate outliers in the noise. Alter-
natively, the model may also be seen as incorporating
imperfect prior knowledge of the noise spectrum, either
because it is only estimated to limited accuracy, or be-
cause it is varying over time. Models of this kind are
commonly used for robust parameter estimation, but, as
we will show in the following, the model also exhibits
a better performance for detection purposes when the
assumption of stationary Gaussian noise is violated. We
expect the proposed filtering method to be useful in other
signal processing contexts as well.

In the following section II we will first derive the usual
matched filter from a Gaussian noise model. In section III
we introduce the Student-t model, elaborate on the mo-
tivation for its use as well as point out the differences to
the Gaussian model, and derive the analogous filtering
procedure. In section IV we report on a case study using
real detector data and simulated signals to show that here
the Student-t based filter indeed yields a better detection
rate. We close with some concluding remarks.

II. GAUSSIAN MATCHED-FILTERING

A. General

A matched filter may be derived in different ways, for
example based on considerations of the residual sum-of-
squares (or power) decomposition, without reference to
a more specific noise model [4]; however, here we will
concentrate on a derivation via the assumption of sta-
tionary Gaussian noise and the Whittle likelihood. This
will allow to easily generalize the usual matched filtering
method to the case of Student-t distributed noise in the
following.

http://arxiv.org/abs/1109.0442v1
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B. The Gaussian noise model

In order to implement the assumption of stationary,
Gaussian noise residuals, the Whittle likelihood approx-
imation is commonly utilized [3, 5, 6]. In the Whittle
approximation, signal and noise time series are treated
in their Fourier-domain representation. The explicit as-
sumption being made on the noise n(t) is that its dis-
crete Fourier transform ñ(f) is independently Gaussian
distributed with zero mean and variance proportional to
the power spectral density (PSD):

Var
(

Re
(
ñ(fj)

))

= Var
(

Im
(
ñ(fj)

))

= N
4∆t

S1(fj), (1)

where fj is the jth Fourier frequency, S1(fj) is the
corresponding 1-sided power spectral density, and j =
0, . . . , N/2 indexes the Fourier frequency bins. An ex-
plicit definition of the Fourier transform conventions used
here is given in the appendix.
For some measured data d(t) one then commonly as-

sumes a parameterized signal sθ(t) with parameter vec-
tor θ and additive Gaussian noise with a known 1-sided
power spectral density S1(f):

d(t) = sθ(t) + n(t) ⇔ d̃(f) = s̃θ(f) + ñ(f) (2)

(i.e., additivity holds in both time and Fourier domains).
The corresponding likelihood function then is given by

p
(
d|θ
)
∝ exp

(

− 1
2

∑

j

|d̃(fj)− s̃θ(fj)|2
N
4∆t

S1(fj)

)

(3)

[3].

C. Likelihood maximisation

1. ML detection and the profile likelihood

If there were no unknown signal parameters to the
signal model (like time-of-arrival, amplitude, phase,...),
then, according to the Neyman-Pearson lemma [7], the
optimal detection statistic would be the likelihood ratio
between the “signal” and “no-signal” models. Once there
are unknowns in the signal model, a common approach is
to use a generalized Neyman-Pearson test statistic, that
is, the maximized likelihood ratio, where maximization
is carried out over the unknown parameters [7]. While
this is in general not an optimal detection statistic, this
ad hoc approach is often efficient and effective. Such a
maximum likelihood (ML) detection approach is closely
related to ML estimation, as either way the parameter
values maximizing the likelihood will need to be derived.
In case of a Gaussian noise model as in (3), maximization
of the likelihood is equivalent to minimizing a weighted
sum-of-squares, i.e., a weighted least-squares approach.
It should be noted that in a Bayesian reasoning frame-

work, the detection problem would be approached via

the marginal likelihood rather than the maximized like-
lihood [8, 9]. The marginal likelihood is the expectation
of the likelihood function with respect to the prior dis-
tribution, and both marginal and maximized likelihood
may be equivalent for a certain choice of the prior dis-
tribution. One can show the marginal likelihood to be
optimal for any particular choice of prior distribution,
while the maximized likelihood in general is not (see e.g.
[10, 11]). Maximization of the likelihood on the other
hand is commonly much easier computationally.
As will be seen in the following, it is often convenient

to divide the parameter vector into subsets, as it may be
possible to analytically maximize the likelihood for fixed
values of some parameters over the remaining parame-
ters. This maximized conditional likelihood as a function
of a subset of parameters is also called the profile likeli-
hood. If a profile likelihood is given, likelihood maximiza-
tion may be reduced to maximizing over the remaining
lower-dimensional parameter subspace. As an example,
consider a signal having 3 free parameters: amplitude,
phase and time of arrival. If likelihood maximization can
be done analytically over amplitude and phase for any
given arrival time, this results in a profile likelihood that
is a function of time. The likelihood’s overall maximum
then may be computed via a numerical brute-force search
of the profile likelihood over the time parameter.

2. Why care about linear models?

In signal processing in general, and in GW data anal-
ysis in particular, the signals of interest are commonly
parameterized (among other additional parameters) in
terms of an amplitude and a phase parameter. Consider
e.g. a simple sinusoidal signal of the form

sA,φ,f(t) = A sin(2πft+ φ) (4)

= βs sin(2πft) + βc cos(2πft) (5)

which instead of amplitude A and phase φ may equiv-
alently be parameterized in terms of sine- and cosine-
amplitudes βs and βc. Other examples of signal models
given in terms of linear combinations are the singular
value decomposition approach used e.g. in [12, 13] or the
transformation of antennae pattern effects into four am-
plitude parameters in the derivation of the F -statistic
[14]. A linear model formulation will turn out conve-
nient in the following, as a linear (or conditionally lin-
ear) model will allow to perform (conditional) likelihood
maximization analytically.

3. The general linear model

Consider a linear model for the data, i.e.,

y = Xβ + ǫ (6)

where y is a N -dimensional data vector, X is a (N × k)-
matrix, β is a k-dimensional parameter vector, and ǫ is
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an N -dimensional vector of error terms. The errors ǫ are
assumed to be Gaussian distributed with mean zero and
some covariance matrix Σ.

In the above signal processing context, y and ǫ are
the N -dimensional vectors of re-arranged real and imag-
inary parts of Fourier-domain data (d̃) and noise (ñ),
the signal sθ is given by a linear combination of the
columns of a matrix X according to the parameter vec-
tor β, and the noise covariance Σ is a diagonal matrix
defined through (1).

The Gaussian likelihood function is characterized by

p(y|β) ∝ −(y −Xβ)′ Σ−1 (y −Xβ). (7)

In the linear model, the likelihood may be maximized
analytically, and the ML estimator for the unknown pa-
rameter vector β is given by

β̂ = (X ′Σ−1X)−1X ′Σ−1y (8)

[8, 15].

In the models of concern here, estimation is simpli-
fied by the fact that the noise covariance Σ is a diagonal
matrix (1) so that its inverse again is diagonal. In ad-
dition, here we add the common assumption that the
vectors spanning the signal manifold, the columns of X ,
are orthogonal. A non-orthogonal basis X would com-
plicate the procedure slightly; see e.g. [14]. Under these
conditions, the pivotal quantities for ML estimation and
detection are

bj = X ′
·,j Σ

−1 y =

N∑

i=1

xi,j yi
σ2
i

and (9)

cj = X ′
·,j Σ

−1 X·,j =
N∑

i=1

x2
i,j

σ2
i

, (10)

i.e., the quadratic forms, or inner products, involving the
jth basis vector (jth column ofX) with the data vector y,
and with itself. The elements of the parameter vector’s

ML estimate β̂ are then given by

β̂j =
bj
cj
, (11)

the maximized likelihood ratio vs. the no-signal model is
given by

log

(
p(y|β̂)
p(y|~0)

)

=

k∑

j=1

b2j
2 cj

, (12)

and the fitted values are given by

ŷ = Xβ̂ =
k∑

j=1

β̂jX·,j =
k∑

j=1

bj
cj
X·,j. (13)

4. The detection statistic and its distribution

We define the statistic

Hk =

k∑

j=1

(
∑N

i=1
xi,j yi

σ2
i

)2

∑N
i=1

x2
i,j

σ2
i

= 2× log

(
p(y|β̂)
p(y|~0)

)

(14)

(see also (12)) which, under the null hypothesis of the
data y being purely noise, is χ2-distributed with k de-
grees of freedom. Under the signal hypothesis, when a
signal sβ⋆ = Xβ⋆ is present in the data, the correspond-
ing figure evaluated at the true parameter values β⋆,

2× log

(
p(y|β⋆)

p(y|~0)

)

, (15)

will be Gaussian distributed with mean ̺2 and variance
4̺2, where

̺2 =

N∑

i=1

(∑k
j=1 β

⋆
j xi,j

)2

σ2
i

=

N∑

i=1

(Xβ⋆)2i
E
[
ǫ2i
] (16)

= (Xβ⋆)′ Σ−1 (Xβ⋆) (17)

is the true signal’s signal to noise ratio (SNR). Conse-
quently, for a signal of given SNR ̺2, the expected log-
arithmic likelihood ratio evaluated at the true parame-

ters is E
[

log
(p(y|β⋆)

p(y|~0)

)]

= 1
2̺

2, while the likelihood ra-

tio p(y|β⋆)

p(y|~0)
follows a log-Normal distribution with median

exp(12̺
2) and expectation E

[
p(y|β⋆)

p(y|~0)

]

= exp(̺2). The

maximized likelihood ratio will be larger than that; the
statistic Hk follows a noncentral χ2

k(̺
2)-distribution with

noncentrality parameter ̺2, its expectation is ̺2 + k , so

that E
[

log
(p(y|β̂)

p(y|~0)

)]

= 1
2

(
̺2 + k

)
. Note that the GW

and signal processing literature is sometimes confusing,
as both ̺2 and Hk, or their square roots, are commonly
referred to as the SNR.
In common signal detection problems, the signal model

is usually only partially linear, as suggested in Sec. II C 2,
so that analytical maximization over the “linear” param-
eters only yields a maximized conditional likelihood, or
profile likelihood. The statistic Hk then is proportional
to the profile likelihood, and (since the likelihood under

the “noise only” null hypothesis, p(y|~0), is a constant)
constitutes a generalized Neyman-Pearson test statistic.
This statistic, or its maximum over additional parame-
ters, is commonly referred to as a detection statistic, as
it is used to find the signal fitting the data best, and
to determine its significance. The detection statistic’s
distributions under null and alternative hypotheses as
stated above only apply for a single (conditional) likeli-
hood maximization, i.e., for a given data set y and a given
model matrixX . When maximizing the profile likelihood
over additional parameters (or pieces of data), the test-
ing problem turns in to a multiple testing problem, and
the statistic’s distribution will be an an extreme value
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statistic [7, 16]. Since the particular statistic Hk only
comes up in the context of the Gaussian model, we will
in the following be mostly referring to the more universal

corresponding likelihood ratio figure p(y|β̂)

p(y|~0)
= exp(12Hk).

D. Common implementation and terminology

In the GW data analysis literature, likelihoods and
matched filters are commonly expressed in terms of the
inner product 〈a, b〉 of real-valued functions (signal tem-
plates or data) a and b, technically defined in terms of
analytical Fourier transforms:

〈a, b〉 =
∫ ∞

−∞

ã(f) b̃(f)∗

S1(f)
df (18)

[6, 14], which in practice is implemented (analogously
to the Whittle likelihood) in terms of discrete Fourier
transforms:

〈a, b〉 (19)

= 2

N/2
∑

j=0

∆t

N

[

Re
(
ã(fj)

)
Re
(
b̃(fj)

)
+Im

(
ã(fj)

)
Im
(
b̃(fj)

)]

S1(fj)
.

In terms of the linear models discussed in the previous
section, this is equivalent to a quadratic form

~a′ Σ−1~b (20)

as in equations (9), (10) above. Note that especially in
the context of the Student-t model discussed below, ex-
pression (18) may be hard to motivate, as it is continuous
in frequency, but the corresponding discrete expression
(19) may readily be related to expressions derived above.
In this terminology, the signal-to-noise ratio of a signal sθ
(16) turns out as

̺2 =
∑

j

|s̃θ(fj)|2
N
4∆t

S1(fj)
= 2 〈sθ, sθ〉, (21)

the correlation of some data d with a template sθ (as in
(9)) simplifies to

∑

j

[

Re
(
d̃(fj)

)
Re
(
s̃θ(fj)

)
+ Im

(
d̃(fj)

)
Im
(
s̃θ(fj)

)]

N
4∆t

S1(fj)

= 2 〈d, sθ〉, (22)

the likelihood ratio of some signal template s for given
data d is

log
(p(d|sθ)
p(d|~0)

)

=

∑

j
|d̃(fj)−s̃θ(fj)|

2

S1(fj)

∑

j
|d̃(fj)|2

S1(fj)

(23)

= 2 〈d, sθ〉 − 〈sθ, sθ〉 (24)

[3, 6, 14], and the maximized likelihood ratio for a signal
that is a linear combination of waveforms (d =

∑

j βjsj+

n, see also (12)) then is

log
(p(d|β̂)
p(d|~0)

)

=
∑

j

〈d, sj〉2
〈sj , sj〉

. (25)

An implementation of a matched filter in the GW con-
text is concisely described e.g. in [17, 18]. The signal
searched for is a “chirping” binary inspiral waveform of
increasing frequency and amplitude, which is character-
ized by 5 parameters, namely two mass parameters deter-
mining the phase/amplitude evolution, and amplitude,
phase and arrival time. The signal waveform s for given
mass parameters ϑ = (m1,m2) is (in analogy to (4))
given in terms of “sine” and “cosine” components ss,ϑ
and sc,ϑ:

sϑ(t) = βs ss,ϑ(t− t0) + βc sc,ϑ(t− t0) (26)

[17] where βs and βc are determined by the orbital phase
and orientation of the binary system, and t0 defines the
signal arrival time. The sine and cosine waveforms here
constitute the signal manifold’s orthogonal “basis vec-
tors”. The actual matched filter detection statistic is
defined as ρ(t0) =

√

Xs(t0)2 +Xc(t0)2, where

Xs/c(t0) ∝
∫

d̃(f) (s̃s/c,ϑ(f))
∗ exp(−2πift0)

Sy(|f |)
df (27)

[17], and where the exponential term does the time-
shifting of data and template against each other. For any
given time shift t0, this filter corresponds to (the square
root of) the detection statistic Hk above (14). Comput-
ing the matched filter (27) across time points t0 yields
the profile likelihood, the conditional likelihood (condi-
tional on time t0 and waveforms ss,ϑ, sc,ϑ) maximized
over phase and amplitude. The “overall” maximum like-
lihood then is determined via a brute-force search over t0
and over additional alternative signal waveforms corre-
sponding to different mass parameters ϑ. Note that the
search over arrival time t0 in (27) may be efficently imple-
mented via another Fourier transform [18]. The matched
filtering algorithm is also described in more detail in Ap-
pendix A3.

In order to claim the detection of a signal, one needs
to determine a threshold for the detection statistic (the
maximized likelihood), with respect to some pre-specified
false alarm rate. The detection statistic’s distributions
derived in Sec. II C 4 are likely not to be of much prac-
tical relevance, due to common non-Gaussian or nonsta-
tionary features in the data. Critical values for the de-
tection statistic instead are commonly computed using
bootstrapping methods (see e.g. [19, 20]).
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FIG. 1. Density functions of Gaussian and Student-t distributions. The left panel shows univariate densities on the logarithmic
scale. The right panel shows density contours of the joint distribution of two independent Gaussian random variables in contrast
with two independent Student-t distributed variables of the same location (µ) and scale (σ). The two Student-t variables have
differing degrees-of-freedom; the one corresponding to the x-axis has ν = 3, while the one along the y-axis has ν = 10.

III. THE STUDENT-T FILTER

A. The Student-t noise model

The Student-t model for time series analysis was in-
troduced in [3] as a generalisation of the commonly
used Gaussian model described in the previous section.
The Student-t distribution has an additional degrees-of-
freedom parameter, essentially controlling the distribu-
tion’s heavy-tailedness, i.e., the allowance for large out-
liers. The Student-t likelihood function is given by

p
(
~d|θ
)

∝
∏

j

(

1 +
1

νj

∣
∣d̃(fj)− s̃θ(fj)

∣
∣
2

N
4∆t

S1(fj)

)−
νj+2

2

(28)

=exp

(

−
∑

j

νj+2
2 log

[

1+
1

νj

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

N
4∆t

S1(fj)

])

(29)

[3]. According to this model, the residuals (Re(ñ(fj)),
Im(ñ(fj))) within each Fourier frequency bin j follow a

bivariate Student-t distribution [8] with location µ = ~0,

scale matrix Σ = N
4∆t

(
S1(fj) 0

0 S1(fj)

)

, degrees-of-

freedom νj > 0 and implicit dimension 2. This implies
that (i) residuals in different frequency bins are indepen-
dent, (ii) residuals within the same bin are uncorrelated,
but dependent, and (iii) the marginal distribution of each
individual residual is a Student-t distribution with scale
proportional to S1(fj) and degrees-of-freedom νj . De-
creasing values of the degrees-of-freedom parameters νj
imply a heavier-tailed distribution, and in the limit of
νj → ∞ the model again reduces to the Gaussian model.
Besides simply constituting a heavier-tailed noise

model, the Student-t model arises as a generalisation
of the Gaussian model when the power spectral den-
sity S(fj) is treated as uncertain, where the degrees-of-

freedom parameter νj denotes the (prior) precision [3].
So the model is not only applicable in contexts where
the noise itself is in fact t-distributed, but also in cases
where it is Gaussian, but the noise spectrum is a pri-
ori only known to a certain accuracy. Alternatively, the
same model would result when the noise spectrum itself
was assumed to be randomly deviating from the scale
parameter S1(f), according to a χ2 distribution, e.g. be-
cause it is only estimated with some uncertainty, which
in fact resembles the original motivation for introducing
Student’s t-distribution in the context of the t-test and
related procedures [7, 21]. Both randomness or uncer-
tainty of the noise PSD technically lead to the same like-
lihood expression here [3]. In general, the interpretation
of the scale parameter S1(f) in the contexts of the Gaus-
sian and the Student-t model is not necessarily exactly
the same. For the Gaussian model, it may be defined
via the expected power S1(fj) = E

[
2∆t

N |ñ(fj)|2
]
, while

for the Student-t model this only holds in the limiting
case of great certainty (ν → ∞). Within the Student-t
model, the S(f) term specifies the scale of the uncer-
tain PSD parameter, the expected power is in fact given
by E

[
2∆t

N |ñ(fj)|2
]
=

νj
νj−2 S1(fj). The choice of the

degrees-of-freedom parameter νj as well as the spectrum
parameter S1(fj) may be approached in different ways
and may for the filtering purpose eventually be consid-
ered a matter of tuning [3]. In the example in Sec. IV
below, we simply kept the scale parameter S1(fj) to be
the estimated noise spectrum as in the Gaussian case,
and fitted a common d.f. parameter νj = ν for all fre-
quency bins to the empirical data.

B. Comparison to the Gaussian model

When comparing to the Gaussian distribution, first of
all the Student-t distribution exhibits heavier tails, i.e.,
the probability for obtaining “large” values (relative to
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the distribution’s scale) is much greater. While the den-
sity functions are very similar within the range of µ±2σ,
where the bulk of probability is concentrated, the densi-
ties’ ratio will grow indefinitely towards the distributions’
tails (see Fig. 1). The degrees-of-freedom parameter ν
controls the distribution’s heavy-tailedness; a setting of
ν = 1 yields the “pathological” Cauchy distribution, for
ν > 2 the variance is finite and in the limit of ν → ∞ it
again approaches the Gaussian distribution.

Another discriminating feature is the shape of the den-
sity contours. While a Gaussian density will always have
elliptical contours, the Student-t distribution is differ-
ent in that its contours are rather diamond-shaped, with
elongations pointing along the principal axes (see Fig. 1).
This way the Student-t model does not only allow for
larger outliers, but it also considers outliers more likely
to occur only in individual variables rather than jointly in
all variables. Note that this latter effect follows from the
fact the different frequency bins are stochastically inde-
pendent and not merely uncorrelated [22, 23]. Since the
two (real and imaginary) residuals within each Fourier
frequency bin follow a joint, bivariate, t-distribution,
the density contours within bins will still be spherical—
otherwise a strange phase/amplitude dependence would
be implied for the Fourier-domain model. The effect of
independent Student-t variables only comes to bear be-
tween frequency bins.

An important difference to note between Gaussian and
Student-t model is that the least-squares fitting that re-
sults from the Gaussian model will actually be a ML
procedure for any model within the wider class of “ellip-
tically symmetric” models for the noise residuals (includ-
ing e.g. a Student-t model with merely uncorrelated, but
not independent residuals) [22, 23]. The Student-t model
described here hence advances into a fundamentally dif-
ferent class of models.

Student-t or similar models are commonly used in pa-
rameter estimation contexts as robust alternatives to
the Gaussian model that are less sensitive to outliers
in the data [24–27]. Such models may be motivated in
a “top-down” manner by the observation that the data
do not actually fit the Gaussianity assumption, or also
in “bottom-up” way by pointing out that the resulting
least-squares procedures are very sensitive to occasional
outliers in the data. In the spirit of the latter viewpoint,
the concept of M-estimation was introduced, which aims
at “fixing” outlier-sensitive least-squares procedures by
replacing them by more robust statistics corresponding
to more favourable influence functions [28, 29]. Simi-
lar approaches, namely down-weighting or ignorance of
outliers in the data, have been proposed in the context
of gravitational-wave detection before [30, 31], and the
Student-t assumption may in fact be considered a spe-
cial case of M-estimation [26, 27].

Another fix that is commonly applied in GW data anal-
ysis is the χ2 veto [32], which is a figure computed along
with a detection statistic that is supposed to discriminate
actual signals from noise bursts. Such noise events may

show little similarity with the signal template, but may
often, due to non-negligible correlation with the template
and very large power, still seem to indicate the presence
of a signal. The χ2 veto then essentially checks for excess
power that is inconsistent with the shape of the signals
aimed for and that way will rule out such alleged detec-
tions. The consideration of excess residual power is also
implicitly happening in the Student-t model. From the
different likelihood formulations ((3), (29)) one can write
down the corresponding likelihood ratios for some data d
and a signal template sθ:

log

(
p(d|θ,Gauss)

p(d|~0,Gauss)

)

=
∑

j

1

2

( ∣
∣d̃(fj)

∣
∣
2

N
4∆t

S1(fj)
−
∣
∣d̃(fj)− s̃θ(fj)

∣
∣
2

N
4∆t

S1(fj)

)

, (30)

log

(
p(d|θ, Student)
p(d|~0, Student)

)

=
∑

j

νj+2
2 log







1 + 1
νj

∣
∣d̃(fj)

∣
∣
2

N
4∆t

S1(fj)

1 + 1
νj

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

N
4∆t

S1(fj)







. (31)

In both of the above cases the likelihood ratio is a func-

tion of the “data power”

∣
∣d̃(fj)

∣
∣
2

N
4∆t

S1(fj)
and the “residual

power”

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

N
4∆t

S1(fj)
, i.e., the data’s normalized sum-

of-squares in each frequency bin j before and after sub-
tracting the signal sθ. For the Gaussian case, a “data
power” of 10 and a “residual power” of 1 in the jth
bin would have the same effect on the likelihood ratio
as if the numbers were, say, 1010 and 1001 instead; the
only relevant figure is their difference. In the Student-t
model, the latter case would lead to a lower likelihood
ratio; here not only the amount by which the signal sθ is
able to reduce the sum-of-squares is relevant, but also its
magnitude relative to the remaining residual term. The
additional feature of the ML fit that is intrinsically con-
sidered in the Student-t likelihood ratio (31) is essentially
the corresponding coefficient of determination (R2) [15].
As will become obvious in the following, when the actual
implementation is described, the generalisation to the
Student-t model will on the technical side essentially re-
place the least-squares procedure by an adaptive version.
The adaptation step again ensures that excess residual
noise power will downweight the supposed significance of
a signal.

C. Likelihood maximization: the EM-algorithm

While likelihood maximization in the Gaussian model
boils down to least-squares fitting, the maximization step
is not quite as simple for the Student-t model. However,
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due to the structure of the problem, the Expectation-
Maximization (EM) algorithm may be used to efficiently
maximize the likelihood function [8, 33]. In order to ap-
ply the EM algorithm, the likelihood expression needs to
be reformulated. The Student-t likelihood may be viewed
as a marginal likelihood, averaging out a set of unknown
variance parameters ~σ2 [3]. Each of the variance param-
eters σ2

j then corresponds to the power spectral density
at the jth Fourier frequency bin. The EM algorithm’s
details as applied to the present problem are derived in
detail in appendix A2 below. It turns out that maxi-
mization of the Student-t likelihood may be done in an
iterative manner, where each iteration again requires a
weighted least-squares fit as in the Gaussian matched fil-
ter. The EM algorithm requires a starting value θ0 for
the signal parameters. Given θ0, the expression

E(θ0, θ)− 1
2

∑

j

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

N
4∆t

(
νj

νj+2
S1(fj)+

2
νj+2

2∆t
N

∣
∣d̃(fj)−s̃θ0 (fj)

∣
∣
2)

(32)
is maximized with respect to the parameter vector θ.
The parameter value maximizing the above expression
then consitutes the new θ0 value, for which the expres-
sion again is maximized, and so forth. The resulting
sequence of parameter values then converges to the max-

imum likelihood estimate θ̂ [8].
Maximizing the above expression (32) again amounts

to a weighted least-squares fit, exactly as in the case
of the Gaussian matched filter (see also the correspond-
ing likelihood expression (3)). The Student-t filter will
therefore generalize the Gaussian matched filter by re-
placing the least-squares procedure by an iterative, or
adaptive, least-squares fit. Note that the denominator
in (32) simply is a weighted average of the noise spec-
trum (as in (3)) and the previous iteration’s residual noise
power, where the degrees-of-freedom parameter ν defines
the relative weighting. Instead of the “plain” weighted
least-squares match that is done in the Gaussian filter,
the EM-iterations adapt the weights (the denominator
in (32), which in the Gaussian model was the a priori
known, fixed noise spectrum) to the residual noise power
as found in the data, and the level of adaptation is reg-
ulated by the degrees-of-freedom parameter ν.
The (ML) detection statistic does not follow a simple

distributional form as in the Gaussian model, but in the
example below one can already see that both statistics
still behave similarly. The generalized likelihood ratio
statistic will, by Wilks’ theorem, in fact still approxi-
mately follow a χ2-distribution [7, 34].

D. The filter implementation

As for the Gaussian matched filter, the aim again is
to maximize the likelihood (29), i.e., find best-fitting pa-

rameter values θ̂ in parameter space. Again, it is ad-
vantageous if the signal model can (at least partly) be
formulated as a linear model.

There are two obvious points in the matched-filtering
procedure at which one could insert the EM-iterations
in order to generalize it to the Student-t case: either at
the level of each (originally analytical) maximization over
linear model coefficients (usually corresponding to ampli-
tude and phase), or at a higher level, iterating over linear
coefficients as well as the signal arrival time parameter. It
is not obvious whether one implementation is more sen-
sitive than the other, but there definitely are differences
in the implied computational costs. Both approaches are
described and discussed in more detail in appendix A 3.
An implementation of the latter algorithm, together with
analogous matched filter, is available in [35]. In case of a
brute-force search over additional signal parameters (i.e.,
a “template bank”), one could in fact consider moving
the EM-level yet another stage higher.
As a starting parameter value (θ0) for the algorithm,

one could for example use the null vector or an initial
least-squares fit. As a stopping criterion, one could termi-
nate the algorithm once the improvement in logarithmic
likelihood from the previous iteration falls below some
threshold, or when some maximum number of iterations
is reached. Note that—unlike for the Gaussian linear
least-squares fit—the (conditional) likelihood might ac-
tually be multimodal [36], so that different starting val-
ues might lead to different results. It is not obvious
whether this occurs frequently in practice, or rather re-
quires particularly rare pathological circumstances; how-
ever, it does not appear to pose a problem in the example
below.

IV. FILTERING EXPERIMENT ON ACTUAL

DATA

A. General

Besides any theoretical or heuristic arguments why a
Student-t based filter may improve detection, the figure
of eventual relevance is going to be the resulting improve-
ment in detection efficiency when applied to actual data
— keeping in mind the additional complication and com-
putational cost. In the following, we will demonstrate the
filter’s performance in a minimalistic, yet realistic toy
problem. To that end, we will set up a filter for a certain
kind of parameterized signal, and then test it against a
conventional matched filter using injections of simulated
signals. For the additive noise, we will use both simu-
lated Gaussian noise as well as actual gravitational-wave
detector instrument noise. Detection efficiency is going
to be measured via the receiver operating characteristic
(ROC) curve, allowing to compare detection probabilities
for given false alarm probabilities, or vice versa.
In order to make the example realistic, we require a

nontrivial signal waveform to be searched for; in par-
ticular the waveform should not be monochromatic, but
should instead span a wider range of Fourier frequencies.
There should be parameters to be maximized over ana-
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FIG. 2. Quantile-quantile plots (Q-Q plots) of the empirically found normalized residual noise power (33) versus its theoretical
values assuming Gaussian and Student-t models. The marks indicate particular quantiles corresponding to powers of 10 in tail
probability. The 10 largest empirical samples are shown as individual dots, the remaining quantiles are connected by a line.

lytically as well as numerically, and we should use noise
that is non-Gaussian or non-stationary. The example de-
scribed in the following mimics the setup of a search for
binary inspiral signals in interferometric gravitational-
wave detector data (see e.g. [17]). The noise data are
taken from an actual detector, and, for comparison, a
second data set of simulated, Gaussian noise of a realis-
tic noise spectrum is used in parallel. The “search” being
performed however is much simplified and not intended
to be exhaustive or to span an astrophysically sensible
parameter range.

B. The data

The data used in the following examples is going to
be either simulated Gaussian noise with a power spec-
tral density corresponding to LIGO’s initial design sen-
sitivity [37], or real instrument noise from LIGO’s Liv-
ingston interferometer, taken during LIGO’s 5th science
run (“S5”) in late 2005 [38]. The data will be considered
in chunks of 8 seconds length, downsampled to a sampling
rate of 1024Hz, and windowed using a Tukey window ta-
pering 10% of the data (5% at each end). The noise’s
power spectral density S1(f) is estimated essentially us-
ing Welch’s method [39], by considering the empirical
power in the 32 preceding data segments, and taking the
median as a robust estimator. The figures shown in the
following are each based on 100 000 such data chunks.
The signal waveform searched for here is taken to be a

binary inspiral waveform approximated to the 2.0 post-
Newtonian order [40]. The same waveform family is used
for both injections as well as in the detection stage, and
it has 5 free parameters: chirp mass (mc), mass ratio (η),
coalescence time (tc), coalescence phase (φc), and ampli-
tude (A). The signal waveforms injected into the data
were all done at the same mass parameters (mc = 4.5,
η = 0.25), and the amplitude is set such that the sig-
nal’s SNR (as computed based on the current PSD es-

timate) is ̺ =
√

̺2 = 5.257 so that E
[

log
(p(y|β⋆)

p(y|~0)

)]

=

1
2̺

2 = log(106) and E
[
p(y|β⋆)

p(y|~0)

]

= exp
(
̺2
)
= 1012 (see

also Sec. II C 4). Each 8-second chunk of data is eventu-
ally analyzed twice, with and without a signal injection.

C. Setting the degrees-of-freedom parameter

In order to determine a suitable degrees-of-freedom pa-
rameter ν for the Student-t model, we considered the
tail behaviour of the noise. If the Gaussian (“Whittle”)
model was accurate, then the normalized Fourier-domain
noise power at the jth frequency bin,

∣
∣ñ(fj)

∣
∣

√
N
4∆t

S1(fj)
, (33)

being the square root of the sum of two independent stan-
dard Gaussian random variables (see Sec. II B), should
follow a Rayleigh distribution. The residuals’ normalisa-
tion here is done — in analogy to the computations done
in an actual search — via the estimated noise spectrum,
as described in the previous subsection. We are only con-
sidering the binned noise power here (and not the individ-
ual real and imaginary components) as this is the relevant
figure entering both the Gaussian as well as the Student-t
likelihoods ((3), (29), (30), (31)). Under the Student-t
model, instead of being Rayleigh-distributed, the power
(33) would instead follow a similar, more heavy-tailed
distribution. We will refer to the Student-t power’s distri-
bution as the “Student-Rayleigh” distribution here; more
details on this distribution’s particular form are given in
appendix A4.
We investigated the empirical distribution of actual

noise residuals, for both simulated and actual instrumen-
tal data. For the simulated data, this will account for
effects of finite sample size, windowing and PSD estima-
tion, and for actual data it will in addition give some in-
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FIG. 3. Detection statistics (maximized likelihood ratios) based on Gaussian and Student-t models for simulated Gaussian
data (left panel) and actual interferometer noise (right panel). Injections were of SNR ̺ = 5.257.

sight into the effects of realistic nonstationarities or non-
Gaussianities in actual measurement noise. The noise
samples are based on the residuals from 200 eight-second
noise realisations of either simulated Gaussian noise, or
actual instrument noise from LIGO’s Livingston inter-
ferometer. The residuals (33) are each normalized via
a PSD estimate from 32 preceding noise samples, as de-
scribed in the previous section, yielding a total of 800 000
residuals. The data used here did not overlap with the
data used in the following detection experiment.

Fig. 2 shows quantile-quantile plots (Q-Q plots) illus-
trating how well the models fit the actual data. The axes
indicate theoretical (Rayleigh or “Student-Rayleigh”)
quantiles, and the empirical quantiles as found in the
data. If a model fits the data well, both theoretical and
empirical quantiles should coincide, so that the quantiles
follow a straight, diagonal line. A mismatch between
model and data results in a differently shaped curve; in
particular, if the data are more heavy-tailed than pre-
dicted by the model, the curve will have an upward slope
[41].

One can see that the actual data exhibit heavier tails
in both cases of simulated, Gaussian noise as well as the
instrument noise. In the case of Gaussian noise this is due
to the estimation uncertainty in the noise spectrum. If
we had been using the mean instead of the median to esti-
mate the noise PSD, then the distribution of normalized
noise residuals should be exactly Student-t with degrees
of freedom equal to twice the number of noise samples
averaged over (here: 32×2 = 64) [7, 21]. For the median
estimation method, this is only approximately true, but
apparently still roughly accurate; a maximum-likelihood
fit for ν suggests a value of ν ≈ 40 here. For the case
of Gaussian data, the mismatch between assumed and
observed quantiles is minimal anyway.

For the real interferometer noise, the discrepancy be-
tween Gaussian model and actual data is more dramatic;
in the distribution’s tails, the empirical quantiles are sig-
nificantly larger than the assumed quantiles. For exam-
ple, according to the Gaussian model, 99.99% of the sam-

ples should be ≤ 4.3, while empirically the 99.99% quan-
tile lies at 8.1 for actual instrument noise (see the right
panel of Fig. 2). A Student-t model seems to fit the data
better, especially in the distributions’ tails, although dis-
crepancies in the extreme outliers are still large. Try-
ing to estimate the degrees-of-freedom parameter ν from
different subsets of the empirical data yields ML esti-
mates roughly in the range from 5 to 50; in the following
we simply fixed the parameter at ν = 10 for the sim-
ulations involving actual data. A value of > 40 would
not seem to make sense here (even if the data were per-
fectly Gaussian) and in the simulation results below we
found that detection performance seemed to depend only
weakly on ν as long as it was roughly in the range 5–20.
While the Student-t distribution does not fit the data
perfectly, it seems to fit better than the Gaussian model.
Instead of only fitting the d.f. parameter, one could ac-
tually in addition also adapt the t-distribution’s scale to
the data (see also Sec. III A, or [3]).

D. Filtering setup

For each piece of data, the likelihood ratio is maxi-
mized over phase and amplitude for given combinations
of time and mass parameter values, where the evaluated
time points were tc ∈ {6.50, 6.55, . . . , 7.50} and the con-
sidered masses were η = 0.25, mc ∈ {3.0, 3.1, . . . , 6.0}.
The injected signal’s parameter values always were
among the grid points maximized over, so that sig-
nal/template mismatch considerations are not of concern
here. On the technical side, this is implemented in a
loop over template waveforms (corresponding to different
mass parameters) and time points. At each mass/time
combination, computation of the conditionally maxi-
mized Gaussian likelihood ratio amounts to computing
an inner product / quadratic form (see Sec. II C), while
maximizing the conditional Student-t likelihood requires
iterating over several such least-squares fits within the
EM-algorithm (see Sec. III C). The EM-iterations were
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FIG. 4. ROC curves for the Gaussian and the Student-t detection statistics in both data scenarios. The shaded area marks
the region where any sensible detection statistic (one that is not worse than mere guessing) should lie.

terminated whenever the improvement in logarithmic
likelihood over the previous iteration fell below 10−6. In
this example setting, this lead to an average number of
4 EM iterations for each conditional likelihood maximiza-
tion in both noise scenarios. The eventual maximized
likelihood then is given by the overall maximum over the
conditional maxima, and as the detection statistic we

use the maximized likelihood ratio p(d|θ̂)

p(d|~0)
. The algorithm

used was essentially the one described in Appendix A3d.

E. Simulation results

Fig. 3 shows resulting detection statistic values (max-
imized likelihood ratios) under the Gaussian and the
Student-t models both when a signal is injected as well as
when he data are noise only. The signal injections here
were all done at the same amplitude relative to the noise
spectrum (SNR ̺ = 5.257). In general, both detection
statistics are very similar; the Student-t likelihood ratio
tends to turn out slightly lower than the Gaussian one,
in particular in the case of real interferometer noise.

The question of to what extent these differences af-
fect the ability to discriminate signals from noise will be
approached by considering the receiver operating char-
acteristic (ROC) curves. ROC curves are based on the
detection statistics’ (here: empirical) distributions. Plac-
ing different detection thresholds on a detection statistic
yields a corresponding false alarm probability (based on
the distribution under the noise-only hypothesis) as well
as a detection probability (based on the distribution un-
der the particular signal hypothesis). The ROC curve
illustrates these combinations over varying threshold val-
ues [42].

Fig. 4 shows ROC curves for the Gaussian and the
Student-t filter for both noise cases. In the case of sim-
ulated Gaussian noise, both detection statistics perform
almost identically. For real instrument noise on the other
hand, the Student-t model is able to provide a signif-

icantly greater detection probability especially at low
false alarm probabilities. A remarkable feature of the
ROC curve for instrumental noise is that for very low
false alarm probabilities both filters eventually perform
as poorly as mere guessing. The Student-t filter is able
to sustain its discriminating power for lower false alarm
rates, though. This effect is connected to the frequency
of noise outliers (“glitches”) in the data, leading to very
large detection statistic values even in the absence of a
signal. Fig. 5 shows the corresponding detection thresh-
olds as a function of false alarm probabilities. The point
where the detection threshold reaches the injected sig-
nals’ SNR is where the corresponding detection probabil-
ity is ≈ 50%. One can see that, due to the heavy tailed
distribution of detection statistics in the case of actual
instrument noise, the detection threshold necessary for
low false alarm probabilities very quickly grows beyond
values that could obviously be attributed to be due to
the signal injections considered here; the rate of noise
transients of “SNR” greater than the injections’ SNR ex-
ceeds the false alarm rate (in a realistic search, some of
these might actually be vetoed beforehand). This effect
is very obvious here also because signal injections were
done only at a single SNR, but it will of course persist for
other SNR distributions—assuming other SNR distribu-
tions for injections will affect the detection probability,
but not the detection threshold, i.e., the detection pro-
cedure itself.

The exact relative performance of both methods of
course depends on the details of the particular detection
problem, the kind of signal searched for, the parame-
ter space, noise characteristics, data conditioning, and
tuning parameters. The ROC curves shown above are
based on a particular, artificial signal population, but
their general features persist in a number of additional
simulations not shown here, for a range of d.f. settings,
injection SNRs, data from a different instrument, and
data from a different time period.
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V. CONCLUSIONS

We introduced a generalization of the matched filter
that is commonly applied in signal detection problems.
The Student-t filter is derived as a maximum-likelihood
detection method that is based on a Student-t distribu-
tion for the noise, rather than a Gaussian distribution,
which would again yield the common matched filter in-
stead. On the technical side, it generalizes a least-squares
method to an adaptive variety. While a “Gaussian”
matched filter is certainly appropriate when the assump-
tion of stationary Gaussian noise and a known spectrum
is met, there are several ways to motivate the Student-t
filter as a robust alternative when these assumptions are
violated: (i) “theoretically”: the Student-t model allows
for uncertainty in the PSD, heavier-tailed noise and out-
liers, (ii) “heuristically”: the resulting adaptive least-
squares method is less outlier-sensitive, or (iii) “pragmat-
ically”: the filter may turn out more effective in practice,
as in the realistic example shown above. Besides that,
being a generalisation of the (Gaussian) matched filter,
it should generally be able to perform as well or better.
The question of course is whether the gain in detection
efficiency is worth the additional implementation, tuning
and computational effort. The difference in computa-
tional cost for deriving both detection statistics suggests
that a combined, hierarchical search strategy may also
be worth considering.

In the example shown above, the Student-t model’s
degrees-of-freedom parameter was treated as a single con-
stant. In the context of gravitational-wave interferomet-
ric data, this is an oversimplification; a study of actual
instrument noise shows that the Fourier-domain data’s
tail behaviour clearly depends on the frequency [43]. Ac-
counting for this effect in an actual search by fitting indi-

vidual νj parameters for different frequency ranges may
yield a significant improvement. It may also make sense
to specify the degrees-of-freedom parameter dependent
on additional information, like e.g. the data quality cat-
egory [44].
It will be interesting to study the Student-t filter’s

performance in a realistic search for gravitational-wave
signals, in conjunction with the existing infrastructure
(data quality flags, additional vetoes, etc.) and in com-
parison with the conventinal matched filter [18, 19]. We
are also investigating the use of the Student-t model in
the context of Bayesian model selection [45]. Here it may
again yield a more robust discriminator for actual signals
against noise; on the computational side this problem is
based on integration of the likelihood, rather than maxi-
mization, and we do not expect a difference in computa-
tional cost between Gaussian and Student-t models. We
expect the Student-t filtering procedure to be also use-
ful in many other signal-processing contexts, wherever
robustness or uncertainty in the power spectrum is an
issue.
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APPENDIX

1. Discrete Fourier transform

The Fourier transform convention used in this paper is
specified below; it is defined for a real-valued function h
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of time t, sampled at N discrete time points, at a sam-
pling rate of 1

∆t
, and it maps from

{h(t) ∈ R : t = 0,∆t, 2∆t, . . . , (N − 1)∆t} (A34)

to a function of frequency f

{h̃(f) ∈ C : f = 0,∆f , 2∆f , . . . , (N − 1)∆f}, (A35)

where ∆f = 1
N∆t

and

h̃(f) =

N−1∑

j=0

h(j∆t) exp(−2πij∆tf) (A36)

[3].

2. Applying the EM-algorithm

a. Preliminaries

The Expectation-Maximization (EM) algorithm is re-
quired for maximizing the Student-t likelihood; see
Sec. III C. What is desired is the maximum of the
marginal likelihood p(d|θ), which is equivalent to the
marginal density p(θ|d) when assuming a uniform prior
distribution on θ. What is required in order to apply
the EM algorithm are expressions involving the marginal-
ized σ2

j parameters, namely the conditional distribution

P(~σ2|θ, d) and the joint density p(θ, ~σ2|d). The EM algo-
rithm will then iteratively maximize the likelihood func-
tion by performing alternating “expectation” and “max-
imization” steps [8, 33].
The conditional posterior distribution P(σ2

j |θ, d) of the
jth variance parameter σ2

j for given data and signal sθ is

a scaled inverse χ2-distribution:

Inv-χ2

(

νj + 2,
νjS1(fj)j + 4∆t

N

∣
∣d̃(fj)− s̃θ(fj)

∣
∣
2

νj + 2

)

(A37)

[3] with probability density function

f(σ2
j ) ∝

(
σ2
j

)−
νj+4

2 exp

(

−
νj
2 S1(fj) + 4∆t

N

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

2σ2
j

)

(A38)
[3].

The conditional distribution of the data d for given
variances ~σ2 and signal parameters θ, P(y|θ, ~σ2), is Gaus-
sian [3], and the variance parameters’ prior, P(~σ2), again
was Inv-χ2 [3]. The joint conditional density of θ and ~σ2

for given data d is given by

log
(
p(θ, σ2|y)

)
∝ log

(
p(y|θ, σ2)× p(θ, σ2)

)
(A39)

∝ −
∑

j

(

log(σ2
j ) +

4
∆t
N

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

2σ2
j

)

−
∑

j

(

(1 +
νj
2 ) log(σ

2
j ) +

νjS1(fj)

2σ2
j

)

(A40)

= −
∑

j

(

(2 +
νj
2 ) log(σ

2
j ) +

νjS1(fj)+4
∆t
N

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

2σ2
j

)

(A41)

[3].

b. The E-step

For the EM algorithm’s “expectation” step, one needs
to evaluate the conditional posterior expectation

EP(σ2|θ=θ0,y)

[
log
(
p(θ, σ2|y)

)]

=

∫

log
(
p(θ, σ2|y)

)
p(σ2|θ=θ0, y) dσ

2 (A42)

as a function of θ for some given θ0 [8]. Here:

∫

log
(
p(θ, σ2|y)

)
p(σ2|θ=θ0, y) dσ

2 (A43)

∝ −
∑

j

∫ (

(2 +
νj
2 ) log(σ

2) +
νjS1(fj)+4

∆t
N

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

2σ2
j

)

×
((

σ2
)−(2+

νj
2
)
exp
(

νjS1(fj)+4
∆t
N

∣
∣d̃(fj)−s̃θ0(fj)

∣
∣
2

2σ2

))

dσ2
j (A44)

∝ −
∑

j

4
∆t
N

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

2 ×
∫

1
σ2
j

((
σ2
)−(2+

νj
2
)
exp
(

νjS1(fj)+4
∆t
N

∣
∣d̃(fj)−s̃θ0 (fj)

∣
∣
2

2σ2

))

dσ2
j , (A45)

where

∫

1
σ2
j

(∗)
︷ ︸︸ ︷
((

σ2
)−(2+

νj
2
)
exp
(

νjS1(fj)+4
∆t
N

∣
∣d̃(fj)−s̃θ0 (fj)

∣
∣
2

2σ2

))

dσ2
j =

νj + 2

νjS1(fj) + 4∆t

N

∣
∣d̃(fj)− s̃θ0(fj)

∣
∣
2 , (A46)



13

since the term marked by the asterisk (∗) is the density

function of an Inv-χ2
(
νj +2,

νjS1(fj)+4
∆t
N

∣
∣d̃(fj)−s̃θ0 (fj)

∣
∣
2

νj+2

)

probability distribution, so that

∫

log
(
p(β, σ2|y)

)
p(σ2|β=β0, y) dσ

2

∝ − 1
2

∑

j

4
∆t
N

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

νj

νj+2
S1(fj)+

1
νj+2

(
4

∆t
N

∣
∣d̃(fj)−s̃θ0 (fj)

∣
∣
2) (A47)

= − 1
2

∑

j

∣
∣d̃(fj)−s̃θ(fj)

∣
∣
2

N
4∆t

(
νj

νj+2
S1(fj) +

2
νj+2

2∆t
N

∣
∣d̃(fj)−s̃θ0 (fj)

∣
∣
2
)(A48)

=: E(θ0, θ).

c. The M-step

In the EM algorithm’s “maximization” step, the above
expectation E(θ0, θ) (A48) needs to be maximized with
respect to the parameter θ. The parameter value max-
imizing the expectation then constitutes the next iter-
ation’s “new” θ0 value, for which then the expectation
again is maximized, and so forth [8]. As one can see
from expression (A48), maximisation of the expectation
again amounts to mimimizing weighted least-squares, as
in the Gaussian matched filter described above.

3. Pseudocode matched and Student-t filters

a. Preliminaries

This section sketches actual implementations of
Student-t and (Gaussian) matched filters in comparison.
In the following, we will use essentially the same con-
ventions as before; we will be considering a time series d
of length N , sampled at a sampling interval of ∆t. The
signal waveform here is assumed to be a linear combi-
nation of a sine- and a cosine-component (ss,θ, sc,θ), it
has an associated arrival time parameter, and possibly
additional parameters θ (as in (26)). Additional wave-
form parameters (other than amplitude, phase and time)
are then commonly treated by running several matched
filters corresponding to different values of θ. The gener-
alisation to the case of more than two linear signal com-
ponents should be straightforward. The profile likelihood
will be evaluated along a discrete grid of time points
τi (i = 1, . . . ,m), where the special case of τi = i∆t

and m = N is of particular interest. The filter’s output
each time is a single number, the maximized (logarith-
mic) likelihood ratio of signal vs. no-signal models. We
will be making use of the inner product / quadratic form
notation 〈a, b;S〉 as defined in (19). Implementations of
the algorithms sketched in Sec. A 3 c and A3 e are also
provided in [35].

TABLE I. Matched filter, general implementation.

normS = 〈ss,θ, ss,θ; S1〉
normC = 〈sc,θ, sc,θ; S1〉
for (i = 1, . . . ,m) do // loop over time points:

for (j = 0, . . . , N/2) do // time-shift the data:

5: d̃′j = d̃j × exp(2πifjτi)
end for

prodS = 〈ss,θ, d
′; S1〉

prodC = 〈sc,θ, d
′; S1〉

// compute log-likelihood ratio / profile likelihood:
10: maxLLR[i] = (prodS)2/normS+ (prodC)2/normC

end for

return max(maxLLR)

b. The “Gaussian” matched filter: general implementation

The first algorithm (Tab. I) is a “naive” matched fil-
ter implementation that maximizes the likelihood (-ratio)
over a given grid of m time points (τ). The algorithm
mainly consists of a loop over time points, where for each
time point the (conditional) likelihood is maximized over
amplitude and phase. In order to match signal and data
for a certain signal arrival time, the data d are time-
shifted against the signal waveforms ss/c. The eventual
result is the profile likelihood evaluated at the specified
time points, the maximum of which then constitutes the
generalized likelihood ratio detection statistic that is re-
turned.

c. The “Gaussian” matched filter: efficient implementation

If the time points to be maximized over are taken to
be the same as the data time series’ points (τi = i∆t, i =
1, . . . ,m = N), then the matched-filtering procedure may
be implemented much more efficiently. The algorithm
shown in Tab. II will give identical results to the previous,
but it is more efficient as it takes advantage of a Fourier
transform to essentially maximize over amplitude, phase

TABLE II. Matched filter, efficient implementation.

normS = 〈ss,θ, ss,θ; S1〉
normC = 〈sc,θ, sc,θ; S1〉
for (j = 0, . . . , (N − 1)) do // convolve data and signals:

convS[j + 1] = d̃j × s̃∗s,θ,j /S1(fj)

5: convC[j + 1] = d̃j × s̃∗c,θ,j /S1(fj)
end for

// apply Fourier transforms:
FTS = DFT(convS)
FTC = DFT(convC)

10: for (i = 1, . . . , N) do // profile likelihood (-ratio):

maxLLR[i] =
(

∆t

N

)2
(

(FTS[N+1−i])2

normS
+ (FTC[N+1−i])2

normC

)

end for

return max(maxLLR)
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TABLE III. Student-t filter, general implementation.

LL0 = log(p(d, S1, ν)) // log-likelihood noise-only model
for (i = 1, . . . ,m) do // loop over time points:

for (j = 0, . . . , N/2) do // time-shift the data:

d̃′j = d̃j × exp(2πifjτi)
5: end for

// EM-iterations:
k = 1; ∆LLR = 1; LLRprev = 0; S⋆

1 = S1

while (∆LLR > ∆max) and (k ≤ kmax) do
normS = 〈ss,θ, ss, θ; S

⋆
1 〉

10: normC = 〈sc,θ, sc, θ; S
⋆
1 〉

prodS = 〈ss,θ, d
′; S⋆

1 〉
prodC = 〈sc,θ, d

′; S⋆
1 〉

β̂s = prodS/normS

β̂c = prodC/normC

15: n̂ = d′−
(

β̂sss,θ+β̂csc,θ
)

// vector of noise residuals
LL1 = log(p(n̂, S1, ν)) // log-likelihood signal model
LLR = LL1− LL0 // log-likelihood ratio
∆LLR = LLR− LLRprev

LLRprev = LLR

20: for (j = 0, . . . , N/2) do // adapt the spectrum:

S⋆
1 (fj) =

νj
νj+2

S1(fj) +
2

νj+2
2∆t

N

∣

∣ˆ̃nj

∣

∣

2

end for

k = k + 1
end while

25: maxLLR[i] = LLR // profile likelihood (-ratio)
end for

return max(maxLLR)

and time simultaneously (see also Sec. II D). In practice,
one may want to restrict the profile likelihood maximiza-
tion (line 13) to the subset of sensible time-shifts that do
not “wrap” the signal circularly around the data’s end
points. Instead of a Fourier transform, one could also
implement an inverse DFT and would then also not need
to time-reverse the result’s indices (line 11).

d. The Student-t filter: general implementation

This algorithm (see Tab. III) again is a “general” ver-
sion of the Student-t filter, analogous to the general
matched filter (Sec. A 3b), where the set of time points τ
is not restricted. The EM-algorithm here is applied at
the level of each single amplitude/phase maximization
conditional on some time shift τi. The EM component
requires the specification of a threshold ∆max on the im-
provement in logarithmic maximized likelihood ratio (e.g.
10−6), and a threshold kmax on the number of EM itera-
tions (e.g. 100). The Student-t likelihood function

p(x, S, ν) ∝ exp

(

−
∑

j

νj+2
2 log

[

1 +
1

νj

∣
∣x̃j

∣
∣
2

N
4∆t

S1(fj)

])

(see also (29)) only needs to be computed up to a pro-
portionality constant here, as only the likelihood ratio is
of eventual interest.

TABLE IV. Student-t filter, efficient implementation.

LL0 = log(p(d, S1, ν)) // log-likelihood noise-only model
// EM-iterations:
k = 1; ∆LLR = 1; LLRprev = 0; S⋆

1 = S1

while (∆LLR > ∆max) and (k ≤ kmax) do
5: // the “plain” matched filter:

normS = 〈ss,θ, ss,θ ; S
⋆
1 〉

normC = 〈sc,θ, sc,θ; S
⋆
1 〉

for (j = 0, . . . , (N − 1)) do

convS[j + 1] = d̃j × s̃∗s,θ,j /S
⋆
1 (fj)

10: convC[j + 1] = d̃j × s̃∗c,θ,j /S
⋆
1 (fj)

end for

FTS = DFT(convS)
FTC = DFT(convC)
for (i = 1, . . . , N) do

15: maxLLR[i] =
(

∆t

N

)2
(

(FTS[N+1−i])2

normS
+ (FTC[N+1−i])2

normC

)

end for

// end of “plain” matched filter.
// Determine best-fitting template, residuals, etc.:
imax = argmaxi maxLLR[i]

20: for (j = 0, . . . , N/2) do // time-shift the data:

d̃′j = d̃j × exp(2πifjτimax)
end for

prodS = 〈ss,θ, d
′; S⋆

1 〉
prodC = 〈sc,θ, d

′; S⋆
1 〉

25: β̂s = prodS/normS

β̂c = prodC/normC

n̂ = d′ −
(

β̂sss,θ + β̂csc,θ
)

// vector of noise residuals
LL1 = log(p(n̂, S1, ν)) // log-likelihood signal model
LLR = LL1− LL0 // log-likelihood ratio

30: ∆LLR = LLR− LLRprev

LLRprev = LLR

for (j = 0, . . . , N/2) do // adapt the spectrum:

S⋆
1 (fj) =

νj
νj+2

S1(fj) +
2

νj+2
2∆t

N

∣

∣ˆ̃nj

∣

∣

2

end for

35: k = k + 1
end while

return LLR

e. The Student-t filter: efficient implementation

The Student-t filter also may be implemented more ef-
ficiently in case the signal arrival times to maximize over
is taken to be the time points of the original time series
(τi = i∆t, i = 1, . . . ,m = N , as in Sec. A 3 c). This im-
plementation (Tab. IV) then requires to move the level at
which the EM-agorithm is applied from the conditional
maximization over amplitude and phase to the joint am-
plitude/phase/time maximization; effectively this imple-
mentation iteratively runs several matched filters (see
lines 6–16) while adapting the noise spectrum in be-
tween. It is unclear whether or how the level at which the
EM-algorithm is applied affects the results; as noted in
Sec. III D, the likelihood may be multimodal and different
implementations might end up with differing maximiza-
tion results, but whether this actually poses a problem
in practice is not obvious. Computationally, this latter
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FIG. 6. Probability density functions of “Student-Rayleigh”
distributions for varying degrees of freedom ν and fixed
scale σ2 = 1. For ν = ∞, the distribution corresponds to
the usual (“Gaussian”) Rayleigh distribution.

implementation should be much easier, though. Another
difference to note is that while the matched filter allows
to return the profile likelihood as a function of time (the
“SNR time series”), only the Student-t filter implemen-
tation from Sec. A 3d is able to provide this, while the
more efficient implementation will only return the overall
maximum.

4. The “Student-Rayleigh” distribution

a. Relation to the F-distribution

The noise power’s probability distribution under the
Student-t model (see (33), Sec. IVC) may be related
to Snedecor’s F -distribution. Firstly, real and imagi-
nary parts of the jth element of the discretely Fourier-
transformed vector n follow a multivariate (bivariate)
Student-t distribution (see Sec. III A). Let A and B
be independent Gaussian random variables with zero
mean and standard deviation σ. Let furthermore C be
a χ2

ν-distributed random variable with ν degrees of free-

dom. Then the random vector
(

X

Y

)

=
1

√

C/ν

(

A

B

)

follows a bivariate Student-t distribution with a diagonal
covariance matrix, exactly like the real and imaginary
components of ñ(fj) [8]. The root-mean-square figure
corresponding to the power then may be written as

√

X2 + Y 2 =

√
√
√
√

2σ2

((
A
σ

)2
+
(
B
σ

)2
)

/ 2

C / ν
=

√
2σ2 D,

(A49)
where the random variable D, being a ratio of
χ2-distributed random variables that are normalized
by their respective degrees-of-freedom, follows an
F (2, ν)-distribution with 2 and ν degrees of freedom [7].

b. Probability density function, etc.

In the Gaussian noise model (see Sec. II B), the
noise power at the jth frequency bin,

∣
∣ñ(fj)

∣
∣, follows a

Rayleigh distribution with probability density function

fR(x|σ) = x
σ2 exp

(
− x2

2σ2

)
, (A50)

where the scale parameter σ is given as σ =
√

N
4∆t

S1(fj).

The analogue “Student-Rayleigh” probability distribu-
tion in the Student-t noise model (see Sec. III A) is de-
fined through its density function

fSR(x|σ, ν) = x
σ2 fF (2,ν)

(
x2

2σ2

)
, (A51)

where fF (2,ν)(·) is the probability density function of an
F (2, ν)-distribution with 2 and ν degrees of freedom.
Similarly, the cumulative distribution function and quan-
tile function are given by

FSR(x|σ, ν) = FF (2,ν)

(
x2

2σ2

)
and (A52)

QSR(p|σ, ν) =
√

2σ2 QF (2,ν)(p), (A53)

where FF (2,ν)(·) and QF (2,ν)(·) are the F -distribution’s
cumulative distribution function and quantile function.
Fig. 6 illustrates probability density functions of

“Student-Rayleigh” probability distributions for varying
degrees of freedom ν. For ν = ∞, the distribution corre-
sponds to the usual (“Gaussian”) Rayleigh distribution.
Note in particular the differing tail behaviour (analogous
to Fig. 1) that is apparent especially in the logarithmic
plot.
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