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Abstract: We construct a theory of fields living on continuous geometries with frac-

tional Hausdorff and spectral dimensions, focussing on a flat background analogous to

Minkowski spacetime. After reviewing the properties of fractional spaces with fixed di-

mension, presented in a companion paper, we generalize to a multi-fractional scenario

inspired by multi-fractal geometry, where the dimension changes with the scale. This is

related to the renormalization group properties of fractional field theories, illustrated by

the example of a scalar field. Depending on the symmetries of the Lagrangian, one can

define two models. In one of them, the effective dimension flows from 2 in the ultraviolet

(UV) and geometry constrains the infrared limit to be four-dimensional. At the UV crit-

ical value, the model is rendered power-counting renormalizable. However, this is not the

most fundamental regime. Compelling arguments of fractal geometry require an extension

of the fractional action measure to complex order. In doing so, we obtain a hierarchy of

scales characterizing different geometric regimes. At very small scales, discrete symmetries

emerge and the notion of a continuous spacetime begins to blur, until one reaches a funda-

mental scale and an ultra-microscopic fractal structure. This fine hierarchy of geometries

has implications for non-commutative theories and discrete quantum gravity. In the latter

case, the present model can be viewed as a top-down realization of a quantum-discrete to

classical-continuum transition.
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1 Introduction

With the birth of quantum gravity models, it became clear that ordinary geometry is in-

adequate to describe the microscopic texture of spacetime. Using the concept of spectral

dimension, borrowed from the spectral theory of fractal geometry, it was realized that many

scenarios are characterized by a scale-dependent dimension. The spectral dimension dS is

an indicator of the effective number of directions a pointwise probe feels when diffusing in

a given ambient spacetime for a short amount of time. For ordinary manifolds, it corre-

sponds to the integer topological dimension D, but for fractals this may not be the case.

Several quantum gravity or quantum spacetime scenarios such as causal dynamical trian-

gulations (CDT) [1, 2], asymptotically safe quantum Einstein gravity [3], spin foams [4]–[6],

Hořava-Lifshitz gravity [7, 8], κ-Minkowski non-commutative field theory [9], and non-local

super-renormalizable quantum gravity [10] are defined in ambient spacetimes with D = 4

dimensions, but the spectral dimension at small scales differs from that value and dS < D

(in many cases, dS ∼ 2) in the UV. The change of dimensionality with the scale is an-

other typical property of fractals (more precisely, multi-fractals). Thus, it may be natural

to regard all these models as different manifestations of the fact that the application of

quantum mechanics to spacetime itself leads, in general, to a fractal geometry.

It is important to establish whether this is only an analogy or not, because the re-

duction of dimensionality is intimately related to the renormalization properties (meant as

ultraviolet finiteness) of quantum gravity. In particular, there seems to be a conspiracy

between UV finiteness and a spectral dimension dS ∼ 2 at small scales [11]–[13]. However,

quantum gravity research has not fully exploited the vast field of fractal geometry, and the

spectral dimension alone is insufficient both to characterize a physical process as “fractal”

and to control its geometric properties. First, other notions of dimension can and, actu-

ally, must be compared with dS in order to classify the geometry more precisely. Second,

finding the spectral dimension at a given scale is a far cry from having dimensional flow

under full control at all scales. Third, there exist other details in the geometric and topo-

logical structure of fractals which were never or seldom checked for in quantum gravity.

In order to better understand the connection between quantum gravitational physics and

fractal geometry, one can take two opposite perspectives. In one, a given model of quantum

gravity can be chosen and its fractal properties checked. Unfortunately, due to technical

difficulties, in the great majority of the cases the spectral dimension is the only computable

fractal indicator. In the other perspective, one could start from fractal geometry itself and
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attempt to construct a theory of quantum gravity with the desired properties (dimensional

flow from 2 to 4, UV finiteness, and so on).

The second approach was advocated and outlined in its main qualitative features

in [13]–[15]. To have a much closer contact with fractal geometry, a more rigorous pro-

gramme has been initiated in [16, 17]. Exploiting the characterization of many fractals as

systems governed by a fractional differential structure, we constructed a continuous space

with Euclidean signature and whose Hausdorff and spectral dimensions are non-integer.

This empty space, called fractional Euclidean space and denoted by ED
α , has a notion

of distance, volume and dimension. In particular, it has topological dimension D and

Hausdorff and spectral dimensions dH = dS = Dα (for non-anomalous diffusion), where

0 < α ≤ 1 is a fixed real parameter. Furthermore, it is endowed with symmetries, although

not the usual rotation and translation group. In practice, on fractional Euclidean space one

can ask the same questions and perform all the operations allowed in ordinary Euclidean

space, but with a different calculus.

In this paper, we build upon the results of [16] and carry out the agenda spelled out

therein in greater detail. The idea is (i) to extend ED
α to a space with Lorentzian signature,

(ii) realize dimensional flow via tools of multi-fractal geometry, (iii) discuss an example of

field theory and its renormalization properties, and (iv) generalize to models with even more

realistic fractal properties. It will turn out that step (ii), which was not really made in [13]–

[15], contains some pleasant news: The renormalization group (RG) flow and the multi-

fractal construction are one and the same entity, but described with two different languages.

This may be unsurprising, since the RG flow is based upon a scale hierarchy just like multi-

fractals. What is perhaps surprising is the quantitative match: once symmetries are given,

purely fractal geometric considerations lead to the same total action prescribed by an

almost-traditional field theory analysis. On top of that, geometric requirements can fix the

effective dimension of spacetime in the infrared (IR) to dH = dS ∼ 4, provided the dimension

in the UV is 2. Also, step (iv) will be crucial to probe scales even smaller than those at which

the RG flow takes place, and will allow us to make contact with some features discovered

numerically in causal dynamical triangulations. The overall physical picture has been

shortly presented in [17]. Gravity is not included, yet, but fractional Minkowski spacetime

will be sufficient to illustrate the basic features of the proposal. We leave the fractional

extension of general relativity to another publication. Below is the plan of the paper.

• Section 2. Following the Euclidean construction of [16], we define a fractional ambi-

ent space with Lorentzian signature and describe its geometry (section 2.1) and its

Hausdorff and spectral dimensions (section 2.2). The choice of coordinate presenta-

tion and the role of the boundary, which were not discussed in [16], are here treated

in detail. The fractional generalization of Lorentz transformations is presented in

section 2.3.

• Section 3. Spacetimes with a multi-fractal structure are introduced. Exploiting the

lore of multi-fractal geometry, the measure in the action is argued to be a linear

superposition of contributions with fixed dimensionality (sections 3.1 and 3.2). The

dimension of spacetime changes with the scale, but not arbitrarily: the dimensions
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in the UV and in the IR are, in fact, intimately related (section 3.3). In particular,

we shall analyze the role of two and four dimensions at, respectively, small and large

scales. Observational constraints on the flow of the dimension near the infrared limit

are discussed in section 3.4.

• Section 4. An example of classical fractional field theory is provided by a real

scalar field φ, whose ultraviolet finiteness can be easily probed via a standard power-

counting argument (section 4.1). Generic classical fractional actions are constructed

in section 4.2, where the equation of motion of φ is also derived. The choice of integer

or fractional Lorentz symmetries in the Lagrangian density leads to two independent

models, respectively, the integer-symmetry scenario (section 4.3) and the fractional-

symmetry scenario (section 4.4). The Green function inverting the kinetic operator

is calculated in section 4.5. The power-counting renormalizability of the models is

discussed at several points in the section, in particular in section 4.6.

• Section 5. To get in closer touch with fractal geometry, fractional theories are ex-

tended to the case where the measure is a linear superposition of fractional measures

of complex order. Combining this superposition in a real quantity, one obtains a

measure with logarithmic oscillations (section 5.1). The average of the measure over

a log-period corresponds to the real-order fractional measure. The oscillations are

due to a discrete symmetry (sections 5.2 and 5.3), and require a redefinition of the

Hausdorff and spectral dimension in line with the definitions employed in fractal

geometry (section 5.4).

• Section 6. After summarizing the physical picture in section 6.1, we outline a research

agenda focussed on the quantum theory, the inclusion of gravity and cosmological

applications (section 6.2). Section 6.3 is devoted to connections with doubly special

relativity, non-commutative spacetimes and quantum gravity approaches. Multi-

fractional field theories can be regarded either as stand-alone models of quantum

gravity or as effective descriptions of other theories in certain regimes. In the bulk

of the paper we assume the first attitude. Considering instead the second case, we

advance possible applications of multi-fractional geometries to other, independent

models of quantum gravity in section 6.3.3.

1.1 Comparison with early proposals

All the present material is novel with possibly two minor exceptions. The first is section 2,

which makes heavy use of the results of [16]. These, however, are here immediately extended

to an ambient spacetime with Lorentzian signature. The second exception is the very

idea that spacetime be fractal. Before embarking ourselves in the construction of multi-

fractional spaces with dimensional flow, it is useful to draw an exhaustive comparison

between our proposal and other spacetime models in non-integer dimension which appeared

in the early literature. This comparison, which was premature for the abstract Euclidean

fractional space of fixed dimensionaly presented in [16], can give the reader a bird’s eye

view of the state of the art of fractal spacetimes and the status of our theory within.
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Most of previous “fractal” field theoretical proposals assumed spacetime to have a

non-integer but constant, non-dynamical dimensionality, thus fixing the attention to 4 − ǫ

dimensions with 0 < ǫ ≪ 1 (low-lacunarity regime). Here we mainly focus on the rather

few papers attempting to realize the texture of spacetime via a mathematical fractal or

fractal-inspired construction.

• Quantum field theories in non-integer dimension were considered in [18] via a simple

analytically continued integration. They were regarded as abstract models created

for the purpose of shedding some light into four-dimensional field theory, and the

non-integer dimension formally appearing in manipulations was not associated with

a fundamental modification of spacetime geometry. The hope was to unravel prop-

erties of the renormalization group flow which do not depend on dimensionality. At

variance with these dimensionally-continued field theories, the philosophy of later

publications [19]–[22] was that spacetime has a non-integer but fixed, non-dynamical

dimensionality. The attention was focussed on dH = 4 − ǫ for obvious empirical

reasons. In other words, these models share many aspects with dimensional regular-

ization but the parameter ǫ is taken to be physical and non-vanishing, albeit small.

(i) In [19] a mathematical justification to dimensional continuation was given, with

applications to statistical mechanics and field theory. An axiomatic description of a

metric space with non-integer dimension was proposed. Neither is this a vector space

nor is it embedded in a vector space of integer dimension D, so it can hardly be

compared with our framework. The lack of a manageable set of natural coordinates

did not allow the author of [19] to explore the model much, and objects such as a

“Pythagorean” coordinate distance, volumes, and the symmetry group of the space

were not investigated. Also, this construction becomes more and more complicated

with the increase of the topological dimension [23]. Yet, it was possible to define

an invertible Fourier transform (an open problem in fractal geometry, but solved in

fractional spaces [16]) and a natural Laplacian operator. (ii) In [20], particle physics

was defined directly on sets with general Borel measure of fixed dimensionality, i.e.,

a Lebesgue-Stieltjes measure with possibly fractal support. Renormalization prop-

erties in electrodynamics were considered for a general measure with low lacunarity,

dH = 4− ǫ. Convergence of the Feynman diagrams is better than in four dimensions,

as it was checked by looking at their superficial degree of divergence. This was pre-

sented as a “new regularization method,” meaning that physical applications should

be sought out only at low lacunarity. (iii) In [21, 22], scalar-field theory in Euclidean

signature was constructed on low-lacunarity Sierpinski carpets with Hausdorff dimen-

sion dH = 4 − ǫ. Because of the explicit fractal construction, the scaling property of

the measure is discrete and the system displays a certain symmetry, called discrete

scale invariance, which we shall discuss in section 5.2. The propagator on a fractal

lattice was computed using techniques which would have been later developed for the

spectral theory on fractals [24]. (iv) The interesting UV properties of field theories

in fractional spacetimes and the breaking of parity and time reversal therein, all top-

ics we shall amply discuss, were also appreciated in [25], where it was noticed that

– 4 –



J
H
E
P
0
1
(
2
0
1
2
)
0
6
5

fractional and curvature effects are similar in the limit of almost-integer dimension.

Even in this case, attention was limited to dH = 4 − ǫ.1

• In contrast with all these approaches, field theories on a genuinely and deeply “anoma-

lous” spacetime (dH much different from 4) have received less attention, despite their

promising applications in modern cosmology and quantum gravity. In [31], it was

observed that the fine-scale structure of a quantum mechanical particle path is very

irregular and described by a nowhere-differentiable curve.2 Ord drew inspiration from

this fact to propose a model of quantum mechanics in fractal spacetime [34]. The

idea that spacetime be a multi-dimensional fractal was also hinted at in [35]. Physi-

cal descriptions and implications of fractal spacetimes have begun to be focussed on

a geometrical perspective in [13]–[15] within a Lebesgue-Stieltjes approach. Away

from the low-lacunarity regime, which misses all the potentialities of fractal space-

times, the Lebesgue-Stieltjes formalism [13, 15] can say little unless one specializes to

specific measures. General absolutely continuous measures away from dH ∼ 4 were

discussed in [14], but their special status as naive “fractal” measures did not allow

us to make much progress with an adequate level of rigorousness.

• In [13, 14], fractional calculus served as a motivation for the introduction of general

Lebesgue-Stieltjes models of spacetime, but it was not used in its full power. The

framework of these papers shares only the main qualitative characteristic with the

present one (namely, anomalous scaling of the measure and better renormalization

properties of field theories) and it does not possess the richness of physical impli-

cations we can appreciate here. In particular, while in the models of [13]–[15] it

is not clear how to construct a rigorous definition of an invertible unitary trans-

form between configuration and momentum space, this is can be done for fractional

spaces [36] thanks to the factorization of the coordinates in the measure.

• Through the notion of distance and the calculations of ball volumes, we saw in [16]

and will see in section 2 that geometric coordinates q can be interpreted as a coordi-

nate system intrinsic to the fractional space, and the mapping x → q(x) relates the

embedding (or extrinsic) viewpoint to a geometric (or intrinsic) viewpoint. These

two equivalent pictures were conjectured, without giving details, at the end of [20].

In [13, 14], a study of the deformed Poincaré algebra of a Lebesgue-Stieltjes model

with arbitrary measure reached the same conclusion, naming the embedding and geo-

metric pictures, respectively, conservative (as a system made of two dissipative parts)

and dissipative (as a system dissipating energy-momentum in a bulk).

1Breaking of time reversal and non-conservation of probability [14] in fractional quantum mechanics

were discussed also for fractional generalizations of the Schrödinger equation [23, 26]–[30].
2The Hausdorff dimension of the path is 2 in a classical spacetime [32] and smaller than 2 in quantum

spacetimes with a minimal length [33]. In the latter case, dH can be even negative, corresponding to a

Planckian regime where quantum fluctuations of the spacetime texture are large and the particle path is

an empty set.
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• When this article was being finalized, the author became aware of an independent

proposal for a fractal spacetime [37]–[39]. While ordinary spacetime is described by

smooth differentiable manifolds, abandoning the requirement of differentiability nat-

urally leads to a fractal geometry characterized by non-absolute scales which can only

be measured relatively to one another. Starting point, motivation, terminology and

tools greatly differ from ours. Central is the so-called principle of scale relativity.

Motivated by fractal geometry, coordinate frames are made explicitly dependent on

the scale and, crucially, scales must transform according to certain very natural laws

generalizing ordinary contractions/dilations. This principle can be applied to a num-

ber of systems, not only in physics, leading to a severe modification of our perception

of Nature. In the realm of physics, no formal theory has been constructed upon scale

relativity, but some of the consequences of this principle presents intriguing similar-

ities with our fractional approach, including a breaking of parity symmetry and an

almost obvious dimensional flow. A careful comparison between fractional spacetime

formalism and the scale relativity proposal may be of mutual benefit. For instance,

in the external scale picture of section 3.1 we gave a few α(ℓ) profiles as toy examples

realizing a running from some critical value α∗ to the integer charge α = 1. The

external scale ℓ is the very same continuous scale labelling Nottale’s fractal coordi-

nates, and by the simple scaling arguments of scale relativity one can prescribe the

scale dependence of the fractal dimension. In our notation, these fractal coordinates

are indeed the geometric variables qµ(ℓ) = qµ[α(ℓ)] and eq. (14) of [39] reads

α(ℓ) = 1 +
α∗ − 1

1 + (ℓ/ℓ∗)α∗−1
. (1.1)

When ℓ≫ ℓ∗, α(ℓ) → 1, while at small scales α(ℓ) → α∗. On one hand, implementa-

tion of scale relativity arguments could fix some loose points of fractional spacetime

models and sharpen the overall physical interpretation. On the other hand, fractional

models could provide the missing theoretical framework wherein to embed the scale

relativity principle.3

• The dependence on the scale (or resolution) can be implemented at the level of fields

rather than coordinates. Such is the philosophy of wavelet field theory [41, 42] which,

not surprisingly, has better UV properties than ordinary field theory. We believe that

also this approach converges to the same physics of fractional and fractal models.

• Dimensional flow may be realized also in non-fractal scenarios. (i) Field theory actions

with exotic measures were the subject of [43]. There, spacetime was described by a set

of “continuous” coordinates and its dimension formally constrained by a variational

principle. Despite the fractal-inspired motivation, there is no obvious point of contact

with fractal geometric scenarios. The cosmological “decrumpling” model of [44] also

considered dimension to be a dynamical field. (ii) Another unrelated appearance of

3Such a theoretical framework was also proposed in [40], where non-differentiable manifolds were defined

in a rather abstract fashion. Physical applications and consequences of these “fractal manifolds,” and the

connection with standard fractal-geometry tools, are presently unclear to us.
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an exotic Hausdorff dimension in field theory is in four-dimensional gravity with a

quantum conformal factor [45]. As a trace anomaly effect, the conformally invari-

ant IR fixed point of this model is associated with an anomalous dimension greater

than the topological one. (iii) The universe described in [46]–[48] has a crystal-like

“layered” structure governed by a hierarchy of scales along the topological directions.

Due to the fact that transitions from one dimension to another are rather sharp, away

from the transition points these models strongly resemble dimensionally regularized

spacetimes (see also [49]). As we have just seen, and contrary to what advertized

in [46, 47], the paradigm that the effective dimensionality of spacetime depends on

the probed scale is far from being new. At any rate, fractional spacetime theory

is quite different from the crystal-world proposal except at the IR fixed point. In

particular, in our framework there is no geometric reason why events in a dH = 2

regime should be planar (two-dimensional fractals may not be embedded in a plane:

Brownian motion is an example), and gravitational waves should be produced even

in dH = 3 dimensions, mainly for the reasons advanced in [50].4

• The measured value of the dimension of spacetime may be slightly smaller than four

due to quantum fluctuations and to the intrinsic finite resolution of experiments.

Then, the infinitesimal covering in the definition of Hausdorff dimension cannot be

physically realized in the real world. This effect was studied in [55], where no as-

sumption was made on the true dimensionality of spacetime, and it is unrelated from

field theories living in fractal geometry. Heuristic finite-resolution effects of quantum

fluctuations have been also considered in [56]. The change of dimension in the multi-

fractal flow considered here is far more dramatic than this type of corrections, which

can be safely ignored.

To the best of our knowledge, the following features have been developed here for the

first time: (i) the construction of a fractal-like structure in Lorentzian signature; (ii) an

explicit realization of dimensional flow in explicitly multi-fractal spacetime structures; (iii)

the construction of a system whose UV and IR dimensionality are deeply related to each

other rather than being fixed phenomenologically; (iv) a detailed clarification of what we

mean by “fractal spacetime” and the fractal interpretation of fractional spacetime models;

(v) a description of the symmetries underlying fractional spacetimes under the perspec-

tive of fractal geometry, and their consequent identification with the isometry group in

the language of field theory; (vi) the construction and physical interpretation of fractional

spacetimes with oscillatory measures and the associated emergence of discrete scales. Point

(iii) was vaguely foreseen in [14], (i) and (v) were initiated in [13, 14]; the first part of (iv)

was completed in [16]. Point (vi) also opens up a novel connection with non-commutative

spacetimes, as we shall see below.

Comparing with the proposal in [13]–[15], there are many differences and an apprecia-

ble amount of novelty. There, the simplified setting of an absolutely continuous measure

4To this list of non-fractal references, we should also add the effective field-theory fractional equations

of motion of [51]–[54]. These models seem to be purely mathematical.
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captured the main qualitative features of the central idea, but its level of rigor was not

satisfactory. On the other hand, here we use the formalism of fractional calculus, through

which we control all the elements of the proposal more strictly and in greater detail. The

results of [13, 14] partially lie on a Weyl-type integral, a special case of fractional integral.

Whenever a point of contact is possible, we shall compare the present model with those

results and clarify how issues of the latter are solved here.

We stress that, while the great majority of the works cited above considered dimen-

sional flow only as a general concept or paradigm, our aim here and in [16] is to construct

a hands-on theory of spacetime and fields where one can have as much control as possible.

The concreteness of the model and its close contact with the lore of fractal geometry will

allow us to go well beyond the isolated feature of anomalous scaling.

2 Fractional Minkowski spacetime

The extension of fractal geometry to an ambient spacetime with Lorentzian signature is,

to the best of our knowledge, a topic virtually untouched in the literature [14]. Neverthe-

less, after having defined fractional geometry in Euclidean space [16], we can move to a

Lorentzian spacetime straightforwardly. Curvature is not considered.

2.1 Definition

We define fractional Minkowski spacetime MD
α of order α as a D-dimensional embedding

Minkowski spacetime MD endowed with a set of rules Calcα = {∂α, Iα,d} of integro-

differential calculus (symbols denote derivative, integration and external differential), a

measure ̺α with a given support, a natural norm ‖ · ‖, and a Laplacian K:

MD
α = (MD, Calcα, ̺α, ‖ · ‖, K) . (2.1)

2.1.1 Embedding and calculus

The embedding MD is Minkowski spacetime in D topological dimensions, with “mostly

plus” signature (−,+, · · · ,+). The embedding coordinates xµ are labeled by Greek indices

µ, ν, . . . running from 0 to D− 1. The time direction will be sometimes denoted as t = x0.

The embedding is, actually, only a choice of metric once a differential and metric

structures are defined. The rules Calcα of differential geometry are given by fractional

calculus [57, 58]. This is reviewed in [16, section 2]; here we recall the main definitions in

one dimension. Given a real coordinate variable x defined on an interval [x0, x1], the left

fractional integral of order α of a function f(x) is

(Iαf)(x) :=
1

Γ(α)

� x

x0

dx′

(x− x′)1−α
f(x′) , (2.2)

where

0 < α ≤ 1 . (2.3)

Similarly, the right fractional integral of order α is

(Īαf)(x) :=
1

Γ(α)

� x1

x

dx′

(x′ − x)1−α
f(x′) , (2.4)
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where integration now is from x to the end of the interval. Also, the left and right Caputo

derivatives of order α are defined as

(∂αf)(x) := (I1−α∂f)(x)

=
1

Γ(1 − α)

� x

x0

dx′

(x− x′)α
∂x′f(x′) , (2.5)

(∂̄αf)(x) := (Ī1−α∂f)(x)

= − 1

Γ(1 − α)

� x1

x

dx′

(x′ − x)α
∂x′f(x′) , (2.6)

where ∂ is the ordinary first-order partial derivative. Sometimes we will indicate the

integration terminals explicitly as subscripts, ∂α = ∂α
x0,x and ∂̄α = ∂̄α

x,x1
. Under the trans-

formation

x→ x0 + x1 − x , (2.7)

the left operators are mapped into right operators:

(Īαf)(x) = (IαF )(x0 + x1 − x) , (∂̄αf)(x) = (∂αF )(x0 + x1 − x) , (2.8)

where F (x) := f(x0 + x1 − x).

One can extend α to other ranges and define other differential operators (e.g., the

Riemann-Liouville derivative). Different sets of fractional operators can correspond to in-

equivalent fractional spacetimes. In [16] we have justified the use of the Caputo derivative

via several arguments; the main one is that differential geometry and tensor calculus are

considerably simplified.

When x0 = −∞, the left operators are called Liouville differintegrals, while for

x1 = +∞ they are called Weyl differintegrals; they will be all denoted by a subscript

∞ to the left of the symbol. When regarded as an approximation in the limit t ≫ t0, the

Liouville operator is employed in mechanics to describe “steady state” systems, that is,

systems which evolved well after the initial transient phase at t0. To get the Weyl differ-

integral from the Liouville differintegral, it is sufficient to set x0 = −x1 in (2.8) and then

take the limit x0 → −∞:

(∞Ī
αf)(x) = (∞I

αF )(−x) , (∞∂̄
αf)(x) = (∞∂

αF )(−x) , (2.9)

where F (x) := f(−x).
Some examples of fractional derivatives and integrals are the following. The Caputo,

Liouville and Weyl derivatives of a constant are zero,

∂α1 = ∂̄α1 = ∞∂
α1 = ∞∂̄

α1 = 0 , (2.10)

while the left derivatives of a power law are

∂α(x− x0)
β =

Γ(β + 1)

Γ(β − α+ 1)
(x− x0)

β−α , β 6= 0 , (2.11)

∞∂
α(x− x∗)

β = (−1)−α Γ(β + 1)

Γ(β + 1 − α)

sin(πβ)

sin[π(β − α)]
(x− x∗)

β−α , (2.12)

– 9 –



J
H
E
P
0
1
(
2
0
1
2
)
0
6
5

for any x∗. The second expression is ill defined for β = α. Otherwise, it is real under

certain conditions on the values of α and β and the sign of x−x∗; consistently, it vanished

for β = 0. The α-th order left integrals of power laws are given by the analytic continuation

of the above formulæ for α→ −α for any β:

Iα(x− x0)
β =

Γ(β + 1)

Γ(β + α+ 1)
(x− x0)

β+α , (2.13)

∞I
α(x− x∗)

β =
(−1)−αΓ(−α− β)

Γ(−β)
(x− x∗)

β+α . (2.14)

The eigenfunctions of the Liouville derivative operator are exponentials,

∞∂
αeλx = λαeλx , (2.15)

but those of Caputo derivatives with finite x0 are Mittag-Leffler functions [59]:

∂αEα[λ(x− x0)
α] = λEα[λ(x− x0)

α] . (2.16)

Analogous formulæ can be obtained for the right derivative by making use of eqs. (2.8)

and (2.9). For example, the right version of eqs. (2.11), (2.12) and (2.15) are

∂̄α(x1 − x)β =
Γ(β + 1)

Γ(β − α+ 1)
(x1 − x)β−α , β 6= 0 , (2.17)

∞∂̄
α(x− x∗)

β =
Γ(β + 1)

Γ(β + 1 − α)

sin(πβ)

sin[π(β − α)]
(x− x∗)

β−α , (2.18)

∞∂̄
αeλx = (−λ)αeλx . (2.19)

2.1.2 Measure

The measure and the integration range of the action can be fixed once and for all by some

simple arguments, which we develop in one dimension.

The action will be defined via the right integral Īα. To extend the integration range as

much as possible while keeping the fractional measure well defined, the extremum x must

remain finite while taking the limit x1 → +∞. The fractional space has then a boundary

at some finite x. Without any loss of generality, we can set x = 0 in the action integral.

In fact, a translation x → y = x + x∗ changes the coordinate presentation of fractional

operators, but it does not change the physics. For instance, the one-dimensional Weyl

integral of a function becomes

∞Ī
αf =

1

Γ(α)

� +∞

x

dx′

(x′ − x)1−α
f(x′)

=
1

Γ(α)

� +∞

y−x∗

dx′

(x′ + x∗ − y)1−α
f(x′)

y′=x′+x∗−y
=

1

Γ(α)

� +∞

0

dy′

y′1−α f(y′ + y − x∗) .

In the new reference frame, the coordinate dependence of f and of the boundary have

changed, but this only modifies the way the fractional one-dimensional space is embedded
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in R. As an embedding coordinate change, this operation is always possible and one can

further set y = x∗. For the Liouville integral the measure range is in the negative semi-

axis, but this would be yet another change of presentation; so we can just pick the Weyl

integral. The combination ∞I
α + ∞Ī

α would hide the presence of the singularity at x = 0

by a fictitious integration on the whole line.

In D topological dimensions, each embedding direction xµ is associated with a “frac-

tional charge” αµ (the subscript µ is not a vector index). The simplest case is of an

isotropic fractional spacetime, where all αµ are equal [13, 14, 16]. In particular, the time

direction t = x0 is on an equal footing with spatial coordinates, α0 = α. In another con-

figuration worth mentioning for its applications in non-commutative spacetimes ([17, 60]

and section 6.3.2), time is an integer direction, α0 = 1, in which case the spatial part of

the measure carries the whole effect of dimensional flow. Keeping α0 general, the action in

fractional Minkowski space is

Sα =

� +∞

0
dDqL =

� +∞

0
d̺α(x)L =

� +∞

0
dDx vα(x)L , (2.20)

where L is a Lagrangian density, the integral is� +∞

0
dDq =

D−1∏

µ=0

� +∞

0
dqµ (2.21)

=
1

Γ(α0)

� +∞

0

dt

t1−α0

D−1∏

µ=1

1

Γ(α)

� +∞

0

dx

x1−α
, (2.22)

and the measure along each direction is

qµ := ̺α(xµ) :=
(xµ)α

Γ(α+ 1)
, xµ ≥ 0 . (2.23)

To keep notation light, we wrote α instead of αµ in eqs. (2.20) and (2.23), with the under-

standing that the time coordinate may scale differently.

While the measure of Minkowski spacetime is the ordinary Lebesgue measure ̺(x) =

⊗µx
µ, MD

α is equipped with the Lebesgue-Stieltjes measure

̺α(x) := ̺α0(t)

D−1⊗

µ=1

̺α(xµ) , (2.24)

whose scaling property is

̺α(λx) = λα0+(D−1)α̺(x) , λ > 0 . (2.25)

In eq. (2.23) we have written the measure in the µ direction as a coordinate qµ, dubbed

geometric or fractional in [16]. Depending on the differential calculus associated with the

action integral, {qµ} can be regarded as the natural coordinate system spanning fractional

spacetime [16, section 3.3]. For instance, the fractional fundamental theorem of calculus
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states that the Caputo derivative is the left inverse of the fractional integral defined on the

same sector (left or right) and the same interval [16, section 2.3.3]. If we based the calculus

on MD
α only on one sector, the right integral would be associated with the Weyl derivative

∂̄α
µ := ∞∂̄

α
xµ =

∂̄α

∂̄αqµ
:= − 1

Γ(1 − α)

� +∞

xµ

dx′µ

(x′µ − xµ)α
∂µ (no sum over µ) . (2.26a)

Because of eq. (2.18), eq. (2.23) does not define a geometric coordinate with respect to

this derivative, meaning that ∂̄α
µq

ν 6= δν
µ (actually, it is ill defined). However, qµ is the

geometric coordinate associated with the left derivative ∂α with terminal x0 = 0,

∂α
µ := ∂α

0,xµ =
∂α

∂αqµ
:=

1

Γ(1 − α)

� xµ

0

dx′µ

(xµ − x′µ)α
∂µ (no sum over µ) . (2.26b)

By virtue of eqs. (2.10) and (2.11),

∂α
µ q

ν = δν
µ . (2.27)

Since both derivatives (2.26a) and (2.26b) will appear in the same theory (one in the ac-

tion, the other in the equations of motion [16, section 2.3.5]), we are at liberty of choosing

either in the action. In order to have a well-defined geometric coordinate system, the nat-

ural fractional differential is constructed via the left derivative ([16, sections 2.4, 3.3] and

references therein), d := dqµ ∂α
µ , dqµ = (dxµ)α , [d] = 0 , (2.28)

with qµ and ∂α
µ given by eqs. (2.23) and (2.26b). The symbol ∂α

µ may be actually regarded

both as the partial fractional derivative with respect to xµ and as the one with respect to

qµ, ∂α
µ = d/dqµ. Therefore, we can define a geometric integral [16, 61] q

0
:=

1

Γ(α)

� x

0

(
dx′

x′

)1−α

, (2.29)

so that the action (2.20) can be fully recast in geometric coordinate formalism:

Sα =

 +∞

0
dDqL . (2.30)

2.1.3 Boundary

Fractional spacetime MD
α corresponds to the first orthant qµ > 0. Due to the presence of

the boundary, translation and rotation invariance are globally broken, since these transfor-

mations would change the aspect of MD
α “looking from far away.” However, as embedding

transformations they do not affect the local symmetries of MD
α , which can still be investi-

gated.

This gives a sharp physical interpretation for the model defined by eqs. (2.23), (2.26)

and (2.30). Despite being an integro-differential operator, the fractional derivative is an

intrinsically local operator in the sense of fractional differential geometry [62, 63] (see
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also [16, section 3.1]). If MD
α possesses local symmetries and boundary effects are negli-

gible well “inside” fractional spacetime, then the structures of
�

, ∂̄α and ∂α are mutually

compatible. To show this, consider the one-dimensional interval [x0, x1] and the behaviour

of the differintegrals ∂α
x0,x and ∂̄α

x,x1
, α 6= 0, far from the terminals (see [57], sections 2.7.5

and 2.7.6, for left operators). The terminals are at x = x0 and x = x1. For any finite x0,

the asymptotic behaviour of ∂α
x0,x away from x0 can be obtained by taking either x≫ 1 at

fixed x0 or −x0 ≫ 1 at fixed x:

∂α
x0,x

|x|≫|x0|∼ ∂α
0,x , or ∂α

x0,x
|x0|≫|x|∼ ∂α

x−x0,x . (2.31)

Actually, the second asymptotic limit is tantamount to sending x0 → −∞ with x

finite, and corresponds to the Liouville derivative. In our case, the lower terminal (or

boundary) is finite and equal to x = x0 = 0, and the first limit is the natural one for the

fractional derivative inside the action. On the other hand, away from a finite x1 the right

differintegrals behave as

∂̄α
x,x1

|x|≫|x1|∼ ∂̄α
x,0 , or ∂̄α

x,x1

|x1|≫|x|∼ ∂α
x,x+x1

. (2.32)

For us, the upper terminal is x = x1 = +∞, and the second expression coincides with the

Weyl differintegral in this limit. Thus, the theory defined by eqs. (2.23), (2.26) and (2.30)

can be physically interpreted as a local model of fractional spacetime where boundary effects

are negligible.

What happens near the boundary? Consider now a D = 1 model where x1 is finite:

S′
α =

 q(x1)

0
dq(x)L .

Let f(x) be an analytic function on [x0, x1] with integral singularities at x = x0 and x = x1,

i.e., such that it can be written equivalently as f(x) = (x − xi)
βifi(x), with βi > −1,

fi(xi) 6= 0, and i = 0, 1. Expanding f(x) in Taylor series around either terminal x = xi,

f(x) =

+∞∑

n=0

f
(n)
i (xi)

n!
|x− xi|βi+n ,

and retaining the leading term,

(∂αf)(x) ≈ Γ(β0 + 1)f0(x0)

Γ(β0 − α+ 1)
(x− x0)

β0−α ,

(∂̄αf)(x) ≈ Γ(β1 + 1)f1(x1)

Γ(β1 − α+ 1)
(x1 − x)β1−α ,

we obtain

lim
x→x0

(∂αf)(x) =







0 if α < β0

Γ(α+ 1)f0(x0) if α = β0

∞ if α > β0

, (2.33a)
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and

lim
x→x1

(∂̄αf)(x) =







0 if α < β1

Γ(α+ 1)f1(x1) if α = β1

∞ if α > β1

. (2.33b)

Evaluation of differintegrals near terminal points lead to a collapse of their definition

(even when the result is finite) and differential calculus thereon becomes inadequate. This

conclusion is pleasantly expected in the light of the physical picture presented at the end

of the paper. Roughly speaking, when all points of MD
α are “too close to the boundary”

the space and its boundary become one and the same. Such qualitative description

reminds the topology of totally disconnected and post-critically finite fractals [64], and

in such regime fractional calculus, as a continuum approximation of these fractals, breaks

down. Moreover, the use of Liouville/Weyl operators does not allow one to consider

transient regimes because the limits |x0,1| → ∞ correspond to looking far away from the

terminal conditions, eqs. (2.31) and (2.32). To capture these regimes, one should take

finite upper and lower boundaries. Later we will see that one can (and, actually, should)

perform another extension of the model, in order to get phenomena which are transient in

a different sense: promoting real fractional operators to complex ones.

2.1.4 Metric and distance

Coordinate transformations between the Cartesian systems {xI} and a generic curvilinear

system {yµ} are governed by the fractional generalization of vielbeins:

eIµ := ∂α
µ q

I(y) , (2.34)

which are D × D orthonormal matrices, eµI e
J
µ = δJ

I . From these, one can define the

fractional metric [65]

gµν := ηIJe
I
µe

J
ν , (2.35)

where ηIJ = diag(−1, 1, · · · , 1) is the Minkowski metric. The fractional line element is then

dsα := [gµν(dxµ)α ⊗ (dxν)α]
1
2 , (2.36)

or, in geometric notation, ds2 = gµνdqµ ⊗ dqν . (2.37)

For MD
α , the metric is just the Minkowski metric, gµν = ηµν . The spatial distance between

two points in fractional spacetime is then the 2α-norm

∆α(x, y) := {[∆(xµ, yµ)]α[∆(xµ, yµ)]α} 1
2α :=





D−1∑

µ=1

|xµ − yµ|2α





1
2α

, (2.38)

where ∆(xµ, yµ) = |xµ − yµ|. This is a norm only if α ≥ 1/2, i.e., when the triangle

inequality holds. Therefore, we can further restrict α to lie in the range

1
2 ≤ α ≤ 1 . (2.39)
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As already emphasized in [16], one should not confuse eq. (2.38) with the choice of a p-norm

(all topologically equivalent) in a given space: as α changes, so does the geometry of space.

The last ingredient completing the definition of fractional spacetime is the Laplacian

K, entering the kinetic term of a scalar field theory living in MD
α . Before discussing this

operator, we turn to two fundamental geometric properties of fractional spacetime: its

fractal dimensions and the symmetry group.

2.2 Hausdorff, spectral and walk dimensions

In fractal geometry, there exist many definitions of “dimension” [66] (reviewed in [16]). For

ordinary spacetimes, there is no benefit in making distinctions among these definitions be-

cause they all agree in recognizing the topological dimension D as the number of degrees of

freedom experienced by an observer in the measurement of distances, in diffusion processes,

and so on. However, the topological dimension is a bad indicator of the geometry of frac-

tional spaces, and it is necessary to resort to the fractal machinery. This enters the picture

in a simplified way, since the background is continuous. Full details are given in [16].

The first useful indicator is the Hausdorff dimension dH. Its operational definition on

a smooth set is the scaling law for the volume V(D) of a D-ball BD of radius δ, which is

̺[BD(δ)] = V(D)(δ) ∝ δdH . (2.40)

Then, in the limit of infinitely small radius,

dH := lim
δ→0

lnV(D)(δ)

ln δ
. (2.41)

dH tells “how many directions” the observer feels in configuration space by making

static measurements. From the scaling property (2.25), one can already infer that

dH = α0 + (D − 1)α ≤ D. Fractional models are characterized by a Hausdorff dimension

smaller than or equal to the topological dimension D of embedding spacetime.

A dynamical probe of dimensionality, on the other hand, consists in letting a test

particle diffuse starting at point x and ending at point x′. In flat fractional spacetime, this

random walk is governed by a diffusion equation for the heat kernel P (x, x′, σ),

(Dβ
σ −KE

x )P (x, x′, σ) = 0 , P (x, x′, 0) = δα(x, x′) , (2.42)

where σ is diffusion time (a parameter not to be confused with physical or coordinate

time), Dβ
σ is a diffusion differential operator of order β, KE

x is the Laplacian (acting on the

x dependence) defined on the Euclideanized ambient space, and δα(x, x′) = v−1
α (x)δ(x−x′)

is the Dirac distribution in fractional space. The operators in (2.42) can be chosen as

Dβ
σ = ∂σ, ∂

β
σ , ∞∂̄

β
σ , (2.43)

KE = δµν

(

∂µ∂ν +
∂µvα

vα
∂ν

)

, (2.44)

with α0 possibly different from the other charges. The kinetic operator is such that its

eigenfunctions (Bessel functions of the first kind times a power) are the expansion basis of
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the fractional gemeralization of the “Fourier” transform [36]. The heat kernel P (x, x, σ) at

coincident points x = x′ and averaged in the space volume is called return probability. In

fractional momentum space (see [16] and section 4.5),

P(σ) ∝ σ−
Dαβ

2 . (2.45)

The spectral dimension of fractional spacetime is then

dS := −2
d lnP(σ)

d lnσ
, (2.46)

= β[α0 + (D − 1)α] = βdH . (2.47)

Finally, the walk dimension is the ratio dW := 2dH/dS. If dH 6= dS, the diffusion law is

said to be anomalous. For fractals, dS ≤ dH and dW ≥ 2, while diffusion with dW < 2 is

typically associated with jump processes.

These matters were discussed in [16], where the Hausdorff and spectral dimensions have

been calculated for fractional isotropic Euclidean space. By definition, both the Hausdorff

and spectral dimensions of a Lorentzian spacetime are calculated in Euclidean signature,

so the results of [16] do not need any modification, except the separation of the fractional

charge in time direction from the others. This poses, however, a caveat. Normal (or Gaus-

sian) diffusion takes place if the derivative order of KE is twice the order of Dβ
σ , i.e., when

β = 1. So, Gaussian processes are produced by Dβ
σ = ∂σ and KE given above. Qualitative

arguments suggest that Gaussian diffusion would be also achieved with Dβ
σ = ∂α

σ and a

kinetic term of the form such as KE
α =

∑

µ ∞∂̄
2α
µ . In this case, however, for α0 6= α diffusion

would be anomalous, since anisotropy in the fractional charge induces non-trivial couplings

in the Laplacian KE
α in order to match the scaling dimension of derivatives of different order.

If MD
α is non-anomalous and β = 1, then the Hausdorff and spectral dimensions

coincide, eq. (2.47). In particular, dS ≤ dH if β ≤ 1, while if β > 1 fractional Minkowski

spacetime cannot be considered a fractal [16]. As a general result, on anisotropic models

diffusion processes are anomalous. Note that the measure in momentum space is the

same distribution ̺α as in configuration space, so the Hausdorff dimension of fractional

momentum space is dH for any β.

2.3 Fractional Poincaré transformations

The scaling property of the Lebesgue-Stieltjes measure of fractional calculus, eq. (2.25), is

associated both with a non-integer dimension and with a self-similar non-trivial structure.

Self-similarity implies the same structure at all scales. So, fractional models should be

compared with self-similar fractals, while models with dimensional flow are multi-fractal

structures, which have different self-similar properties in ranges centered at different

scales of magnification. However, in fractional spacetime the role of isometries is far

more significant than that of similarities, as discussed in section 4.2 of [16]. Clearly,

a particular presentation of fractional calculus breaks all Poincaré symmetries, via the

definition of measures which are neither translation nor rotation invariant. This may

cause to believe that fractional systems, and fractal systems in general, are of little or no

– 16 –



J
H
E
P
0
1
(
2
0
1
2
)
0
6
5

physical significance as classical and quantum field theories, where Lorentz invariance is

an essential ingredient. For a generic model with absolutely continuous Lebesgue-Stieltjes

measure d̺(x) = v(x) dDx, it was shown that Poincaré algebra was deformed even if the

action itself is Poincaré invariant [14]. The key ingredient to obtain this result was to start

with a Poincaré-invariant Lebesgue-Stieltjes measure, i.e., regard v(x) as a Lorentz scalar.

However, confusion arises when one chooses a particular profile for the measure weight

v(x): any such profile, which is needed as a concrete realization of anomalous scaling,

explicitly breaks Poincaré symmetries. For instance, a profile such as v(x) = |x|−(D−1)α is

rotation invariant but neither translation nor boost invariant. Fractional models display

explicit profiles v(x) by definition, and the attitude of [13]–[15] is no longer tenable.

Therefore, it is necessary to reexamine the issue of symmetries.

In ordinary relativistic field theories, one observes that the line element (cross-product

symbol ⊗ omitted)

ds2 = ηµνdx
µdxν (2.48)

is preserved by the isometry group defined by the Poincaré transformations

x′
µ

= Λµ
νx

ν + aµ , (2.49)

where Λµ
ν are D ×D constant matrices such that

Λµ
νΛν

ρ = Λµ
ν (Λρ

ν)−1 = δµ
ρ ,

and aµ is a constant vector. Then,

ds′
2

= ηµνdx
′µdx′

ν
= ηµνΛµ

ρΛν
σdx

ρdxσ = ηρσdx
ρdxσ .

The Lorentz transformations Λµ
ν = ∂x′µ(x)/∂xν include spatial rotations and spacetime

boosts (det Λ = +1), as well as improper discrete transformations such as time reversal

and parity (detΛ = −1). The Λ are actually frame transformations, since they act in

internal space and vielbeins transform as e′Iµ = ΛI
Je

J
µ, but in homogeneous spacetimes

one can choose one and the same frame for every point (the so-called Fermi frame), and

tangent and Minkowski spaces are identified.

One can construct actions which are Poincaré invariant under proper transformations.

Lagrangians L[∂x, ϕ
i(x)] of some fields ϕi are defined to be proper scalars. On the other

hand, the Lebesgue measure
√−g dDx is invariant, too, because detΛ = 1. In fact, in

first-order formalism the volume element can be written as

|det e|dDx =
1

D!
eI0 ∧ . . . eID−1ǫI0···ID−1

, (2.50)

where eI := eIµdx
µ and ǫI0···ID−1 is the Levi-Civita symbol, which is an internal pseudo-

tensor: ǫ′I0···ID−1
= detΛΛJ0

I0
. . .Λ

JD−1

ID−1
ǫJ0···JD−1

. Applying a Lorentz transformation, one

finds that |det e′|dDx′ = detΛ|det e|dDx. Thus, an action and equations of motions

defined in a given coordinate frame {x} will be functionally the same in another frame

{x′} related to the other by a proper Poincaré transformation (2.49). Observers defined in
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local inertial frames experience natural phenomena governed by the same set of equations:

physical laws depend neither on the position nor on the orientation of the observer’s frame.

In the case of fractional Minkowski space, the line element is given by eq. (2.36) or, in

geometric notation, ds2 = ηµν dqµ dqν . (2.51)

Consistently with eq. (2.34), this suggests to define fractional Poincaré transformations

which are linear in geometric coordinates:

q′
µ

= Λ̃µ
ν q

ν + ãµ , Λ̃µ
ν Λ̃ρ

µ = δρ
ν , (2.52)

where ãµ is a constant vector and

Λ̃µ
ν =

∂αq′µ

∂αqν
=
∂q′µ

∂qν
(2.53)

are D × D constant matrices, associated with the ordinary SO(D − 1, 1) group. Equa-

tion (2.52) is in accordance with [16, section 4.2], where it was argued that fractional

Euclidean space ED
α is characterized by the group of affine transformations

q′
µ

= Aµ
ν q

ν + ãµ .

The line element (2.51) is preserved under the transformations (2.52). Crucial to this

result is the fact that the fractional differential, made of Caputo derivatives, is zero on

a constant. If we had used Riemann-Liouville calculus, we would not have been able to

write (2.52) in such a simple form.

We now discuss whether eq. (2.52) is the only transformation preserving the fractional

line element for general q. Let us first recall a textbook exercise for the integer case [67].

Under a general non-singular coordinate transformation xµ → x′µ, the line element (2.48)

changes as

ds′
2

= ηµνdx
′µdx′

ν
= ηµν∂ρx

′µ∂σx
′νdxρdxσ ,

but imposing ds′2 = ds2, one gets ηρσ = ηµν∂ρx
′µ∂σx

′ν . Differentiating with respect to

xτ , one has

0 = ηµν

(
∂2x′µ

∂xτ∂xρ

∂x′ν

∂xσ
+
∂x′µ

∂xρ

∂2x′ν

∂xτ∂xσ

)

;

adding and subtracting the same equation with, respectively, τ ↔ ρ and τ ↔ σ, one

obtains an equation with six terms. They cancel one another except two identical, giving

twice the first term. Since ηµν and ∂x′ν/∂xσ are non-singular, one ends with the condition

∂2x′µ

∂xτ∂xρ
= 0 ,

whose solution is eq. (2.49). In the fractional case, the same argument does not go through

as smoothly. The failure of the Leibniz rule

∂x[f(g)] =
∂f

∂g
∂xg (2.54)
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and its replacement with

(∂αf)(x) =
1

Γ(1 − α)

f(x) − f(x0)

(x− x0)α

+

+∞∑

j=1

sin[π(j − α)]

π(j − α)

Γ(1 + α)

Γ(1 + j)
(x− x0)

j−α(∂jf)(x) (2.55)

forbid mixed derivatives to combine in a simple way. At most, one can recognize eq. (2.52)

as a sufficient but not necessary condition for the line element to be invariant. The fact

that we have infinite terms all of different order, however, makes it likely that eq. (2.52)

is also necessary, unless miraculous cancellations take place.

Just like for integer transformations, the orthogonality relation in (2.52) implies that

(Λ̃0
0)

2 = 1 +

D−1∑

i=1

(Λ̃0
i )

2 ≥ 1 , (det Λ̃)2 = 1 , (2.56)

so one can distinguish between proper and improper transformations. We dub the semi-

direct product of translations and fractional Lorentz transformations on the embedding

coordinates xµ the fractional Poincaré group Πα.

Clearly, fractional transformations Λ̃µ
ν neither act linearly on embedding coordinates

xµ nor are simply given by the elements of Λµ
ν to the power of α: (dx′µ)α = (Λµ

νdxν)α under

an integer transformation, while dq′µ = Λ̃µ
νdqν = Λ̃µ

ν (dxν)α. We can find an approximate

relation between integer and fractional Lorentz transformations when α = 1 − ǫ, ǫ ≪ 1.

Noting that

q = x+ x(1 − γ − lnx)ǫ+O(ǫ2) , (2.57)

where γ is Euler’s constant, fractional Poincaré transformations reduce to integer ones up

to correction terms:

Λ̃µ
ν = [1 + (γ − 1)ǫ]Λµ

ν +O(ǫ2, x lnx) . (2.58)

The fact that fractional symmetries are intrinsically non-linear resembles the situation in

non-commutative κ-Minkowski spacetime, which is invariant under deformed, non-linear

Poincaré symmetries [68]–[74]. The relation between fractional and non-commutative

theories is discussed elsewhere [60].

Because of the boundary at xµ = 0, the fractional Poincaré transformations (2.52)

are not global symmetries of fractional Minkowski spacetime. Yet, they are the guiding

principle to write an invariant action up to boundary terms. We show first that the

fractional measure, derivative and differential are invariant under the fractional isometry

group Πα, up to boundary terms. The task is easy in geometric coordinates. The proof for

the integration in eq. (2.20) is formally the same as in ordinary calculus, with eI , ΛJ
I and

x in eq. (2.50) and below replaced by their fractional counterparts. The lower terminal

in (2.20) is translated by ãµ but this does not affect the physics well inside the spacetime

bulk, according to section 2.1.

For consistency, writing the measure as in eq. (2.30) should yield the same result. To

check this, it is sufficient to verify that the fractional Caputo derivative transforms as a
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covariant vector. This is true, thanks to eq. (2.53):

∂α

∂αq′µ
=

∂qν

∂q′µ
∂α

∂αqν
= Λ̃ν

µ

∂α

∂αqν
. (2.59)

In particular, operators of the form ηµνφ∂α
µ∂

α
ν φ are Lorentz covariant in a fractional sense,

if φ is a scalar.

Looking at the definition of ∂α
µ , this result would not have been obvious. For 0 < α < 1,

the left derivative can be written in terms of the geometric coordinate q (index µ omitted):

(∂αf)(x) =
1

Γ(1 − α)

� x

0

dx′

(x− x′)α
∂x′f(x′)

= − 1

Γ(1 − α)

� x

0

dy

yα
∂yf(x− y)

= − 1

Γ(1 − α)

� q

0

dq′

q′
∂q′ f̃(q, q′) , (2.60)

where f̃(q, q′) = f{[Γ(1 + α)q]1/α − [Γ(1 + α)q′]1/α}. For the Weyl derivative,

one obtains a similar expression with the upper terminal x replaced by +∞ and

f̃(q, q′) = f{[Γ(1 + α)q]1/α + [Γ(1 + α)q′]1/α}. Performing a fractional Poincaré transfor-

mation and changing integration variable leads to a seemingly non-vectorial expression,

just like acting naively on ∂/∂xµ with eq. (2.49).

To summarize, the explicit coordinate dependence xµ of fractional operators is just a

presentation in the embedding and fractional covariance must be defined in the space of

geometric coordinates qµ.

3 Dimensional flow

So far, we have discussed various ingredients for the construction of a spacetime character-

ized by a measure of fixed fractional order. This was done for the purpose of simplifying

the description of an unfamiliar type of geometry to the bone. However, a major goal

of this proposal is to introduce the often-advertized idea that geometry changes with the

scale or, in more colorful words, to give spacetime a multi-fractal structure. In [13]–[15],

it was assumed that the parameter α would somehow flow from some finite α = α∗ < 1 to

α = 1, without however giving any detail about how this flow takes place.

One could continue to keep α fixed and develop the concrete example of a scalar

theory, were it not for a simple but maybe surprising fact. Namely, a multi-fractional

classical structure is intimately related with the quantum structure of this class of field

theories, and it determines its renormalization group properties. The reason is that the

presence of all possible fractional operators in the classical action determines a hierarchy of

scales. This hierarchy can be interpreted both as the very definition of multi-fractality in

the fractional context and as a self-consistency requirement for renormalization. Not only

these interpretations are not mutually exclusive, but they practically amount to one and

the same. Hence the logical necessity to first present the definition of multi-fractionality,

and then construct consistent classical actions. Here we begin to carry out this programme.
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One possibility would be to promote α to a Lorentz scalar, a function of spacetime

coordinates:

α→ α(xµ) . (3.1)

The dimension of spacetime would become dynamical, a possibility already considered in

the past [43]. One should add a kinetic term and a potential for this new field into the

total action, which would be augmented by an extra contribution S[α(x)]. However, the

system would quickly become intractable due to the complicated integration measure, not

to mention the transcendental dependence on α in S[α(x)]. We also ask ourselves whether

we wish a model to become fractional at small spatial scales or at early times, or both: the

first case is a universe becoming fractal below a certain critical scale at any given time,

while the second corresponds, roughly speaking, to a spacetime becoming fractal near the

big bang. Here we face physically inequivalent scenarios, depending on how we define the

action. For example, a realization of a spacetime becoming fractional at early times would

be to allow the fractional order of time direction to be α0 = 1, while that of spatial directions

to be only time dependent, αi → α(t). Then, one would have no problems in integrating,

if not for the fact that time and fractional spatial derivatives would no longer commute. If

only ordinary derivatives were present in the classical action, the only minor complication

would be to integrate the measure by parts when deriving the equations of motion.

3.1 External scale or renormalization group picture

The main problem arising with eq. (3.1) is that geometric coordinates would be defined

through transcendental expressions and, in general, the fate of fractional Poincaré trans-

formations is not clear. In a Lorentz-covariant framework, the presence of a characteristic

scale can spoil the symmetries of the system, unless one introduces the latter with care.

This suggests that treating α as a field may be unsatisfactory. In alternative, one can

adopt the perspective of critical systems and regard α as an order parameter. More

precisely, one can parametrize α not with spacetime coordinates, but with an external

scale parameter governing dimensional flow. Physically, one can introduce a critical

length/time scale ℓ∗ below which the system flows to a deep fractional regime, and above

which it occupies the whole embedding space. Assuming that α acquires a finite critical

value α∗ at the bottom of this regime, we have

α(ℓ) ∼
{

α∗ as ℓ . ℓ∗

1 as ℓ≫ ℓ∗
. (3.2)

Notice that a similar behaviour would appear in a renormalization group picture, where

the parameter α runs with the energy scale. If interpreted as a fundamental scale (which

is true in fractional theories of real order), ℓ∗ may be associated with the Planck scale.

In this context, as in modern approaches such as asymptotic safety gravity, it does make

sense to consider scales below ℓ∗, because the latter is not a cut-off of the theory. Anyway,

we refrain from the identification ℓ∗ = ℓPl because in the complex-order theory the scale

hierarchy will go through a little revolution, and the Planck scale will be pushed further

deep in the UV spacetime structure.
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Defining the adimensional multi-fractional external time σ := ℓ/ℓ∗, we can replace the

limits in eq. (3.2) with

α(σ) ∼
{

α∗ as σ → 0

1 as σ → +∞
. (3.3)

For instance, profiles realizing (3.3) are

α(σ) =
α∗ + σ

1 + σ
, α(σ) = α∗ + (1 − α∗) tanh σ , α(σ) = α∗ + (1 − α∗)erfσ , (3.4)

where erf is the error function. The latter is solution of the diffusion equation in Euclidean

space with the Heaviside distribution as initial condition.

Let eq. (2.20) be an action characterized by a measure ̺α(x) of dimension dH(α). In

particular, dH(α) is given by eq. (2.47). In the external time picture, the fundamental

action is decorated with an extra integration over external time,

S =

� +∞

0
dσg(σ)Sα(σ) , (3.5)

where g(σ) is a one-parameter measure. Since σ is an external time parameter, spacetime

covariance is respected if Sα is covariant. The spacetime whose measure is a superposition

of fractional Minkowski measures will be called multi-fractional Minkowski spacetime,

denoted by MD
∗ .

3.2 Multi-fractional spacetime

The external-scale Ansatz (3.5) admits a neat interpretation in terms of multi-fractal geom-

etry. Just like fractals, multi-fractals do not have a precise definition but, intuitively, they

are sets with scale-dependent fractal properties, on which mass distributions (i.e., mea-

sures) do not obey a simple power law (see, e.g., [66, chapter 17] and [75]). We have seen

that the Hausdorff dimension of a smooth set is conveniently determined by the scaling law

of the measure of balls of infinitely small radius, eq. (2.41).5 One can make this definition

local and dependent on the center x of the ball, provided the following limit exists:

dL := lim
δ→0

ln ̺[BD(x, δ)]

ln δ
, (3.6)

a quantity called local dimension or Hölder exponent of ̺ at x. Consider now the set Fd

of the points where the local dimension exists and equals d:

Fd =
{
x ∈ R

D : dL = d
}
. (3.7)

In other words, ball measures centered at every x in Fd scale as V(D)(δ) = ̺[BD(x, δ)] ∼ δd

as δ → 0. As d varies, so does the set Fd and its Hausdorff dimension. The problem

5For a non-smooth set embedded in R
D, eq. (2.41) still defines a “fractal dimension” but, in general, it

does not coincide with dH.
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of calculating this dimension, called fine multi-fractal (or singularity) spectrum, is the

subject of fine multi-fractal analysis:

fH(d) := dH(Fd) . (3.8)

The fine spectrum fH gives information about the limiting behaviour of ̺ at any point.

Self-similar sets well illustrate the methods of multi-fractal spectral analysis. We

recall some basic definitions from [66], discussed in [16] in the context of fractional spaces.

Consider a set of N maps Si : R
D → R

D, i = 1, . . . , N ≥ 2, such that

∆[Si(x),Si(y)] ≤ λi∆(x, y) , x, y ∈ R
D , 0 < λi < 1 , (3.9)

where the distance ∆ between two points is ∆(x, y) = |x− y| in ordinary integer geometry.

Any such map is called contraction and the number λi is its ratio. If equality holds, Si

is a contracting similarity or simply a similarity. By definition, self-similar deterministic

fractals are invariant under contraction maps and can be expressed as the union of the

images of Si [76],

F =

N⋃

i=1

Si(F) . (3.10)

Suppose the strong separation condition holds, i.e., there exists a closed set U such that

Si(U) ⊂ U for all i = 1, . . . , N and Si(U) ∪ Sj 6=i(U) = ∅. F ⊂ U is constructed taking

sequences of similarities and the intersection of sets Uk = Si1 ◦ · · · ◦Sik(U). If |U | = 1, then

the diameter of the k-th iteration set is the product of similarity ratios, |Uk| = λi1 . . . λik .

Let 0 < gi < 1 be N probabilities (or mass ratios, or weights) such that
∑

i gi = 1. One

can imagine to distribute a mass on sets Uk by dividing it repeatedly in N subsets of Uk,

in the ratios g1 : · · · : gN . This defines a self-similar measure ̺ with support F , such that

̺(Uk) = gi1 . . . gik and, for all sets A ⊆ F [76],

̺(A) =

N∑

i=1

gi ̺[S−1
i (A)] . (3.11)

The case N = +∞ defines so-called infinite self-similar measures, describing fractals

with an infinite number of similarities [77, 78]. Given a real parameter u, we define the

singularity (or correlation) exponent θ(u) as the real number such that [79]–[82]

N∑

i=1

gu
i λ

θ(u)
i = 1 . (3.12)

The correlation exponent exists and is unique, since 0 < λi, gi < 1. As a function of u, θ

is decreasing and limu→±∞ θ(u) = ∓∞. Finally, the generalized dimensions are

d(u) :=
θ(u)

u− 1
, u 6= 1 , (3.13)

and a non-singular definition, which we do not report here, is employed for u = 1. Fractals

characterized by just one dimension at all scales are special cases of multi-fractals. For
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deterministic fractals, the probabilities are all equal to gi = 1/N . In all fractals with equal

contracting ratios λi = λ, the generalized dimensions all coincide with the capacity dC of

the set (e.g., [16]), which is also the Hausdorff dimension. From eq. (3.12),

N
λθ(u)

Nu
= 1 ⇒ d(u) = − lnN

lnλ
=: dC = dH . (3.14)

For self-similar measures (3.11), and under some weak assumptions, the spectrum (3.8)

enjoys a number of properties [66]. First, the support of the fine spectrum is in a certain

finite interval [dmin, dmax], on which fH is given by the Legendre transform of θ:

fH(d) = inf
u∈R

[θ(u) + du] . (3.15)

For d /∈ [dmin, dmax], Fd is the empty set. Second, fH is a concave function of d. The

maximum of the spectrum is at d = d(0) and equals the dimension of the support of the

measure, maxdfH(d) = fH[d(0)] = θ(0) = dH(supp̺). In this case, eq. (3.12) becomes the

well-known algebraic condition for the Hausdorff dimension of a self-similar set:

N∑

i=1

λ
dH(supp̺)
i = 1 . (3.16)

The support of the measure can be a fractal; for instance, the multi-fractal Cantor set

is a mass distribution over the Cantor set, which is its support. Third, at u = 1, for

eq. (3.12) θ(1) = 0 and the spectrum equals the Hausdorff dimension of the measure:

fH[d(1)] = d(1) = dH(̺).6

There are a plethora of physical phenomena described by multi-fractal geometry. Some

multi-fractal systems can be approximated by fractional dynamics. For example, in the

case of the fractional Fokker-Planck-Kolmogorov equation, one simply replaces fractional

derivatives with sums of derivatives of any allowed fractional order [83]. Multi-fractional

Brownian motion is another instance [66, 75, 84]–[87].

Let us go back to fractional spacetime MD
α of fixed order α, and consider for simplicity

the isotropic case αµ = α. In [16], we have argued that its Euclidean analogue ED
α can be

characterized by two similarity maps acting on geometric coordinates. For any direction µ,

S1(q
µ) := λqµ , S2(q

µ) := (1 − λ)qµ + λ , (3.17)

where λ is arbitrary and chosen to be the same along all directions. Since λ is arbitrary,

this set is trivially self-similar; yet, indeed it is self-similar. A mass would be equally

distributed on, say, N = 2D subsets, with probabilities gi = 1/N . In geometric coordi-

nates, the scaling is λ = 1/2 = N−1/D. Applying eq. (3.14), dH = − lnN/ ln λ = D, and

6The Hausdorff dimension of a measure is

dH(̺) := inf {dHE : E is a Borel set with ̺(E) > 0} .

Intuitively, it is the dimension of a set on which a significant part of the mass distribution ̺ is

concentrated [66].
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dH = Dα for embedding coordinates. From the point of view of the fractional embedding

spanned by the x, the scaling ratio is

λ =

(
1

2

) 1
α

=

(
1

N

) 1
Dα

= g
1

Dα

i , (3.18)

and the probabilities can be regarded as α-dependent for a given λ:

gi = gα := λDα . (3.19)

The same conclusion holds for fractional Minkowski spacetime.

Collecting these results, we determine the extension of the measure ̺α to a multi-

fractional measure with the self-similar structure (3.11). A non-degenerate set of probabil-

ities {gi} must be introduced to weight the sub-copies of MD
α differently, with the index i

running on a given set (with more than two elements, possibly). Each copy is labelled by α,

which plays the role of generalized dimension at a given scale. Thus, and by eq. (3.19), the

labelling of the probabilities is assumed by α. For discrete α, one should exchange the α-

order integration in the fractional model with a sum of integrals over all possible ranges in α:

S =
∑

α

gα Sα ,
1
2 ≤ α ≤ 1 . (3.20)

The external time/RG picture (3.5) is nothing but a continuum version of (3.20).

The coefficients gα are probabilities from the point of view of fractal geometry, and

coupling constants from the perspective of field theory. Assuming the Lagrangian to be

the same for all contributions, the gα are dimensionful in order for S to be dimensionless.

Then, they determine the scale at which geometry changes. Consider a simplified isotropic

model with one such (length) scale ℓ∗, where D-dimensional integrations (whatever the

choice of fractional calculus) are given by

ID = Iα1
D + ℓ

D(α1−α2)
∗ Iα2

D , [ID] = −Dα1 ,
1
2 ≤ α1 < α2 ≤ 1 . (3.21)

The measure is binomial and volumes are made of two pieces. The volume of a D-ball of

radius R in a space endowed with this structure is

V(D)(R) = ℓDα1
∗

[

ΩD,α1

(
R

ℓ∗

)Dα1

+ ΩD,α2

(
R

ℓ∗

)Dα2
]

, (3.22)

where ΩD,α is the volume of a unit ball. Depending on the size of the ball (i.e., on the

scale one is probing), either term will dominate over the other, thus giving two types of

scaling laws. For a small ball (R ≪ ℓ∗), V(D) ∼ RDα1, while V(D) ∼ R̃Dα2 for a large ball

(R ≫ ℓ∗), where R̃ = Rℓ
−1+α1/α2
∗ is the radius of the ball measured in macroscopic length

units (units effectively change with the scale in a multi-fractional setting).

3.3 Dimensionality and the role of dH = 2 and D = 4

An important consequence of the geometric picture outlined in section 2.1.4 is that, for

a given topological dimension D ≥ 1, not all fractional measures are possible. In the (at
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dH < 2 dH = 2 dH > 2

α0 < 1 D ≤ 3 D ≤ 4 D ≤ 2dH

α0 = 1 D ≤ 2 D ≤ 3 D ≤ 2dH − 1

Table 1. Allowed topological dimension of the embedding for a fractional spacetime with Hausdorff

dimension dH(α0, α) and natural 2α-norm.

least) spatially isotropic case, the Hausdorff dimension dH = α0 + (D − 1)α is associated

with 2α-norms only if α,α0 ≥ 1/2. If α0 6= 1, this implies

D ≤ 2dH , (3.23)

while for α0 = 1 one has

D ≤ 2dH − 1 . (3.24)

For instance, dimensions dH(α) < 2 are not associated with 2α-norms, unless D ≤ 3. The

interesting dimension dH(α) = 2 is achieved at the critical value

α∗ =

{
2
D if α0 = α

2−α0
D−1 if α0 6= α

. (3.25)

Imposing α∗ ≥ 1/2, the critical value α∗ exists for D ≤ 4 in the fully isotropic case or

in the spatially isotropic case with α0 6= 1. This excludes an integer time direction if a

two-dimensional regime is required. See table 1.

Furthermore, if one also assumes that α,α0 ≤ 1, there is a lower bound for D,

D ≥ dH , (3.26)

stating that fractional spacetime is embedded in the abstract space MD. Thus, the di-

mensionality of the critical point with the requirement of the existence of a natural norm

provides a guiding principle in determining the maximal dimension in the infrared. A less

clear indication of this feature was noticed in [14] for the structure of a scalar propagator.

The reader may wonder whether one can also produce geometries where D < dH, as it

happens in certain quantum gravity models. In section 6.3.3 we will comment on this.

In the embedding picture considered in this paper, one can now reinterpret the

parameter α also as a measure of maximal dimensional dispersion. In fact, the dif-

ference between the maximum and minimum topological dimension for a given dH is

∆Dmax = 2dH − dH = dH = Dα for the fully isotropic model, so that

∆Dmax

D
= α . (3.27)

On the other hand, the inverse of α is the dispersion between the maximum and minimum

allowed Hausdorff dimension, ∆dH = D − 0 = D = dH/α:

∆dH

dH
=

1

α
. (3.28)
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Also, the difference between the maximum allowed topological dimension and the actual

D is ∆D = 2dH −D = D(2α− 1), hence

∆D

D
= 2α− 1 . (3.29)

The special role of D = 4 consists in allowing, in the same dimensional flow, a phe-

nomenologically viable macroscopic scenario and an ultraviolet configuration with natural

2α-norm and Hausdorff dimension equal to 2. The requirement of having a geometric norm

throughout the dimensional evolution is crucial. One should be careful in drawing the

conclusion that D = 4 is favoured, since dH = 2 was only suggested by quantum gravity

arguments (and by a preliminary analysis of the UV finiteness of the theory in D = 4, sec-

tion 4.6). However, there exists a mysterious relation between the fundamental constants

of Nature which further supports the very special role of dH = 2 as the characteristic

dimension of a quantum theory of gravity. Including Planck’s constant ~, the electron

charge e, Newton’s constant G, and the speed of light c, one can construct a dimensionless

constant in D dimensions as C = ~
3−DeD−2G2−D

2 cD−5 [88]. The dimensional arguments

leading to this combination are unchanged if one replaces the topological dimension with

the Hausdorff dimension. Replacing also ~ with the Planck length

ℓPl :=

√

~G

c3
≈ 1.6163 × 10−35 m , (3.30)

the same constant can be recast as

C = ℓ
2(3−dH)
Pl edH−2G

dH
2
−1c2(2−dH) . (3.31)

In dH > 3, the Planck length appears in negative powers, a hint that perturbative quantum

gravity is non-renormalizable in these dimensions. At dH = 3 the Planck length disappears

(and, in fact, perturbative gravity is renormalizable in three dimensions). Remarkably,

in dH = 2 the fundamental constant coincides with (the square of) the Planck length,

C = ℓ2Pl, while all the other couplings disappear.

This argument highlights the peculiar status of dH = 2 in quantum theories of matter

and gravity.7 In the present context of dimensional flow, we can take it as a hint of

the special role of D = 4. Other observations select D = 4 topological dimensions as

special [88]. Just to mention a few examples (which all assume one time direction), stable

planetary orbits appear only in D = 4; stable Bohr atoms, in D ≤ 4; in D = 4 the

number of generators of spatial translations and rotations is the same, with consequences

for electromagnetism; wave signals propagate free of reverberation and distortion only in

D = 4; spacetimes with D ≤ 3 do not contain gravitational waves; chaos may appear in

dynamical systems only in D ≥ 4; and others. It would be interesting to embed these

arguments in a multi-fractional model and apply them to the Hausdorff dimension.

7Noting, as it is usually done, that [G] = 2 −D vanishes in two dimensions and then deducing that RG

properties of gravity are special in D = 2 is not quite the same. Beside gravity, eq. (3.31) involves also

other forces of Nature.
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D ΩD,1−ǫ/D ΩD−ǫ,1

2 π(1 − 0.42ǫ) π(1 − 0.36ǫ)

3 4π
3 (1 − 0.54ǫ) 4π

3 (1 − 0.22ǫ)

4 π2

2 (1 − 0.63ǫ) π2

2 (1 − 0.11ǫ)

Table 2. Volume ΩD,α of unit D-balls in various dimensions, for α ∼ 1. The corrections in

traditional dimensional regularization are shown in the last column [16].

3.4 Experimental bounds on dimensional flow

The Hausdorff dimension is a physical observable. The volume law of, say, a mass distri-

bution concentrated in a spherical region of size ∼ R is represented in a log-log plot,

lnV(R) = ln ΩD,α +Dα lnR , (3.32)

where ΩD,α is the volume of a D-ball with unit radius. One can, in principle, obtain

independent measurements of volumes and radii and determine both the dimensionality of

the mass distribution (tilt of the line) and the solid-angle factor (offset). With adequate

technology, one can translate this type of experiments in the realm of spacetime geometry.

Experimental constraints on fractional models can be obtained from observations where

gravitational effects are almost or completely negligible. These can be, mainly, of

three types: particle physics tests, equivalence principle/Lorentz invariance tests, and

post-Newtonian tests. We saw in [16, section 3.5] that different presentations of fractional

geometry yield different output values for, e.g., volume measurements, but they enjoy

the same scaling properties for a given α. Thus, if we assume that at scales about and

above those probed by accelerators we are already out of the multi-fractional regime, we

can consider a dH = D − ǫ expansion for a fixed-α configuration, and focus our attention

to the parameter ǫ. This falls short of constraining the characteristic scale ℓ∗ at which

the UV critical point is approached, since these experiments correspond to scales ℓ ≫ ℓ∗.

Anyway, later we will also give a bound on ℓ∗ from particle physics.

In table 2 we report the expressions of the unit volume ΩD,α at D = 2, 3, 4, where

α = 1 − ǫ

D
. (3.33)

Calculations where dH = D − ǫ correspond, in fractal geometry, to regimes with low

lacunarity, i.e., where fractal space is almost translation invariant [89].

The coefficients in front of ǫ are all of the same order of magnitude in fractional models

and in spacetimes with dimension modified according to the dimensional-regularization

scheme [90]–[92], so we can accept bounds on the latter and apply them to the former.

For instance, measurements of the anomalous magnetic moment g − 2 of the muon

can compare the theoretical prediction in four dimensions with that in spacetimes with

dimension modified according to the dimensional-regularization scheme. The order of

magnitude of the upper bound on ǫ was estimated as |ǫ| < 10−5 in [93], while from the

anomalous magnetic moment of the electron, ǫ ∼ 103|gtheor − gexp| [20, 55] and one finds
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|ǫ| < 10−7 [94]. Taking the latest experimental determination of the muon g − 2 [95],

where gexp − gtheor ∼ 10−11, we have

|ǫ| < 10−8 , ℓ ∼ 10−15 m . (3.34)

Going to atomic scales, experimental measurements of the Lamb shift in hydrogen

yield [93, 96]

|ǫ| < 10−11 , ℓ ∼ 10−11 m , (3.35)

tighter than the previous bounds.

As far as intermediate-scale experiments are concerned (ℓ < 103 m), one could reinter-

pret tests of the equivalence principle [97]. Of course, at mesoscopic scales above particle

physics and below planetary we know that the equivalence principle holds with great accu-

racy, and local physics is described by Minkowski spacetime (plus eventual corrections of

general relativity, measurable already at the size of the LHC accelerator). However, it is a

legitimate question to ask what the bounds would be on a 4− ǫ geometry. So, one can use

fractional equations correcting Euclidean geometry and apply them to the data of these

experiments. The equivalence principle is closely related to Lorentz invariance, and tests of

the latter would provide parallel constraints on fractional effects [98, 99]. Upper bounds on

ǫ, and hence on the dimensional flow at such mesoscopic scales, should be quite stringent.

These bounds should be compared with others done at larger scales. Anomalous

correlation functions result in deviations from Newton’s law and a precession of planetary

orbits. Taking into account the theoretical prediction of general relativity for the

precession of Mercury, any dimensional effect should be smaller than the experimental

error, thus yielding [93, 96, 100]

|ǫ| < 10−9 , ℓ ∼ 1011 m , (3.36)

less tight than eq. (3.35). A similar bound is obtained from pulsar measurements at a

distance δ ∼ 104 ly from us [100], so that one can regard (3.35) as valid not only here and

today, but also in a spacetime sphere of size δ.

Finally, a fit of the black-body spectrum of the cosmic microwave background gives an

upper bound on ǫ at spacetime scales comprised between the decoupling era and today [101]:

|ǫ| < 10−5 , ℓ ∼ 14.4Gpc . (3.37)

The best-fit value of ǫ is strictly positive, in agreement with the direction of dimensional

flow in fractional theories.

All the above estimates rely on a number of assumptions which require a careful

scrutiny in the present framework of fractional spacetime. Among these assumptions, we

mention naive implementations of dimension effects (via dimensional regularization, which

is of a non-dynamical nature), the use of unmodified Einstein or Schrödinger equations,

and integer time direction (in our language, fractional charge α0 = 1). If the parameter ǫ is

rendered dynamical, as it would naturally be in multi-fractional dimensional flow, then the

above particle-physics bounds are no longer reliable and, in fact, a determination of space-

time dimension becomes much more difficult. Examples are measurements of oscillations of
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neutral B mesons and of the muon g−2 [102]: At mass scales M > 300÷400 GeV, any 2 <

dH < 5 is compatible with experiments. This translates into a rough upper bound for ℓ∗:

ℓ∗ < 10−18 m . (3.38)

To carry out a complete revision of the results presented in this section, one will have

first to extend the model to curved spacetimes with gravity. This is part of the theoretical

programme here proposed for future studies; in parallel, the improvement of data could

allow an update on some of the above results. Lamb shift measurements seem to be the

most promising for the tightest absolute constraint. However, one should not underesti-

mate the bound (3.37), which, if confirmed, would constrain the end of the multi-fractional

era of the Universe at times prior to the formation of the cosmic microwave background.

4 Scalar field theory

A Lorentz scalar is a favourite guinea pig with which to check the properties of a field

theory in a given geometry setting. We studied a real scalar field in [14] for a generic

absolutely continuous Lebesgue-Stieltjes measure. Here we do just that but focussing

on fractional measures and power-counting renormalization properties. The latter are

important when fractional theories are regarded as fundamental, in which case one should

check that they are ultraviolet finite.

4.1 Power-counting renormalizability

A standard power-counting argument is sufficient to understand qualitatively the relation

between coupling dimensionality and renormalization properties of a field theory [103]–

[105]. The reader already acquainted with it can skip this section. When constructing

perturbation theory, one must take into account all possible gauge-inequivalent interactions

order by order in the effective low-energy action. Some of the couplings diverge when the

regulator in the regularization scheme is removed. However, if the operators O ∼
�
d̺Od

associated with these couplings gren are already present at the tree level, with bare cou-

plings g of dimension dH − d (where d ≥ 0 is the scaling dimension of Od), one can absorb

the divergence into an effective coupling which is defined to be finite when the regulator

is removed. Contrary to the bare couplings g, the effective couplings geff = g + gren are

what one physically measures. If this procedure works order by order, the theory is said

to be perturbatively renormalizable, and hence physically predictive. This means that the

number of physical couplings we measure at any perturbative order is finite.

In the renormalization group picture, the physical action stems from the bare action by

integrating out momentum modes greater than a certain energy cut-off scale E, and then

removing the cut-off. An operator is said to be relevant if its associated coupling g has posi-

tive scaling dimension. On the other hand, operators with dimensionless coupling are called

marginal, while operators with [g] < 0 are irrelevant. In terms of dimensionless constants

g̃ = gEd−dH , [g̃] = 0 , (4.1)
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the operator O associated with g scales as

O = g

�
d̺Od ∼ g̃

(
k

E

)d−dH

, (4.2)

where k is the momentum. Therefore, relevant operators are important at low energies

(k/E ≪ 1). Marginal operators are equally important at all scales. Their detailed

behaviour is not obvious and these can be, case by case, either marginally relevant or

irrelevant. Irrelevant operators become important in the ultraviolet (k/E ≫ 1) but,

contrary to what the name suggests, some of them can also alter macroscopic physics.

Since, typically, there is a finite number of relevant operators and also of marginal

operators, macroscopic physics is described only by few observables. In fractional theories,

this would not be the case if we included the infinite class of operators with fractional

derivatives. Imposition of symmetries will drastically reduce this infinite multiplicity.

If divergences are present, they correspond to local operators of dimensionality increas-

ing with the order of the perturbation expansion. Suppose the bare action S contains only

relevant operators; then, only a finite number of relevant operators (those which did not

appear in S) will enter the effective action, and any divergence will be absorbed in the

finite number of couplings {g}. For instance, in electromagnetism the electron mass and

charge have non-negative dimension in natural units, and one can formally absorb the di-

vergences just in these two coupling constants, which are then determined by experiments.

Conversely, if even one irrelevant operator appears in S, one can construct new irrelevant

operators at each order. Explicit calculations can determine whether their couplings are

finite or not. If they diverge, the perturbative approach looses predictivity because we can

absorb all the divergences only by adding an infinite number of operators to the action.

A theory is said to be power-counting renormalizable if

[g] ≥ 0 (4.3)

for all bare couplings g. This condition is not sufficient to guarantee that the theory be

renormalizable in the sense of the full renormalization group flow, but it provides a good

guiding principle in many situations. If a model is not power-counting renormalizable,

then it will likely be non-renormalizable unless remarkable divergence cancellations

happen. An example is ordinary and supersymmetric gravity, where these cancellations

do happen [106] and explicit calculations are necessary to settle the issue.

The relation between the good UV behaviour of a theory and the absence of irrelevant

operators can be understood by looking at the superficial degree of divergence of a

Feynman diagram. Consider a one-particle-irreducible Feynman sub-graph with L loops, I

internal propagators and V vertices. The superficial degree of divergence δ is the canonical

dimension of all these contributions: given a UV energy cut-off E, the divergent part of

the diagram scales as Eδ. If δ = 0, one has at most superficial logarithmic divergences

and the theory is power-counting renormalizable. When δ < 0 for every sub-diagram in

a Feynman graph, the graph is convergent; if only a finite number of Feynman diagrams

diverge superficially, the theory is power-counting super-renormalizable.
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We can count divergences in the case of an ordinary scalar field theory inD dimensions:

S =

�
dDx

(
1

2
φ∂µ∂

µφ− 1

2
m2φ2 − gp

p
φp

)

. (4.4)

Each loop integral over momenta gives [dDk] = D, while the propagator

G̃(k2) = −1/(k2 + m2) has [G̃] = −2. Interaction vertices do not carry dimension-

ality and, overall, δ = DL−2I. Since I ≥ L, the maximum superficial degree of divergence

can be L(D− 2). L is the number of independent momenta, given by I minus the number

of relations they satisfy among themselves: these are V − 1 (one for each vertex, up to

the total momentum conservation), so that

L = I − V + 1 . (4.5)

This result is often called Euler’s theorem for graphs. With only mass and a φp interaction,

for each vertex there are p lines, so that pV = N + 2I, where N is the number of external

legs in the diagram. Replacing L and I with these expressions, one obtains

δ = DL− 2I = D − [gp]V −
(
D

2
− 1

)

N , (4.6)

where we used [gp] = D−p(D−2)/2. This formula can be also derived by dimensional argu-

ments. A diagram with N external lines can be generated by a gNφ
N term, so that its scal-

ing dimension is [gN ]. On the other hand, with only the φp interaction term available, the

divergent part of the diagram scales as gV
p E

δ. Therefore, we have [gN ] = [gp]V +δ, eq. (4.6).

If N is the maximum power in the potential, the superficial degree of divergence is

δ = [gN ](1− V ). For the theory to be power-counting renormalizable, it must be [gN ] ≥ 0,

implying

N ≤ pD :=
2D

D − 2
. (4.7)

In two dimensions, δ does not depend on the number of external legs (N is unconstrained)

and the greater the number of vertices the more convergent is the diagram. In four

dimensions, the φ4 theory is renormalizable while higher powers of φ are responsible for

an infinite number of divergent diagrams. In general, δ is bounded by the dimension of

operators which already appear in the bare action.

4.2 Actions of fractional field theories

4.2.1 Role of symmetries

We are mainly interested in the interplay between the renormalization group flow and the

symmetries of the model. In ordinary field theories, it is natural to impose the symmetries

of the measure also to the Lagrangian density L. These symmetries are preserved along

the renormalization group flow, and they protect the theory from an infinite multiplicity

of non-covariant relevant operators. In fractional field theories, on the other hand, we

are in an unusual situation. The measure does change along the RG flow, and fractional

Lorentz invariance is not constant with the scale: both the fractional charge α and
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the form of eq. (2.52) flow as well. We do need symmetries to protect the model from

uncontrollable divergences, but the remarkable role of geometry in fractional scenarios

strongly constrains the action even in the absence of RG-constant symmetries. Calling Πα

and ΠL the symmetry group of, respectively, the measure and the Lagrangian density, we

can construct two inequivalent classes of fractional field theories:

• Integer-symmetry scenario. While the symmetry of the measure guarantees protec-

tion against arbitrary measure distributions, one can prescribe a constant symmetry

for L in the RG sense. Since in the infrared the Lagrangian should be Lorentz in-

variant, we assume ΠL = Π1, the integer Poincaré group in D dimensions.

• Fractional-symmetry scenario. In ordinary models, the symmetry of the measure and

of the Lagrangian density are the same. If we impose Πα = ΠL, we obtain an action

invariant under fractional Lorentz transformations. This symmetry varies along the

RG flow but it forbids non-scalar operators at any given α.

We consider these cases separately but we anticipate that physical arguments in favour of

the integer-symmetry scenario will be advanced in sections 4.3 and 4.5.

As in section 3.1, take an action Sα(σ) with fixed fractional order at every given σ.

The total Lagrangian can be split into a kinetic and potential part, L = LK − LV . By

definition, the kinetic term is characterized by a dimensionless coupling (in the ultraviolet),

a quadratic dependence on the field φ, and a differential operator K:

LK = 1
2φKφ . (4.8)

Symmetrized kinetic terms of the form DφDφ can be recast in the form (4.8) after inte-

gration by part. Later we shall select the important case

LK = −1
2∂µφ∂

µφ , (4.9)

corresponding to

K := ηµν

(

∂µ∂ν +
∂µvα

vα
∂ν

)

= ηµν

(

∂µ∂ν − 1 − α

xµ
∂ν

)

, [K] = 2 . (4.10)

In the last step, the choice a0 6= α is implicitly allowed.

To get a dimensionless operator

OK =

�
d̺α LK , [OK] = 0 , (4.11)

the scaling dimension of the field should be

[φ] =
dH − [K]

2
. (4.12)

As far as the potential term is concerned, we take power-law operators

Op =
gp

p

�
d̺α φ

p , (4.13)
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where

[gp] = dH − p

2
(dH − [K]) . (4.14)

We will be interested in the left and right fractional Beltrami-Laplace operators

Kγ := ηµν∂γ
µ∂

γ
ν , K̄γ := ηµν

∞∂̄
γ
µ∞∂̄

γ
ν , (4.15)

which define an infinite multiplicity of derivative operators:

Oα,γ,n = gα,γ,n

�
d̺α φ(Kγ)nφ , Ōα,γ,n = gα,γ,n

�
d̺α φ(K̄γ)nφ , (4.16)

where α, γ > 0, γ will be chosen later, n ≥ 1 is integer, and [gα,γ,n] = 2(1 − n)γ. When

n = 1, Oα,γ,1 and Ōα,γ,1 will be denoted as Oα,γ and Ōα,γ , respectively.

4.2.2 Fractional Klein-Gordon equation

The dynamics of fractional systems have been studied both in Hamiltonian and La-

grangian formalism. Fractional phase space and Hamilton equations are known for classical-

mechanics systems with integer measure and fractional derivatives [107]–[116], with inte-

ger derivatives and fractional measure [117], or with measure and derivatives both frac-

tional [118]–[120]. Still in fractional mechanics, generalizations of the variational principle

and Lagrangian equations of motion have been explored for one-dimensional actions with

integer measure and fractional derivatives [107, 108, 114, 121, 122], fractional measure

and integer derivatives [117, 123]–[125], and measure and derivatives both fractional in

one [118, 119] and many dimensions [126]. Variational principle and equations of mo-

tion for Lebesgue-Stieltjes actions with absolutely continuous measure were considered

in [14, 23, 127], in connection with fractional dynamics and, in particular, field the-

ory. The same methods allow one to construct Noether currents and (non-)conservation

laws [14, 23, 114, 124, 125] for these dissipative systems [107, 108, 117, 123, 128].

Variation of fractional actions follow the rules of fractional integration by parts

(e.g., [16, section 2.3.5]). Given two suitable functions f1 and f2, from [58, eq. (2.1.50)]� x1

x0

dx f1 ∂
αf2 =

� x1

x0

dx f2 ∂̄
αf1 , (4.17)

one obtains the integration by parts of fractional integrals of fractional integrands.

Recalling that left and right derivatives have, respectively, lower terminal x0 = 0 and

upper terminal x1 = +∞,

Īα
0,∞ {f2∂

γf1} =
1

Γ(α)

� +∞

0
dxxα−1 f2∂

γf1

=
1

Γ(α)

� +∞

0
dx f1 ∞∂̄

γ [xα−1f2] . (4.18)

Using the Leibniz formula, the last derivative term can be expanded as an infinite series if

γ 6= 1. In many dimensions and for the scalar theory with potential V (φ), the action integral

Sα,γ =

�
dDx vα L(φ,Kγφ, K̄γφ) (4.19)
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will depend on the kinetic operators Kγ and K̄γ . Consider an infinitesimal variation δφ

which vanishes at the boundary x = 0,∞. Then, the equation of motion at given α

0 =
δSα,γ

δφ
(4.20)

is

0 =
∂L
∂φ

+
1

vα

{

K̄γ

[

vα
∂L

∂(Kγφ)

]

+ Kγ

[

vα
∂L

∂(K̄γφ)

]}

, (4.21)

where, for convenience, we expressed the functional variations in terms of differential

operators of order 2γ. Varying with respect to operators of order γ would not change the

final result but would make its derivation more complicated.

If Sα,γ = Ōα,γ −OV , eq. (4.21) yields

0 =
1

2

[

K̄γφ+
1

vα
Kγ(vαφ)

]

− V ′(φ) , (4.22)

where V ′ = ∂V/∂φ. In the particular case γ = 1, the last two terms of eq. (4.21) collapse

into one another and the Euler-Lagrange equation reads

0 =
∂L
∂φ

+
1

vα
�

[

vα
∂L

∂(�φ)

]

, (4.23)

where � = ∂µ∂
µ, so that

0 = �φ+
∂µvα

vα
∂µφ+

�vα

2vα
φ− V ′(φ) (4.24a)

= �φ− 1 − α

xµ
∂µφ+ (2 − α)(1 − α)φ

(
1

xµ
ηµν

1

xν

)

− V ′(φ) . (4.24b)

Here contracted indices are summed over as usual; in particular, the next-to-last contri-

bution is ηµν(xµxν)−1 = −t−2 + x−2
1 + · · · + x−2

D−1. These equations can be extended to

multi-fractional spacetimes simply by summing over α with weights gα:

0 =
∑

α

gα

{

vα
∂L
∂φ

+ K̄γ

[

vα
∂L

∂(Kγφ)

]

+ Kγ

[

vα
∂L

∂(K̄γφ)

]}

. (4.25)

For γ = 1, eq. (4.24) has a term proportional to �vα, absent in [13, 14]. In the case of (4.9),

in fact, one has

0 = Kφ− V ′(φ) = �φ+
∂µvα

vα
∂µφ− V ′(φ) = �φ− 1 − α

xµ
∂µφ− V ′(φ) . (4.26)

and its multi-fractional generalization

0 =
∑

α

gα

{

�φ+
∂µvα

vα
∂µφ− V ′(φ)

}

. (4.27)

With respect to [13, 14], there is an important difference: the weight vα =
∏

µ ∂µq(x
µ)

is here regarded as a fixed coordinate profile, not a Lorentz scalar. A consequence of this
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fact is that the equations of motion are not Lorentz invariant (in a fractional sense, and

for any γ) as in the Lebesgue-Stieltjes interpretation of [13, 14], where no particular profile

is chosen for vα(x). Thus, we find ourselves in a situation where the action is invariant

under certain symmetries while the equations of motion are not. The root of the problem

is, of course, the residual vα dependence after integrating by parts. Then, classical physics

is not invariant under any of the symmetries enjoyed by the action, except in the IR limit

where Lorentz invariance is restored up to O(1 − α) terms.8

4.3 Integer-symmetry scenario

The right derivative is not a derivative operator for the left fractional coordinates qµ.

Even if one is entitled to define the theory with one type of derivative, the other type will

always pop in via eq. (4.17); this is at variance with the ordinary calculus of variations,

where the same operator appears both in the action and in the equations of motion.

An alternative is to specialize to the case γ = 1 in eq. (4.19) and prescribe that the

Lagrangian contains only ordinary derivatives, eqs. (4.23)–(4.24b). This scenario has the

double advantage of simplicity (removing any reference to independent sectors) and of con-

stituting the correct Ansatz for a field theory which is power-counting renormalizable at the

two-dimensional critical point α∗. It is indeed one choice of operator ∂γ against infinitely

many others parametrized by γ, but it is also the only one with both these characteristics.

In the spirit of the integer-symmetry class of scenarios, this is also the natural choice.

Contrary to integer-order actions, however, φ∂µ∂µφ 6= −∂µφ∂
µφ under integration by

parts, because the non-trivial measure weight is responsible for extra friction terms.

Therefore, the ordering of derivatives in the kinetic term is important to determine the

dynamical properties of the model (also at the quantum level, through the propagator, as

we shall see later). Here we take eq. (4.10), as in [13, 14] but contrary to [15] (where the

γ = 1 special case of eq. (4.15), K1 = �, was assumed).

The field and coupling (4.14) have dimension

[φ] =
dH

2
− 1 , [gp] = dH − p

dH − 2

2
. (4.28)

The kinetic operator OK is marginal. The Op are marginal or relevant if, and only if,

p ≤ pα :=
2dH

dH − 2
. (4.29)

8One might try to reconcile this situation with symmetry requirements in field theory by regarding the

Lebesgue-Stieltjes formalism of [13, 14] as a general framework with absolutely continuous measures, and

fractional models with integer-order kinetic operators as explicit realizations (via a particular coordinate

presentation of the differential structure) breaking the formal symmetry of the general formalism. This

would be somewhat analogous to a choice of background metric in general relativity: while the mother the-

ory is diffeomorphism invariant, explicit solutions break all or most of the symmetries. Similarly, fractional

models may be interpreted as explicit realizations of a non-standard differential structure. In that case,

however, the fractional Lorentz symmetry of the fractional measure would be regarded as accidental. Also,

fractional models with fractional-order kinetic operators, and any of the geometric properties typical of frac-

tional models considered here and in [16], would hardly stem from a presentation-independent framework.

For these reasons, our attitude is not to regard fractional theories as a subclass of more general formulations.
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The total action at a given σ is

Sα(σ) = −
�
d̺α(σ)




1

2
ηµν∂µφ∂νφ+

gp

p

∑

p≤pα(σ)

φp



 . (4.30)

The fact that the dimension of the scalar field vanishes at dH = 2, eq. (4.28), signals the

presence of a critical point, as it happens, for instance, in Hořava-Lifshitz models. For

general D, there exists such a point at α = α∗ = 2/D, where dH = 2 and all the Op are

relevant [13, 14]. A critical point, eventually identified with a UV fixed point, is important

for the power-counting renormalizability of the theory, proven in section 4.6 (see also [14]).

This property supersedes any heuristic argument such as eq. (3.31) in selecting dH = 2 as

special.

In section 3.3, we have seen that the existence of a norm throughout the dimensional

flow constrains the geometry to configurations with α ≥ 1/2. We can make a conjecture

and identify the critical point α∗ with the lowest allowed α; this is most natural in a

multi-fractional scenario, where one should get continuous access to all admissible points

in the flow. Then, if the lower limit α = 1/2 coincides with the critical value α∗ = 2/D,

one gets D = 4. Therefore, the dimension of the embedding can be fixed to D = 4

not because of phenomenological reasons, but by virtue of a combination of reasonable

geometric requirements.

4.4 Fractional-symmetry scenario

Instead of fixing the kinetic term to the integer Beltrami-Laplace operator K1 or to (4.9),

one could take fractional differential operators. In doing so, we would accept the fact

that fractional theories will generically feature different operators at the action and the

dynamical level, but at the same time we would like to understand why. The answer

is given by eqs. (2.7)–(2.9): The operators ∂α and ∂̄α are related to each other by

a reflection centered at x0 + x1. Debating whether to use ∂α or ∂̄α in the action is

tantamount to discriminating, in the integer case, between the operators d/dx and −d/dx,
and the statement that ∂̄αq = f(q) 6= 1 for some non-trivial f(q) is the analogue of

dx/d(−x) = −1 6= 1. In the fractional case, powers of −1 make the issue and the formulæ

visually complicated, but the essence is the same. In this respect, the choice between a

left or a right theory is merely political. If the integration domain is symmetric, x0 = −x1,

then also the reflection is symmetric and we usually describe it as a parity or a time

reversal transformation. Also, the Weyl derivative ∞∂̄
α and the Caputo operator ∂α with

lower terminal x0 = 0 are formally conjugate to each other under a reflection at infinity.

Operators (4.16) are not invariant under fractional Poincaré transformations with

charge α unless γ = α. We keep only Oα,α,n, which are based on the kinetic operator

K̄α = ηµν
∞∂̄

α
µ∞∂̄

α
ν , [K̄α] = 2α . (4.31)

Then, for dH = Dα,

φ =

(
D

2
− 1

)

α , [gα,α,n] = −2α(n− 1) , [gp] =

(

D − p
D − 2

2

)

α . (4.32)

– 37 –



J
H
E
P
0
1
(
2
0
1
2
)
0
6
5

The anisotropic case α0 6= αi 6= αj is not possible for a scalar field, unless one introduces

dimensionful couplings into the definition of the fractional d’Alembertian. These couplings

should then appear also in the matrices Λ̃µ
ν , acting on the geometric coordinates qµ :=

(xµ)αµ/Γ(αµ + 1). We do not consider this multi-scale Lorentz symmetry here.

Equation (4.31) or Kα are not the only second-order operators invariant under

fractional Lorentz transformations. In fact, one can also take

K̃α = ηµν ∂

∂qµ

∂

∂qν
, (4.33)

which has the same scaling properties and yields a very similar model. However, in this

case one could formulate the theory directly in q coordinates with no need of fractional

calculus, and the connection with fractal geometry would be somehow lost. In the

following we do not consider eq. (4.33).

In the external time picture, the engineering dimension of the scalar field changes with

σ, thus giving a sort of effective continuous renormalization group flow. In general, one

should add all possible relevant operators, which would emerge anyway at the quantum

level.

From eq. (4.32), the only marginal operators are, when α 6= 0, Ōα,α,1 = Ōα,α and

OpD
, with pD given by eq. (4.7), while for α = 0 all the operators are marginal. Relevant

operators exist only if α 6= 0 and are the Op with p < pD. This is the same condition as in

ordinary D-dimensional field theories: in four dimensions, V ∼ φ2 and V ∼ φ3 are relevant

and V ∼ φ4 is marginal. The total action with fractional symmetry at a given σ is

Sα(σ) = Ōα(σ),α(σ) −
∑

p≤pD

Op =

�
d̺α(σ)




1

2
φ K̄α(σ)φ− gp

p

∑

p≤pD

φp



 . (4.34)

The relevant operators are responsible from making the system flow from the UV fixed

point. A sharp change in the two-point correlation function of φ would happen when [φ] =

0; this would typically signal a phase transition across a critical point. In turn, a critical

point can be naturally identified with the UV fixed point, as in Hořava-Lifshitz models.

This identification does not guarantee the existence of a perturbative UV fixed point (which

can be inferred only by explicit loop calculations), but it is a positive hint in that direction.

Apparently, the fractional-symmetry scenario does not have a two-dimensional critical

point in D > 2. If dH = Dα and D > 2, the phase transition would happen only

when α = 0, corresponding to Pointland (zero-dimensional manifold, no spacetime, no

dynamics). This does not imply that there is no non-trivial UV fixed point, but it makes

its existence less clear. In section 5 we shall make a crucial extension of the theory

such that the limit α → 0 will correspond to a spacetime with some residual geometric

structure. However, for α < 1/2 there is no natural norm and the geometric construction

of real-valued α models breaks up progressively towards the UV. To summarize, it may be

possible to extend the flow down to the critical point at α = 0, but one would have to give

up to geometric structure anyway. This extension may not be even sufficient: Regardless

the range of α, the argument of power-counting renormalizability fails in the present case,
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since the maximum allowed p = pD is finite. Therefore, we have fewer indications about

the perturbative renormalization properties of the theory. This does not jeopardize the

supposed good UV behaviour of fractal field models, as we shall see in section 4.6.

4.5 Green function

The propagator of a real scalar field in Lebesgue-Stieltjes theories with absolutely

continuous measure was computed in [13, 14] for the kinetic operator (4.9) but, because

fractional measures are not Lorentz invariant, not many of the details of that calculation

fit into the present framework. A cleaner derivation of the Green’s equation was given

in [15] for models with kinetic operator K1, but here we shall point out some subtleties in

relating the Green function with the physical propagator of the theory. In order to do so,

we briefly repeat the calculation of [15] but with the kinetic operator K and the fractional

Bessel transform [36], the correct generalization of the ordinary Fourier transform. The

final result in momentum space will be the same as in [15]. The steps are the same as

in ordinary quantum field theory [129], modulo technical differences, and begin with the

partition function. At the end we will not obtain the propagator (Green function with

causal prescription) but a generic Green function for the kinetic operator. This exercise is

useful for sketching both the momentum structure of the actual propagator (an information

sufficient to complete the power-counting-renormalizability argument) and the caveats

entailed in the full derivation of the propagator itself, which will be given elsewhere.

Consider a real free scalar field with mass m in a fixed-order, isotropic (α0 = α)

fractional spacetime. The action is

Sα =
1

2

�
d̺α(x)φ(x) (K −m2)φ(x) , (4.35)

where we omitted the integration domain. The free Lorentzian partition function Z0 in

the presence of a local source J is

Z0[J ] :=

�
[Dφ] ei[Sα+

�
d̺α(x)J (x)φ(x)] =:

�
[Dφ] eiSJ . (4.36)

To calculate it, we move to fractional momentum space [36]. This has the same measure

̺α(k) as configuration space, momenta are non-negative, and there exists an invertible

transform in terms of Bessel functions of the first kind. Let

cα(k, x) := Γ(α0)(k0x
0)1−

α0
2 Jα0

2
−1(k0x

0)

D−1∏

i=1

Γ(α)(kixi)1−
α
2 Jα

2
−1(k

ixi) (4.37)

be an eigenfunction of the kinetic operator K,

K cα(k, x) = −k2cα(k, x) , k2 := kµk
µ = −(k0)

2 + |k|2 . (4.38)

A reason why to choose K instead of K1, K̄α or Kα is because the momentum-space

transform is expanded on a basis of cα, which are not eigenfunctions of the other kinetic

operators. The transform of a function f(x) and the anti-transform are [36]

f̃(k) :=

� +∞

0
d̺α(x) f(x) cα(k, x) , f(x) =

� +∞

0
d̺α(k) f̃(k) cα(k, x) . (4.39)
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Consistently, the representation of the fractional Dirac distribution in D dimensions is

δα(x, x′) =

� +∞

0
d̺α(k) cα(k, x)cα(k, x′) , (4.40)

stemming for the definition δα(x, x′) = v−1
α (x)δ(x−x′) and the one-dimensional closure for-

mula δ(x− x′) = x
� +∞
0 dk kJν(kx)Jν(kx′) [130, eq. 1.17.13]. The distribution (4.40) acts,

indeed, as a delta in fractional space. Transforming both φ and J in eq. (4.36), one obtains

SJ =

�
d̺α(x)

�
d̺α(k)

�
d̺α(k′) cα(k, x)cα(k′, x)

×
[

−1

2
φ̃(k)(k′

2
+m2)φ̃(k′) + J̃ (k)φ̃(k′)

]

(4.40)
=

�
d̺α(k)

[

−1

2
φ̃(k)(k2 +m2)φ̃(k) + J̃ (k)φ̃(k)

]

=
1

2

�
d̺α(k)

[

−ϕ̃(k)(k2 +m2)ϕ̃(k) +
J̃ (k)J̃ (k)

k2 +m2

]

, (4.41)

where

ϕ̃(k) := φ̃(k) − J̃ (k)

k2 +m2
. (4.42)

The first term in eq. (4.41) will be a normalization of the partition function. The last

term can be transformed back to configuration space:�
d̺α(k)

J̃ (k)J̃ (k)

k2 +m2
=

�
d̺α(k)

�
d̺α(x)

�
d̺α(x′)

J (x)J (x′)

k2 +m2
cα(k, x)cα(k, x′)

= −
�
d̺α(x)

�
d̺α(x′)J (x)Gα(x, x′)J (x′) , (4.43)

where

Gα(x, x′;m) := −
� +∞

0
d̺α(k)

1

k2 +m2
cα(k, x)cα(k, x′) . (4.44)

Unlike Green functions in ordinary Minkowski spacetime, Gα does not depend on the

difference of the coordinates x and x′ of the initial and final points. This property,

unnoticed in [13]–[15] due to the use of a non-factorizable Lebesgue-Stieltjes measure and

of a non-invertible transform, is a direct inheritance of the measure weight, which breaks

translation invariance. On a multi-fractional geometry, translation symmetry is recovered

at large scales [36].

The free partition function (4.36) becomes

Z0[J ] =

{�
[Dϕ] exp

[

− i

2

� +∞

0
d̺α(k)ϕ̃(k)(k2 +m2)ϕ̃(k)

]}

× exp

[

− i

2

� +∞

0
d̺α(x)

� +∞

0
d̺α(x′)J (x)Gα(x, x′;m)J (x′)

]

= Z0[0] exp

[

− i

2

� +∞

0
d̺α(x)

� +∞

0
d̺α(x′)J (x)Gα(x, x′;m)J (x′)

]

. (4.45)
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The function Gα(x, x′;m) obeys the Green equation

(Kx −m2)Gα(x, x′;m) = δα(x, x′) , [Gα] = Dα− 2 . (4.46)

The solution given by eq. (4.44) is not well defined because we have not specified a contour

choice. In general, there are infinitely many ways to go around the poles and branch cuts

of (4.44) in the complex plane (Rek0, Imk0), and different contour prescriptions correspond

to different solutions.9 The most general solution, in fact, is a linear combination of two

solutions G± of the homogeneous equation and a particular solution Ḡ (e.g., the retarded

or the advanced propagator) of the inhomogeneous equation (4.46). The arbitrariness

of the coefficients of the linear combination corresponds to the infinitely many possible

choices of integration contour. One particular choice gives the causal propagator.

If we had used the kinetic operator K1, not only would we have not been able to

express Gα as a momentum integral, but the left-hand side of the Green equation (4.46)

would not have corresponded to the classical equation of motion (4.24), which has extra

terms in the derivatives of the measure weight. Therefore, the usual definition of the

Green equation as the Klein-Gordon equation in the presence of a pointwise source would

have no longer been valid. The matching of the Klein-Gordon and homogeneous Green

equation is related to the issue of microcausality (field observable operators commute

with one another at spacelike separation, and non-local correlations do not give rise to

propagation of superluminal messages). In ordinary scalar field theory, the combination

of the positive- and negative-frequency Green functions G+(x− x′) = 〈0|φ(x)φ(x′)|0〉 and

G−(x−x′) = 〈0|φ(x′)φ(x)|0〉, which are solutions to the Klein-Gordon equation, yields the

Pauli-Jordan function iGPJ := G+ −G− = 〈0|[φ(x), φ(x′)]|0〉. The Pauli-Jordan function

vanishes outside the light cone, thus guaranteeing that the quantum theory is causal. If the

functions G± did not solve the classical equation of motion, the mutual relations among

different Green functions and their role in causality would have been less transparent.

Both the contour prescription and causality issues will be reported elsewhere. Here, we

can nevertheless extract a wealth of physical information from the Green function (4.44).

• Spectrum. The physical spectrum of the theory should be extracted from the Feynman

propagator, but the pole structure of the Green function,

Gα(k) := − 1

k2 +m2
, (4.47)

already points to the final result. Since we are in the half plane Re k0 ≥ 0 instead of

the full (Re k0, Im k0) plane, the spectrum has half the usual support at k2 = −m2,

corresponding to the positive pole

Re k0 =
√

m2 + |k|2 . (4.48)

There is no α-dependence, the momentum-space Green function does not change

along the dimensional flow, and there is no continuum of massive modes as

9An illuminating discussion on the subject can be found in [131].
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in [14].10 Extending to multi-fractional spacetime, the total propagator becomes

G =
∑

α gαGα or, in the external time picture, G =
�
dσg(σ)Gα(σ). The spectrum

in the integer-simmetry scenario is scale independent.

• Scaling law and critical points. Let λ > 0 and consider the scaling transformation

x→ λdS/dHx , k → λ−dS/dHk , m→ λ−dS/dHm. (4.49)

The Green function (4.44) transforms as

Gα

(

λdS/dHx, λdS/dHx′;λ−dS/dHm
)

= λ(2/dH−1)dSGα(x, x′;m) . (4.50)

This scaling law can be also obtained by the scaling of the fractional diffusion

equation (2.42) [16] and it determines the critical point in the dimensional flow at

which the Green function is conformally invariant. By definition, it happens when

dS = 0 or dH = 2 . (4.51)

In the first case, α0 = α = 0 and there is no diffusion at all: this corresponds

to Pointland, dH = 0. In the next section we shall extend fractional models in

a non-trivial way such that even a configuration with α = 0 is endowed with a

non-singular geometry. Therefore, eventually, one might regard this case as physical,

albeit its geometry will not possess a norm.

The second critical point is characterized by a Hausdorff dimension dH∗ = 2, at the

critical value

α∗ =
2

D
. (4.52)

This is the two-dimensional critical point advertized so far in the integer-symmetry

scenario, where dS∗ = dH∗ = 2. Taking α∗ = 1/2 (the minimum allowed value for

normed fractional spaces), the topological dimension is constrained to be D = 4. In

the fractional-symmetry scenario, this critical point either does not exist for D > 2

or it does not correspond to a normed space.

4.6 Superficial degree of divergence

Let us make a short summary of the characteristics of multi-fractional quantum field

theory. First of all, macroscopic physics would not be described by a finite number of

observables if we included the infinite class of operators Oα,γ,n with fractional derivatives,

eq. (4.16). Whether we include these operators or not is a matter of definition of the

theory, and one is entitled to opt for the formulation with good IR behaviour. In the

fractional-symmetry scenario there is still a multiplicity of operators Oα,α,1, labelled by

α, but in the infrared the number of effective couplings is finite. In the integer-symmetry

10It is expected that in fractional-symmetry scenarios Gα(k) has an algebraic branch point k2α = −m2
α,

where the mass coupling has an α-dependence via its scaling dimension. The associated branch cut would

correspond to a continuum spectrum of massive modes.

– 42 –



J
H
E
P
0
1
(
2
0
1
2
)
0
6
5

scenario there is only one kinetic term throughout the flow. Consistently, if one starts from

an action with only integer derivatives, operators with fractional derivatives never appear.

Secondly, the renormalization properties of a model are dictated by the dimensionality

of the operator K in the kinetic term, so that good UV behaviour is guaranteed when

the spacetime dimension is the same as the dimensionality of K. In this respect, since

the harmonic structure is determined by K, the spectral and Hausdorff dimensions of the

theory (related to, respectively, the harmonic and geometric structures [16]) are equally

important and yield complementary informations.

The scaling argument for the Green function, eqs. (4.50)–(4.52), and the power count-

ing of sections 4.3 and 4.4 are in mutual agreement. In fact, the power-counting argument

of section 4.1 applies, mutatis mutandis, also to fractional theories. One difference is in the

replacement of the topological dimension D with the Hausdorff dimension dH, due to the

non-trivial measure obtained in momentum space: each loop integral gives [d̺α(k)] = Dα.

The momentum-space propagator has the same scaling dimension of the Green function,

which is [Gα(k)] = −2γ in a general fractional scenario with kinetic operator of order

2γ. In configuration space, Gα contributes with a weight Dα − 2γ. For the scalar field

theory, interaction vertices do not carry dimensionality. Overall, the superficial degree of

divergence of a Feynman graph with L loops and I internal lines is

δ = DαL− 2γI ≤ δmax := (Dα− 2γ)L . (4.53)

When α = 1 = γ, one gets the standard result in D dimensions. Otherwise:

• In the fractional-symmetry scenario (γ = α), the maximum superficial degree of

divergence is positive and the power-counting argument is inconclusive regarding

the renormalizability of the model. Nevertheless, δmax is smaller than in ordinary

field theory by a factor of α. Using the same line of reasoning leading to eq. (4.6),

one can verify that eqs. (4.7) and (4.29) are recovered from (4.53).

• In the integer-symmetry scenario (γ = 1), at the critical point α = α∗ = 2/D one

has δ ≤ 0 and, at most, logarithmic divergences. If the UV fixed point had α < 2/D

(non-normed spaces, if D ≥ 4) the theory is super-renormalizable.

5 Complex fractional theory

If we regard fractional spacetime models as effective frameworks capturing some features of

quantum gravity at large, it is important to probe their capabilities in that direction, be-

yond the running of the effective dimension of spacetime. Fractional models represent con-

tinuum spacetimes, and one can conceive applications to regimes where the discrete nature

of spacetime in quantum gravity models has been washed or zoomed away by “hydrody-

namical” macroscopic effects. These effects are believed to take place when large ensembles

of “quanta of space” (spin networks, complexes endowed with discrete labels, and so on) are

collected together and let evolve dynamically. This evolution of a very large number of de-

grees of freedom is presently out of control and scantly explored in most of the theories, but
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it is a promising avenue leading to their yet-unclear continuum limit. Despite their intrinsi-

cally continuum structure, can fractional field theories play a role in the effective description

of this transition? Surprisingly, the answer is Yes. To see this, we need a short detour.

5.1 From real to complex fractional order

A curious feature of the heat kernel trace for a Laplacian on fractals is that it displays

oscillations. In a metric space of topological dimension D, the return probability at small

diffusion time σ is Weyl’s expansion

P(σ) =
1

(4πσ)
D
2

[

1 +

+∞∑

n=1

Anσ
n

]

, (5.1)

where the coefficients An depend on the background metric. From eq. (2.46), dS = D. For

non-smooth sets such as fractals, this expression is drastically modified by the presence of

discrete symmetries. In particular, for deterministic fractals the counterpart of eq. (5.1)

is of the form

P(σ) =
1

(4πσ)
dS
2

F (σ) , (5.2)

where F is a periodic function of lnσ [64, 132]. Oscillatory behaviour has been found

analytically and numerically for various fractals [133]–[136]. The phenomenon of loga-

rithmic oscillations [137] seems to have two origins. The high symmetry of deterministic

fractal sets such as diamond fractals and the Sierpinski gasket give rise to eigenvalues

of the Laplacian with unexpectedly large multiplicity; in turn, these are related to the

periodicity of the counting measure [64, 137, 138]. Very recently, examples have been

found (for instance, the Sierpinski carpet) where log-oscillations arise not because of large

multiplicities, but because of unexpectedly large gaps in the spectrum [139].

The underlying symmetry mechanism responsible for the oscillations plays a major

role in the next development of fractional theory, and we wish to see how it arises in

that context. We need to recall the relation between fractals and fractional calculus of

real [140]–[146] and complex order [147, 148]. This relation was reviewed in [16, section

4.4], where the proof of the following theorem was sketched: A fractional integral of real

order represents either the averaging of a smooth function on a deterministic fractal, or

a random fractal support. As a matter of fact, these results have been obtained only for

fractals embedded in the real line (D = 1) and, to the best of our knowledge, there is no

literature on multi-dimensional embeddings. We do not see any problem in extending the

theorem to fractals given by the Cartesian product of lower-dimensional fractals, while

more general statements might require extra work.

Let F be a self-similar set given by N similarities (3.9). It can be expressed iteratively

as an infinite intersection of pre-fractals:

F =

∞⋂

k=1

S ◦ · · · ◦ S
︸ ︷︷ ︸

k times

(U) , (5.3)
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where

S(U) :=
N⋃

i=1

Si(U) (5.4)

for any non-empty compact set U ⊃ F such that Si(U) ⊂ U . Consider the integral of a

function f(x) on a self-similar fractal set F ⊆ [0, 1],

IF (x) :=

� x

0
dx′ vF (x− x′)f(x′) . (5.5)

We temporarily work in dimensionless units ([x] = 0). The kernel vF depends on the

geometry of the set and can be determined recursively at any given order of iteration.

The Laplace transform of eq. (5.5) is

ÎF (p) :=

� +∞

0
dxe−pxIF (x) = v̂F (p)f̂(p) . (5.6)

Suppose F be composed, at the first iteration, by a number of smaller copies of length λ.

The k-th iterate has Laplace-transformed kernel v̂k
F (p) =

∏k−1
n=0 gn(p), for some functions

gn. If all these functions are equal and with argument gn(p) = g(pλn), and if the

asymptotics of g are g(z) ∼ 1 + O(z) for small z and g(z) ∼ g1 + O(z−1) for large z (all

conditions fulfilled by self-similar and generalized self-similar sets; the constant g1 is the

first probability weight in the self-similar measure (3.11)), then [147, 148]

lim
k→+∞

v̂k
F (p) = v̂F (p) = p−αFα(ln p) , α =

ln g1
lnλ

, (5.7)

where Fα is a log-periodic function [137] of period lnλ:

Fα(ln p+m lnλ) = Fα(ln p) =

+∞∑

l=−∞

cl exp

(

2πli
ln p

lnλ

)

, (5.8)

for some coefficients cl. Combining (5.7) with (5.8),

v̂F (p) =

+∞∑

l=−∞

cl exp [(iωl − α) ln p] , ωl :=
2πl

lnλ
. (5.9)

Recognizing p−α as the Laplace transform of the fractional weight vα(x) = xα−1/Γ(α) and

comparing eq. (5.5) with (5.7), one already sees that IF is quite similar to a fractional in-

tegral Iα, were it not for the non-constant contribution (5.8). To complete the connection,

it is sufficient to take the average of the log-periodic function Fα over the period lnλ:

bα := 〈Fα(ln p)〉 :=

� 1/2

−1/2
dz Fα(ln p+ z lnλ) , (5.10)

where the value bα depends on the details of g(pλn). The integration range is written in a

conventional form and it can change according to the choice of units; once the log-period

is given, the average procedure is uniquely defined. Then,

〈vF (x)〉 = bα
xα−1

Γ(α)
, (5.11)
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and [147, 148]

〈IFf〉 =

� x

0
dx′ 〈vF (x− x′)〉f(x′) = bαI

αf . (5.12)

This relation is valid for a huge class of sets known as net fractals, and admits two

other interpretations. Taking the average corresponds to a randomization of the fractal

structure, where oscillations are cancelled by mutual interference. But washing oscillations

away can be also seen as dropping all the modes in eqs. (5.8) and (5.9) except the zero mode

l = 0. Now, the ωl → 0 limit is obtained either as a small-similarity-ratio limit, λ→ 0, or

a large-Laplace-momentum limit in eq. (5.8), so that eq. (5.12) can be also regarded as an

approximation in Laplace momentum space, IF ∼ bαI
α as Re(p) → +∞ [140]–[146].

Thus, fractional integrals of real order are associated with random fractals. In other

words, fractional measures either correspond to certain random fractals or, alternatively,

they approximate Borel measures of self-similar fractals in the limit of infinitely refined

similarities (continuum approximation), corresponding to neglecting the oscillatory struc-

ture of fractal kernels. This was the point where the discussion in [16] ended. However,

it is not the end of the story.

The approximation IF ∼ 〈IF 〉 ∼ Iα, eq. (5.12), can be improved by including

next-to-leading oscillatory modes. Quite generally, integrals on self-similar fractals are

given by an infinite series of fractional integrals of complex order. Looking at eq. (5.9), the

complex fractional measure weight vF =: ṽα is naturally defined as a sum (or an integral)

over frequencies,

ṽα(x) =

+∞∑

ω=−∞

cωvα,ω(x) :=

+∞∑

ω=−∞

cω
xα−1+iω

Γ(α+ iω)
, (5.13)

where cω are complex coefficients. The zero mode is the real-order measure we have

considered so far in this paper and in [16], and the average bα is equal to c0. Complex

measures are obviously not measures in the sense commonly employed by physicists: It it

not positive (the measure of a set can be a non-negative number) and requires a non-trivial

extension of the definition of Hausdorff dimension.11 To explore the properties of these

objects, we pick a model with just one pair of conjugate frequencies ±ω:

vα,ω(x) = c0
xα−1

Γ(α)
+ cω

xα−1+iω

Γ(α+ iω)
+ c∗ω

xα−1−iω

Γ(α− iω)
, (5.14)

where cω = |cω|eiΨ is a complex amplitude, c∗ω is its complex conjugate, and Ψ ∈ R is

a phase. We choose to work with eq. (5.14) rather than (5.13) only for simplicity, but

there may be further justification in doing that. In fact, for Cantor sets the three-term

weight (5.14) is a good approximation of the full kernel, where ω is the average frequency

of the leading terms [148].

11In this respect, spacetimes associated with such measures are “pre-geometric.” We refrain from using

this adjective because the geometry of complex measures is mathematically well defined, although quite

different from ordinary geometry.
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After some manipulations [149], one can see that the measure weight (5.14) is real;

this happens because one is considering a conjugate combination of complex measures.12

We set c0 = 1 without loss of generality and Ψ = 0, commenting on this last assumption

at the end. Noting that

1

Γ(α± iω)
= Re

[
1

Γ(α+ iω)

]

± iIm

[
1

Γ(α+ iω)

]

=: RΓ(α+ iω) ± iIΓ(α + iω) ,

one has

vα,ω(x) = xα−1

[
1

Γ(α)
+

cωe
iω ln x

Γ(α+ iω)
+
cωe

−iω ln x

Γ(α− iω)

]

(5.15)

=
xα−1

Γ(α)
+ xα−1cωRΓ(α+ iω)

(

eiω ln x + e−iω ln x
)

+xα−1cωiIΓ(α+ iω)
(

eiω ln x − e−iω ln x
)

= xα−1

[
1

Γ(α)
+ 2cωRΓ(α+ iω) cos(ω lnx) + 2cωIΓ(α+ iω) sin(ω lnx)

]

. (5.16)

The primitive of vα,ω is the oscillatory extension of the measure ̺α:

̺α,ω(x) =
xα

Γ(α+ 1)
[1 +Aα,ω cos(ω lnx) +Bα,ω sin(ω lnx)] , (5.17)

where

Aα,ω :=
2cω

α2 + ω2
Γ(α+ 1)[αRΓ(α+ iω) − ωIΓ(α+ iω)] , (5.18)

Bα,ω :=
2cω

α2 + ω2
Γ(α+ 1)[ωRΓ(α + iω) + αIΓ(α+ iω)] . (5.19)

These expressions are even in ω, so we can restrict our attention to positive frequencies

ω > 0. In the limit ω → 0, one recovers the power-law measure. Restoring dimensionful

units, ω remains dimensionless, but we must introduce a length scale, which we call ℓ∞,

in the arguments of the logarithms. Then, eq. (5.17) becomes

̺α,ω(x) =
xα

Γ(α+ 1)

[

1 +Aα,ω cos

(

ω ln
x

ℓ∞

)

+Bα,ω sin

(

ω ln
x

ℓ∞

)]

. (5.20)

5.2 Discrete scale invariance

Complex fractional models with self-conjugate measure are characterized by oscillations

governed by a constant

λω := exp

(
2π

ω

)

. (5.21)

Notice the highly non-perturbative dependence on the frequency. Asymptotically,

λω
ω→0+

−→ +∞ , (5.22a)

λω
ω→+∞−→ 1 . (5.22b)

12In general, a self-conjugate real measure has cω = c−ω; if this condition is not satisfied, the measure

and the ensuing dimension are complex [138].
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λω defines a characteristic (as opposed to fundamental) physical scale as

ℓω := λωℓ∞ > ℓ∞ . (5.23)

The oscillatory part of the measure weight (5.16) and of the measure (5.20) is log-periodic

under the discrete scaling transformation

ln
x

ℓ∞
→ ln

x

ℓ∞
+

2πn

ω
= ln

x

ℓ∞
+ n lnλω , n = 0,±1,±2, . . . , (5.24)

implying

x → λn
ωx , n = 0,±1,±2, . . . . (5.25)

With a slight abuse of terminology, we shall call log-period both the period lnλω and the

dimensionful scale ℓω.

The transformation rule (5.25) is one of the pivot results of the paper. Log-periodicity

is a phenomenon intimately related to the presence of a fundamental length scale ℓ∞ or, in

other words, a microscopic cut-off. This happens due to a symmetry unknown to continu-

ous systems or artificially discrete systems such as lattices. This symmetry, called discrete

scale invariance (DSI), is a dilation transformation under integer powers of a preferred,

special scaling ratio λω [137, 150, 151]. Equation (5.25) is a discrete scale symmetry. All

deterministic fractals possess a DSI by definition [24, 152]. For example, the middle-third

Cantor set is defined by the similarities S1(x) = (1/3)x, S2(x) = (1/3)x + (2/3). Here,

the contraction ratio is fixed once and for all: λ1 = 1/3. The set is invariant only under

contractions with ratios λn = (1/3)n, n natural. Log-periodicity and the associated

DSI appear also in Laplacian growth models, rupture in heterogeneous systems, analysis

of earthquakes and financial crashes, out-of-equilibrium systems, quenched disordered

systems, and two-dimensional turbulence [137] (for early applications in the theory of

phase transitions and Lévy flights see, respectively, [153, 154] and [155]).

Fractional calculus of complex order enjoys (slight modifications of) all the prop-

erties13 we have listed in [16, section 2.3] but, since the appearance of early papers on

the subject [156, 157], only recently it has received attention for its physical applica-

tions [147]–[149, 158]. Returning to fractional spacetime models, assume eq. (5.20) as

the measure along each direction xµ. Fractional spacetimes with this measure admit two

inequivalent interpretations: either as exact per se or as next-to-leading approximations

of a discrete fractal spacetime. In both cases, the extension to fractional operators of

complex order produces a more complicated geometric pattern unravelling an underlying

discrete scale. One renders the continuous scale invariance (3.17) discrete, and oscillatory

fractional measures are much closer to genuine fractals than their monotonic counterparts.

Consistently with (5.25), to get the continuum limit one should send the frequency to

zero from above, so that the length cut-off vanishes:

ℓω → 0 as ω → 0+ . (5.26)

13In particular, left fractional derivatives of order α + iω with 0 ≤ α < 1 are defined by eq. (2.5) with α

replaced by α + iω [58].
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The corresponding asymptotics of the measure weight (5.15) is

vα,ω
ω∼0
=

xα−1

Γ(α)

{

(1 + 2cω) + ω2cω

[

ψ′(α) − ψ2(α) + 2ψ(α) ln
x

ℓ∞
−

(

ln
x

ℓ∞

)2
]}

+O(ω4) , (5.27)

where ψ(x) = ∂xΓ(x)/Γ(x) is the digamma function. Notice that the measure weight at

ω = 0 is only proportional, and not equal, to its average vα over a log-period.

5.3 Log-oscillations

In the case of real fractional order, we have excluded the case α = 0 because the measure

becomes degenerate [16, section 2.6],

v0(x) = δ(x) , (5.28)

and spacetime reduces to a structureless point. When the action is equipped with the mea-

sure (5.20), however, Pointland is no longer trivial. Setting α = 0 in eq. (5.16), one obtains

v0,ω(x) = δ(x) +
2cω
x

[

RΓ(iω) cos

(

ω ln
x

ℓ∞

)

+ IΓ(iω) sin

(

ω ln
x

ℓ∞

)]

. (5.29)

The first term would yield an integration constant (the singular measure of the real-α

case) and can be ignored, but the rest has a genuine dependence on the coordinate.

The behaviour of eqs. (5.16) and (5.20) is depicted in figure 1. For ω 6= 0, and for any

α ≥ 0, the weight vα,ω is periodic with increasing period. Due to the power-law pre-factor,

the amplitude decreases for 0 ≤ α < 1 and is constant for α = 1. On the other hand,

the measure ̺α,ω is log-periodic with increasing period and constant amplitude for α = 0

and increasing amplitude for α > 0 (inclusive α = 1). The amplitudes are magnified by

the choice of a large coefficient cω = 1. In realistic fractals, however, cω is very small and

oscillations reduce to tiny ripples around the average (see, e.g., [135]).

It is important to stress a striking difference with respect to real-order multi-fractional

spacetime. There, like in many other models of high-energy physics, one defines a

characteristic scale ℓ∗ (compare with section 3.1) distinguishing an exotic regime ℓ/ℓ∗ ≫ 1

from a classical regime ℓ/ℓ∗ ≪ 1, depending on the observational scale ℓ. Here, on the

other hand, these regimes are achieved in a subtler way. The characteristic scale ℓω,

determined by the fundamental scale ℓ∞, is the ever-present period of the oscillations,

and what yields the “classical” result is not an analytic expansion in a small quantum

parameter, but a spacetime averaging procedure.

Lifting the assumption Ψ = 0 does not present any difficulty. Writing ω̄ := ω+ Ψ, one

has to replace ω with ω̄ everywhere (including the characteristic scale ℓω̄) except in the

arguments of RΓ and IΓ. The measure is no longer even in ω, but one can still consider

positive frequencies. The only non-trivial difference is in the asymptotic limit (5.27), where

the trigonometric functions would survive with log-period 2π/Ψ. Then, it is no longer
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Figure 1. The measure weight vα,ω (eq. (5.16), left-side plots) and the associated measure ̺α,ω

(eq. (5.20), right-side plots) for cω = 1, a fixed value of the frequency (here, ω = 1), and for α = 0

(top row), 0 < α < 1 (center row, with α = 0.95 for vα,ω and α = 0.05 for ̺α,ω), and α = 1 (bottom

row). The dashed curves are the averages vα = 〈vα,ω〉 and ̺α = 〈̺α,ω〉. In the case α = 0, the

singular term in the measure has been dropped.

true that the limit ω → 0 yields a measure proportional to its average. This is because the

scale ℓω̄ does not vanish and the continuum limit is not recovered: eq. (5.26) is replaced by

ℓω̄ → ℓΨ = ℓ∞ exp

(
2π

Ψ

)

as ω → 0+ . (5.30)

Thus, the interplay of the phase Ψ and the zero mode can further enrich the physical

properties of the model.
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The transient nature of the discrete-to-continuum transition in simplicial quantum

gravity models could be captured by complex fractional models. In fact, the lesson

from fractal and chaos theory is that, while the large-Laplace-momentum approximation

and operators of real fractional order are apt to describe “static” fractal configurations,

log-periodic systems described by complex fractionality also include transient phenomena

unobservable in the first case.

5.4 Dimensions

The parameter α modulates the position and the height of the peaks, but it cannot remove

them, even in the α = n cases corresponding to Pointland (α = 0) and smooth space

(α = 1). This reflects the deep relation between genuine discrete fractals constructed via

contracting maps and their continuum approximation. At higher orders in the harmonic

expansion, the concept of Hausdorff dimension becomes ambiguous. If one used eq. (2.41)

with the measure (5.20), the volume V(D)(δ) of a D-ball of radius δ would strongly depend

on δ: even tiny variations of the radius would lead to great differences in the output value

V(D)(δ). This value could even be negative, and would not monotonically increase with

the radius. In general, the volume would not be a power law, V(D)(δ) 6∼ δdH .

To define the Hausdorff dimension meaningfully, one has to take the average of the

full measure over a period. Then, dH is simply determined, at all scales, by the scaling

law of ̺α = 〈̺α,ω〉. This is the leading order of the approximation of a highly non-trivial

fractal measure via an effective fractional measure. In other words, the correct operational

definition of dH is not (2.41) but

dH := lim
δ→0

ln〈V(D)(δ)〉
ln δ

, (5.31)

where V(D)(δ) is calculated with the measure (5.20). Similarly, the spectral dimension is

the exponent of the leading term in the heat kernel expansion (5.2). In the multi-fractional

complex case, it is defined through the return probability (2.45) with the measure ̺α

replaced by the full oscillatory measure in momentum space, and

dS := −2
d ln〈P(σ)〉
d ln σ

. (5.32)

This definition replaces eq. (2.46). Again, using eq. (2.46) would lead to problematic results.

The greater the amplitude of the oscillations, the less meaningful the concept of spectral

dimension would be. One would encounter situations where oscillations are so large that

neither dH nor dS make sense any longer (a regime with geometry, yet with a very “bad”

one), or where dS temporarily becomes greater than dH (a non-fractal regime) or D.

To conclude, the Hausdorff and spectral dimensions are the same as in multi-fractional

spacetimes, because their correct definition entails the average of, respectively, the volume

and the heat kernel over a log-period.
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6 Discussion and research agenda

In this paper, we completed the construction of a flat spacetime endowed with certain

properties typical of fractals. While in [13]–[15] we outlined the motivations for doing so

and described some results with general exotic integration measures, in [16] we focussed on

fractional measures and a space with Euclidean signature and fixed dimensionality. Here

we extended that set-up to Lorentzian signature, changing dimensionality (multi-fractal ge-

ometry) and complex fractional order. A scalar field theory was given as an example of how

fractal geometry deeply modifies the ultraviolet structure of a field theory, eventually soft-

ening or removing UV divergences. For simplicity, gravity was not included in the picture.

On one hand, fractional field theories can be regarded as effective theories, i.e.,

approximations in the continuum of a microscopic theory either with genuinely fractal

properties or with a genuine (but non-fractal) dimensional flow. In this respect, the present

model would propose itself as a tool to describe effective physics in some regimes stemming

from fundamental models known to display dimensional flow, such as spin foams and others

mentioned in the introduction. Then, one would not be interested in the renormalization

properties of a given fractional action. In this case, predictions of fractional models should

be associated with features of a given full theory, and there would arise the theoretical goal

to obtain fractional dynamics as an emergent phenomenon. On the other hand, fractional

theories may be also regarded as fundamental and unrelated to other proposals (fractal or

non-fractal), in which case one should take care of their UV finiteness.

This last section is divided in three parts. In the first, we describe the hierarchy

of scales implicit in the measure and the geometric regimes characterizing spacetime

at different resolutions. In the second and third parts, open issues and applications to

quantum gravity and non-commutative geometry are discussed.

6.1 From continuum to discrete geometry

Gathering all the information obtained from the spacetime measure, we can summarize

the emergent physical picture as follows [17]. In complex self-conjugate fractional models,

there exists a hierarchy of scales, one fundamental and the others characteristic,

ℓ∞ < {ℓω} < ℓ∗ . (6.1)

In the simple model with only one frequency, three scales divide six different regimes

non-perturbatively. We proceed from large to small scales and write expressions in one

topological dimension, identifying the coordinate x with the resolution ℓ.

1. Classical regime. At spacetime scales larger than a characteristic scale ℓ∗, ordinary

Euclidean/Minkowski geometry and ordinary field theory are recovered. The measure

along a given direction is

̺(x) ∼ 〈̺1,ω(x)〉 = x , ℓ≫ ℓ∗ . (6.2a)

The number of dimensions can be theoretically constrained to be four.
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2. Multi-fractional regime. At mesoscopic spacetime scales around ℓ∗, one obtains a

model where one can construct field theories on a multi-fractal geometry. The scaling

of volumes is anomalous and changes with the resolution. The renormalization group

properties of field theory on these spacetimes are improved in the ultraviolet. The

measure is given by

̺(x) ∼
∑

α

〈̺α,ω(x)〉 , ℓ ∼ ℓ∗ . (6.2b)

A natural norm for the space exists if the fractional parameter α is comprised between

1/2 (at the smallest scales) and 1 (large scales).

3. Two-dimensional regime. At microscopic scales much larger than a log-period ℓω but

smaller than ℓ∗, spacetime is effectively two-dimensional with fractional geometry

given by the measure

̺(x) ∼ 〈̺ 1
2
,ω(x)〉 ∼ x1/2 , ℓω ≪ ℓ . ℓ∗ . (6.2c)

4. Oscillatory transient regime. In the ultra-microscopic regime ℓ ∼ ℓω, geometrical con-

cepts such as dimension and volumes make sense only in average (over a log-period),

discrete symmetries make their appearance, and despite the continuous embedding

the notion of continuous spacetime begins to blur. In this respect, scenarios with self-

conjugate measures are non-perturbative, intrinsically quantum models of spacetime.

The measure is

̺(x) ∼
∑

α

̺α,ω(x) , ℓ∞ < ℓ . ℓω . (6.2d)

5. Boundary-effect regime. Here geometry is still given by a fractional continuum with

discrete scale invariance, but boundary effects become important: this happens when

the argument x/ℓ∞ in the oscillatory part of the measure is of order unity. We

associate this regime with boundary effects because, according to section 2.1.3, a

small x expansion corresponds to getting close to the terminal at x = 0. Expanding

eq. (5.20) around the point x/ℓ∞ = 1, we have

̺α,ω(x) =

[
1

Γ(α)
+ 2RΓ(α+ iω)

]

ln
x

ℓ∞
+O

(
x

ℓ∞

)

,

so that, dropping immaterial constant terms, the measure becomes

̺(x) ∼ lnx , ℓ ∼ ℓ∞ . (6.2e)

This is not the same as taking the limit ω → ∞, which is not well defined. Notice

that all information on the fractional structure of the measure has been absorbed in

a finite normalization constant. We will comment later on the relation of this result

with non-commutative geometry.

6. Fractal regime. Finally, at scales ℓ < ℓ∞, the physics is governed by discrete

symmetries and the continuum approximation breaks down. From the perspective
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of fractional spacetime, there is no longer a distinction between ambient space and

its boundary (x ∼ 0), meaning that the neighborhood of any point x will contain

x = 0. This description is clearly inadequate, since the support of the measure is

highly disconnected (as in dust-type fractals), and the tools of fractional calculus

must be abandoned definitely:

̺(x) = ? , ℓ < ℓ∞ . (6.2f)

Forfeiting some of the above stages, one can even devise scenarios with a shorter hierarchy:

• Real-order multi-fractional models. These were the main object of [16] and the first

four sections of this paper. The fractional integration order is real and one distin-

guishes between a classical and a multi-fractional regime, via the fundamental length

ℓ∗. In the deep ultraviolet, spacetime is in the continuous two-dimensional fractional

regime (6.2c).

• Pure complex models. Setting α = 1, we obtain a complementary scenario with just

two scales, ℓω and ℓ∞. After the oscillatory transient regime, the average over a

log-period immediately yields the classical result, with no multi-fractional structure

in between.

Both these possibilities have drawbacks. In fractal geometry, one expects both anomalous

scaling for averaged measures and oscillatory structures. The symmetry structure of the

real-order multi-fractional model is less rich and it does not distinguish different regimes

in the UV. Thus, one would loose a number of interesting connections between some

models of quantum spacetime and quantum gravity, as we shall comment later. So, the

three-scale scenario of the complex multi-fractional theory, albeit more complicated, is

more complete and, perhaps, better motivated than its reductions.

6.2 Open issues

6.2.1 Fractal regime

Fractional operators capture many features of fractals, but not all. In particular, they are

not complete mathematical realizations of fractals and of diffusion on fractals. The features

of a genuinely fractal background in the ultra-microscopic regime symbolized by eq. (6.2f)

would eventually deviate from those predicted in the continuum fractional approximation.

For instance, the relation between spectral and Hausdorff dimension strongly depends

on the class of fractals considered, and it quite often happens that dH 6= dS. While in

fractal geometry this property is a consequence of the definition of the set, in fractional

theories it is replicated only in spacetimes with anomalous diffusion [16]. In fractional

spaces, the type of diffusion depends on two choices: that of the operator Dβ
σ , entailing a

certain degree of arbitrariness, and the choice of Laplacian, which is tightly related to the

construction of an invertible and unitary transform in momentum space. The fractional

Bessel transform (4.39) [36] has the desired requisites and selects eq. (4.10) as the natural

Laplacian. It is to be seen whether an invertible transform also exists such that its basis
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functions are eigenfunctions of a fractional Laplacian of order 2γ. Reflecting upon the

interconnected issues of the form of the diffusion equation, the choice of Laplacian, and

the existence of a well-defined transform will hopefully improve our understanding of the

transition between fractal and fractional regimes. There do exist fractals for which dS = dH

(e.g., random walks [159] and diamond fractals [135, 160]) but, even then, real-order

fractional models miss the log-oscillations of the heat kernel trace. Inclusion of complex

modes does improve the approximation and accounts for the oscillations. Further exploring

the interrelation between complex fractional models and general results in fractal spectral

theory will benefit our understanding of Fourier analysis in both frameworks [16, 161].

In alternative to what done here, one can try a bottom-up approach and attempt a

brute-force construction on a genuine fractal. Models similar to [21, 22] can be useful to

probe a deterministic-fractal regime, but the technical challenges involved therein have par-

tially stalled progress in that direction. Nevertheless, this task may be now within our capa-

bilities, at least in simple scenarios, thanks to the advances in fractal geometry [24, 162].14

6.2.2 Scale hierarchy and the Planck length

The relation between the scales ℓ∗, ℓω, ℓ∞ and the Planck scale ℓPl in quantum gravity

approaches deserves some attention. ℓω is a scale derived from ℓ∞ via a frequency relation,

and it acquires infinite multiplicity when considering measures with an infinite number of

Laurent modes. Therefore, it can be considered as characteristic but not fundamental in

any obvious sense. This reduces the comparison of ℓPl to ℓ∗ and ℓ∞.

Regarded as the numerical constant (3.30), the “Planck scale” remains a remote

concept, since we have not introduced gravity in the picture. Also regarding ℓPl as a

symbol for a fundamental scale, the issue is rather undecided. On one hand, from the

point of view of quantum gravity at large, dimension dH ∼ 2 is directly associated with

the Planck scale (eq. (3.31)), thus preferring the identification of ℓ∗ with ℓPl. On the other

hand, it is natural to identify

ℓPl = ℓ∞ , (6.3)

both in the perspective of discrete approaches to quantum gravity (because at ℓ∞ the con-

tinuum picture breaks down, while at ℓ∗ it does not) and in that of non-commutative space-

times (see section 6.3.2 and [60]). Equation (6.3) is of interest also for the following reason.

In fractal spectral theory on self-similar fractals, the period lnλω of the oscillations

is not an independent parameter, but it is determined by the geometry and the harmonic

structure of the set [24] (see also [16, section 5.1] for a sketchy introduction). Consider a

self-similar fractal with measure (3.11). Instead of defining the fractal via eq. (5.3), one

can adopt a formally identical equation where the similarities Si are replaced by injections

maps fi(x) = rix + . . . , where the coefficients ri are called resistance ratios and they are

determined by the transformation property, in a subcopy i of the fractal, of the Laplacian

K under the mapping fi, K[fi(x)] = r−1
i K(x). Summing over all the copies with the

14In the most general situation, the underlying texture of spacetime may be not just a fractal, but a field

of fractals tiling the embedding space [163]. For the time being, there is no phenomenological reason to

consider these configurations.
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appropriate weight, one gets K(x) =
∑

i giriK[fi(x)] =
∑

i γ
2
i K[fi(x)], where

γi :=
√
rigi . (6.4)

The harmonic structure is characterized by the probabilities gi of the self-similar measure

and the resistance ratios ri, via the combination (6.4). For the simplest self-similar fractals,

all γi are equal. Now, it turns out that the log-period of the heat kernel trace associated

with these sets is, actually, ln γi [64]. So, we can identify λω with γi, and recognize that the

scale hierarchy of fractional spacetimes would depend, in a realistic fractal scenario, on the

geometric and harmonic structure of the underlying set. In particular, one can contemplate

the possibility to obtain the Planck length purely from symmetry and geometry.

6.2.3 Quantum fractional theories

Dimensional flow was only conjectured in previous papers on fractal spacetimes, due to the

difficulty in understanding the dimensional properties of these models even at a fixed time

(here, fixed α). In the introduction, we emphasized the role of dH,S = 2 in quantum gravity

theories; although we have not considered curved fractional scenarios, we see the key

principle in action for a scalar, via eq. (4.29). Thus inspired, we built a theory with the aim

to obtain a two-dimensional geometry at very small scales. In [13, 14] it was postulated

that fractal field theories with ordinary Laplacian flow from a non-trivial UV fixed point

at dH = 2 (corresponding to what we called critical point) to an IR fixed point which

has dH = 4 for obvious phenomenological reasons. Thanks to the requirement of triangle

inequality, we have considerably restricted and better motivated, with respect to [13, 14],

the properties of this flow. On one hand, isotropic fractional geometries with Hausdorff

dimension smaller than 2 can be realized only in embedding spaces with D = 3, which are

excluded empirically. On the other hand, if one assumes that the flow stops at dH = 2, then

it cannot end at dimension greater than D = 4. Embedding spacetimes with D ≥ 5 cannot

reach a two-dimensional UV fixed point. Therefore, if we exclude Kaluza-Klein scenarios,

the macroscopic dimensionality of spacetime is deeply related to the microscopic geometry.

Only a full renormalization-group analysis [164]–[169] will determine the existence and

characteristics of UV fixed points and the perturbative renormalizability of multi-fractional

models. The results obtained here should allow us to begin such a detailed study.

We have also considered the issue of parity and time reversal in classical fractional

actions (sections 2.1.1 and 4.4). The notion of fractional conjugation [16],

q → q̄ , ∂α → ∂̄α , (6.5)

is realized simply by an axis reflection from the point of view of the embedding coordinates,

acting on the space points and its boundary. Just as parity is a discrete operation rigorously

implemented pointwise on a local frame in ordinary curved backgrounds, in the general

case the conjugation operation will have to be defined locally. Since we are not considering

curved manifolds, there is a global frame for fractional conjugation analogous to the Fermi

frame in ordinary Minkowski spacetime. Conjugation should also play a more involved role

at the quantum level, where we expect left and right sectors to be mixed in the dynamics.
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Other open issues about field theories on fractals should now be prone to direct

investigation in the easier context of fractional spacetime. For instance, it is not known

how to place spinors fields on fractals, a problem of interest also in low-lacunarity

models [21]. The existence of a vielbein formalism would allow one to ask the same

question even on curved fractional backgrounds.

Finally, in quantum field theories where Lorentz invariance is broken, perturbative

quantum effects can enhance classical deviations to unacceptable levels. As argued on

general grounds [170, 171], even if deviations from Lorentz invariance are classically

negligible, one-loop corrections to the propagator of fields lead to violations several orders

of magnitude larger than the tree-level estimate, unless the bare parameters of the model

are fine tuned. For instance, this expectation [172] is indeed fulfilled for Lifshitz-type

scalar models [173]. One may ask whether a similar problem arises in fractional field

theories, but the answer is not obvious to us. Systems with a discrete structure may also

be protected from large Lorentz violations [174]. Even if the theory is not integer-Lorentz

invariant except in the infrared, the existence of other symmetries (discrete first, and then

fractional Lorentz) must heavily affect loop calculations in a way quite different from a

naive modification of dispersion relations.

6.2.4 Fractional gravity

The extension of the present framework to fractional curved manifolds is obviously

desirable for at least the reasons outlined in the introduction and in [13, 16, 17]. A

number of properties already displayed by flat fractional spacetimes should be inherited by

fractional models of gravity and tighten potentially interesting relationships with theories

of quantum gravity. We have seen that a discrete structure of spacetime emerges through

a hierarchy of characteristic scales, and the tools of smooth integer geometry become

progressively inadequate as the resolution increases. There is no obvious obstruction for

this to occur also in curved scenarios, barring technical difficulties.

For instance, Tarasov [61, section 9.2] noticed that failure of the Leibniz rule (2.54) for

differentiation in fractional calculus may make the definition of fractional differential forms

on manifolds problematic. However, this obstacle should be eventually circumvented. In

fact, the concepts of parallel transport and Lie derivative can be extended to fractional

differential calculus [175], and that of manifold exists already at the level of pure fractal

geometry. Topological spaces such that the neighborhood of every point is homeomorphic

to a neighborhood in a given fractal F are called fractafolds [176, 177] (see also [178]).

The existence of fractafolds is a positive indication that fractional Minkowski spacetime

should admit a generalization to manifolds. As far as dynamics is concerned, recasting the

Einstein equations in fractional fashion [179] is not sufficient by itself to define an action

theory of gravitation on a fractional manifold, but it should not be difficult to derive them

from the variational principle.

6.2.5 Inflation, big bang, cosmological observations

A multi-fractional field theory of gravity can have applications in the history of the

early universe and inflation, which might be explained via the alternative mechanism of
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dimensional flow. In ordinary geometry, the flatness and horizon problems are solved if

the comoving Hubble horizon contracts while the universe expands at an accelerated rate,

for a certain period just after the big bang. Inhomogeneities inside the horizon are pushed

out and diluted by inflation. To realize inflation and explain the cosmological perturbation

spectra, a slowly rolling scalar field is sufficient. In multi-fractional geometry, on the other

hand, the effect of a contracting comoving horizon can be mimicked by a change in the

spacetime geometry, without the need to invoke a matter field. The origin of perturbations

is less obvious to guess, since it would also depend on the gauge symmetries of the model.

This scenario will be investigated elsewhere.

Going to smaller scales and earlier times, the log-oscillatory pattern of the measure

in complex self-conjugate models might shed some light into the big bang problem and,

hopefully, the Belinsky-Khalatnikov-Lifshitz (BKL) conjecture [180, 181]. Near the

classical big bang singularity, a number of cosmological backgrounds admit an anisotropic

evolution. The simplest BKL model is characterized by three scale factors ai(t), i = 1, 2, 3,

which change through a sequence of epochs named after Kasner. Within a single Kasner

epoch, ai ∼ tpi and the powers pi obey certain conditions dictated by the dynamics.

When spatial curvature effects are taken into account, one has the following behaviour.

Going forward in time from the initial singularity, the universe passes through an infinite

sequence of Kasner epochs where at least one direction is contracting (pi < 0 for one i),

although the total spatial volume
√−g = a1a2a3 increases. Across transitions between one

epoch and the next, the contracting direction exchanges roles with one of the other two,

while the third evolves monotonically until after a certain number of epochs, constituting

a “Kasner era.” The oscillation amplitudes and the duration of epochs increase during

one era. The lengths of the Kasner eras are distributed according to stochastic laws

which can be studied with the methods of chaos theory. In multi-fractional self-conjugate

theory, we have an oscillatory regime coming neither from the metric tensor nor from the

dynamics but, still, from geometry. The qualitative behaviour of the measure oscillations

(increasing amplitude and period) resembles the one described above, and the interference

of measure oscillations along different directions via an inhomogeneous metric might give

rise to something like a BKL pattern near the putative singularity. Due to the physically

different nature of the oscillatory mechanism and to the incompleteness of fractional

theory in its present form, it is still premature to advance this parallelism any further.

Finally, observations of the galaxy distribution are generally regarded as compatible

with the cosmological principle: at large scales (i.e., ℓ > 10h−1 Mpc) the universe is approx-

imately homogeneous and isotropic. However, certain statistical analyses of the luminous

matter distribution show anomalous correlations at scales ℓ ∼ 10÷ 150h−1 Mpc [182]–[188]

and, at scales up to 20h−1 Mpc, matter distribution was claimed to have fractal dimension

≈ 2 [182]. (Even if anomalous scaling was present, by itself it would not mean that

matter distribution is the approximation of a mathematical fractal. However, in practice,

anomalous scaling and fractality are taken as synonyms.) At the time of writing, there is no

consensus on these results, and there is ongoing debate about whether a fractal distribution

clashes with the cosmological principle or not [187]–[190] (the upper scale at which homo-

geneity holds has been estimated to be as large as 260h−1 Mpc [190]). Nevertheless, in case
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of confirmation it would be desirable to have a theoretical model explaining this deviation

from the standard lore.15 The most natural explanation could be found in the details of the

extreme non-linear regime of gravitational attraction at galaxy-cluster scales. However, a

cosmological model of fractional gravity should predict deviations from standard geometry

around scales corresponding to the Hubble horizon at and before matter-radiation equality

(roughly corresponding to the scales where anomalous correlations have been allegedly

detected), and it could be compared with the available data.

6.3 Other applications

6.3.1 Doubly special relativity

Fractional theories are not the first models sporting a non-linear modification of Lorentz

transformations. If the Planck length is a fundamental building block of a theory of quan-

tum gravitation, one may wonder what its significance is in the context of special relativity:

If it is a minimal length smearing spacetime, should not different inertial observers measure

the same value ℓPl? To do so, they should agree on an invariant energy/length scale, but

ordinary Lorentz transformations act on any length-type quantity. With quantum gravity

in mind, one can then try to modify Lorentz transformations so that the Planck length be

observer independent. It turns out that the new transformation rules are non-linear in the

spacetime coordinates and they are parametrized by two invariants: the speed of light and

ℓPl. Frameworks implementing the principle of Planck-length invariance are collectively

called doubly special relativity (DSR) [191]–[198]. Global Lorentz invariance in the usual

sense is only an accidental symmetry of Nature (as first conceived in [199, 200]) in the

classical limit ℓPl → 0.

If we compare DSR with fractional theories, we notice some common features. Lorentz

symmetries are deformed and non-linear, and a fundamental length is present therein.

We have not specified the parameter dependence of the fractional Lorentz matrices Λ̃µ
ν in

eq. (2.52), but they should naturally depend on ℓ∞. In fact, as a fundamental building

block of the measure, ℓ∞ appears in the fractional coordinates

qµ
ω := ̺α,ω(xµ) . (6.6)

At any fixed α and ω, the measure can be written in terms of these qµ
ω (rather than the

coordinates qµ = 〈qµ
ω〉), and is invariant under eq. (2.52). However, differences between

doubly special relativity and fractional models soon become apparent. In the first case only

boosts are deformed, while here all transformations are affected. In both cases, Lorentz

symmetry is an emergent, non-fundamental property of spacetime, but in fractional theory

symmetries are more structured throughout the scale range, from the fundamental DSI

of the oscillatory era to fractional Lorentz symmetries of the zero mode of the averaged

measure, up to ordinary Lorentz invariance in the infrared. Also, while DSR is meant to

describe a quantum world, fractional theories reach that conclusion from a different route.

Fractional geometry automatically encodes quantum features, such as a discrete structure

15Motivated by earlier large-scale structure analyses invoking a fractal matter distribution, a mini-

superspace model with varying dimension was proposed in [44].
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at ultra-microscopic scales (where DSI emerges) and a natural multi-scale structure

equivalently prescribed by RG arguments and the lessons of multi-fractal geometry.

Despite these differences, it may be possible that the DSR paradigm is implicit or

natural in fractal scenarios. In fact, DSR can arise as a statistical phenomenon from a

spacetime with a stochastic/fractal structure [201]. Further study of fractional special

relativity, which we have not completely formulated here, will be necessary to clarify this

quite promising point.

6.3.2 κ-Minkowski

In D embedding dimensions with integer time direction (α0 = 1), the integration measure

of the action in the boundary-effect regime (6.2e) is

d̺α,ω
ℓ∼ℓ∞∼ vBE(x) dDx :=

dDx

x1 · · · xD−1
. (6.7)

In order to recover this measure in a real-order fractional action with measure ̺α, one

should send α to zero in the measure weight vα and formally keep the leading term in the

expansion vα(xµ) ∼ α/xµ, getting

d̺α
α→0∼ αD−1vBE(x) dDx . (6.8)

However, in the real-order multi-fractional scenario we know that the case α = 0 has a

pathological geometric structure (a zero-dimensional object): the correct limit in the sense

of distributions is vα ∼ δ(x), and the formal inverse-power limit (6.8) is at least doubtful.

One could simply absorb the vanishing constant αD−1 into a new normalization c0 for the

action, but the geometric considerations leading to eq. (2.39) would still lead to tension.

The inclusion of the log-oscillations is crucial not only to obtain a finite result, but

also to give it a completely different physical interpretation. The integration measure

weight vBE can be regarded either as a log-oscillating weight in the boundary-effect

regime, or as an averaged measure vα = 〈vα,ω〉 in the limit α → 0. Only the first case

is well defined. Equation (6.7) opens up the possibility to link together fractional and

non-commutative manifolds, in particular κ-Minkowski. Imposition of a cyclicity-inducing

measure in κ-Minkowski yields the condition [202]

∂i[x
ivκ(x)] = 0 , ∂tvκ(x) = 0 . (6.9)

If one further imposes rotational symmetry, in D − 1 dimensions one obtains

vκ(x) = |x|1−D [202]. However, this is not motivated by strict physical arguments,

so another solution is vκ(x) = vBE(x).

At this point, it is natural to conjecture a relation between κ-Minkowski and fractional

models in the boundary-effect regime, with integer time direction. The fundamental scale

of κ-Minkowski (what non-commutativists would call “the Planck length”) is then identi-

fied with ℓ∞. Many details should be considered. First, eq. (3.24) implies that the critical

point with lowest integer Hausdorff dimension in a D = 4 ambient space with integer time

has dH = 3. This may seem to be in agreement with the fact that the spectral dimension
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of κ-Minkowski is 3 [9], but the result of [9] relies on the non-cyclic-invariant measure

vκ = 1. One can also try to extend the field of investigation and ask whether a mapping

exists between general fractional models with power-law measure ̺α and non-commutative

spacetimes with algebras more general than κ-Poincaré. It turns out that what we called

fractional or geometric coordinates qµ are nothing but coordinates obeying a canonical

(Heisenberg) algebra onto which non-linear algebras can be mapped. A consequence of this

identification is that fractional spacetimes are in one-to-one correspondence with a certain

class of non-commutative spaces. All this is discussed in a separate publication [60].

6.3.3 Phases of quantum gravity

Oscillatory measures can have concrete applications in quantum gravity approaches.

Typically, a quantum spacetime endowed with a fundamental length ℓ∗ undergoes a

series of regimes characterized by different spectral and Hausdorff dimensions [33, 203].

Taking the coarse-graining of spacetime texture as physical (i.e., considering a quantum

non-commutative manifold), the initial condition for the diffusion equation of the heat

kernel is no longer a Dirac distribution but a Gaussian of width ∼ ℓ∗ [204]. In the absence

of gravity, the scale-dependent spectral dimension of this object is [203]

dS(ℓ) =
ℓ2

ℓ2 + ℓ2∗
D . (6.10)

At large scales/diffusion times, ℓ≫ ℓ∗, the spectral dimension coincides with the topolog-

ical dimension of spacetime. At scales near the fundamental scale, ℓ ∼ ℓ∗, dS ∼ D/2, and

if D = 4 one has a two-dimensional regime. At ultra-microscopic scales, dS ∼ 0 and space-

time dissolves into a zero-dimensional configuration. This “trans-Planckian” fuzzy regime

was recognized as difficult to interpret in [203]. In the light of our results, we can provide

a description of this regime and it becomes clear why we denoted the fundamental scale

of [203] with ℓ∗. Assuming normal diffusion in fractional spacetime, the two-dimensional

regime corresponds to the dS ∼ 2 special point in the multi-fractional/RG flow. In a

real-order fractional theory, the flow can go beyond this point into a no-norm regime, down

to the limit α → 0. In contrast, complex fractional theories allow us to pass the artificial

barrier at dS ∼ 2 and probe spacetime at much smaller scales, until the continuum approx-

imation breaks down. Estimates of the spectral dimension are not enough to describe the

ultra-microscopic geometry of spacetime, because they are based on the average return

probability, eq. (5.32). Crucially, by looking only at dS one misses the oscillations of the

spectral function we do expect in a truly fractal quantum gravity approach.

As already stated in the introduction and in the previous papers on the subject, start-

ing from [13], the logic motivating Lebesgue-Stieltjes field theories is the following. (i) At

first, one notices that most theories of quantum gravity display universal properties of di-

mensional flow. (ii) Then, one can ask whether and how these properties are related to the

problem of UV finiteness. (iii) To this purpose, we constructed a geometry and field theory

where dimensional flow is an intrinsic (not indirect) property, and where one can check the

UV finitess explicitly. In this respect, fractional theories are independent from other models

of quantum gravity and forcing two independent models to fit one another (say, fractional
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theories versus quantum Einstein gravity, or versus Hořava–Lifshitz, or versus CDT) may

cause misleading interpretations of otherwise constructive independent insights. Neverthe-

less, it may be possible and very instructive to attempt to establish such a connection. With

this attitude in mind, in the rest of the section we shall briefly mention other approaches.

The fractal properties of quantum gravity theories in D dimensions have been explored

in several contexts. At first, renormalizability of perturbative gravity at and near two

topological dimensions drew much interest into D = 2+ ǫ models, with the hope to under-

stand the D = 4 case better [205]–[211]. Even in exactly two dimensions, there exists a rich

fractal structure: short-scale spacetime fluctuations become self-similar, while matter field

mass has anomalous scaling governed by an order parameter (the “fractal dimension” of

spacetime) [208, 212]. The fractal geometry of two-dimensional quantum gravity is difficult

to probe in the continuum formulation (Liouville theory [212]–[217]), but further progress

was made in the discretized setting of D = 2 dynamical triangulations [218]–[226]. These

studies showed the emergence of a branched polymer phase in D = 2 [218, 220]–[223, 226],

as well as in D = 4 Euclidean simplicial gravity [227]–[231] (dynamical triangulations [232])

and CDT [233, 234] (see also [45]). Branched polymers [235] are a special case of a class

of random fractals including tree graphs and random combs. These objects have dH = 2,

while their spectral dimension is bounded both from above and from below, according to

the relation 2dH/(dH + 1) ≤ dS ≤ dH [236]–[240] (see also [241]). The model of [242] is

one of the very few instances with scale-dependent spectral dimension; the scale hierarchy

constructed there bears some resemblance with the multi-fractional flow of section 3.2.

Studying how fractional calculus encodes these random fractals would help to clarify

whether a polymeric phase can correspond to scales ℓ∞ < ℓ < ℓ∗ or lower, where the con-

tinuum approximation breaks down. From the theoretical observations we have collected

so far, it seems to us that fractional spacetime models might be able, by themselves,

to provide interesting geometrical insights. Consider, in particular, the crumpled phase

(phase B) and the two-dimensional branched-polymeric phase (phase A) of the CDT

phase diagram in 3 + 1 dimensions [234]. In phase B, the concepts of dimension, metric

and volume seem not to play a major role, and topology should become important [230].

In CDT, a phase-B universe has no extension in any direction,16 while phase A is charac-

terized by a connected structure with dH ∼ 2. A third phase (dubbed C) corresponds to a

semi-classical four-dimensional universe. These regimes coexist in the phase plane and are

not sequential in a history of quantum evolution. Yet, the regimes of fractional spacetimes

can be related to phase-space regions as effective “snapshot” descriptions. A comparison

with complex fractional models indicates that phases A and B of (causal) dynamical

triangulations correspond, respectively, to the near-boundary regime (formally similar to

the structureless limit α→ 0 in the averaged measure, and where topology should become

important) and to the oscillatory regime, stuck at the dH = 2 fixed point. It is also clear

why random combs [239, 240, 242] cannot be associated with phase B: oscillations are

16Numerical simulations in 2 + 1 dimensions are visually compatible with the presence of oscillations

in the spectral dimension at small diffusion scales [2], but this is a discrete lattice effect regarded as

unphysical [243]. For the sake of completeness, we mention that, in CDT, fractional derivatives have been

used as a technical device to calculate the area-to-area propagator [244].
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washed away in random structures. The hybrid character of fractional theories could make

them promising candidates for data fits in causal dynamical triangulations.

Last, the fractional models considered in this paper and in [16] are characterized

by a Hausdorff dimension dH smaller than or equal to the topological dimension D of

embedding spacetime, dH ≤ D. However, there are other scenarios of quantum gravity

where dH > D. An instance is two-dimensional quantum gravity (Liouville theory and

dynamical triangulations), where typically dH > 2 [219]–[225] (for instance, for pure

gravity, zero central charge, dH = 4 [220, 221]). Is it possible to accommodate these

geometries in multi-fractional theories? Technically, the answer is rather simple. While

fractional models such that α0, α ≤ 1 describe spacetimes where D ≥ dH (eq. (3.26)),

those with fractional charges greater than 1 are characterized by a Hausdorff dimension

greater than the topological dimension (including the D = 2 case). The details of these

models are also governed by the type of diffusion prescribed for the fractional manifold

which, in turn, dictates the relation between dS and dH. Just to give an example, consider

a fractional spacetime in D = 2, eq. (2.47): dS = βdH, dH = α0 + α. To get a model with

dS = 2 and dH = 4, mimicking the fractal properties of two-dimensional quantum gravity

in vacuum, it is sufficient to set α0 + α = 4 and β = 1/2 (fractional anomalous diffusion).

Such configuration, if desired, could be regarded as asymptotic in a multi-fractional

setting. This is not sufficient to establish a physical equivalence between these fractional

models and a particular (and, in this case, toy-model) alternative theory of quantum

gravity. An in-depth study of the relation between fractional theories as effective models

and other theories of quantum gravity goes beyond the purpose of this work. However, we

point out that more precise comparative analyses should be well within our capabilities.
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