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Abstract

Using the inverse scattering method in six dimensions we construct the dipole black

ring of five dimensional Einstein-Maxwell-dilaton theory with dilaton coupling a = 2
√

2/3.

The 5d theory can be thought of as the NS sector of low energy string theory in Einstein

frame. It can also be obtained by dimensionally reducing six-dimensional vacuum gravity

on a circle. Our new approach uses GL(4, R) integrability structure of the theory inherited

from six-dimensional vacuum gravity. Our approach is also general enough to potentially

generate dipole black objects carrying multiple rotations as well as more exotic multi-

horizon configurations.

http://arxiv.org/abs/1108.3527v1
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1 Introduction

Almost a decade after the first black ring solution was written down by Emparan and Reall [1],

black rings are still a continual source of excitement in higher dimensional general relativity

and in microscopic description of black holes in string theory; see [2, 3, 4] for reviews. A

technical problem in the black ring literature, whose solution is still elusive, is the construction

of the most general asymptotically flat black ring in a simple five-dimensional supergravity

theory – a five-parameter black ring solution carrying mass, two angular momenta, electric

charge and magnetic dipole charge. Not only this solution is not known, but also the requisite

set of techniques to carry out a systematic construction are not fully understood. The most

important stumbling block in these considerations is the dipole charge. The original dipole

solution [5] was constructed using educated guesswork. There also exists in the literature

an algorithmic construction of a black ring solution carrying dipole charge [6]. However, it

cannot be employed to generate multiple rotations. In this paper we remedy this situation for

Einstein-Maxwell-dilaton theory with dilaton coupling a = 2
√

2/3. This theory is obtained by

dimensionally reducing six-dimensional vacuum gravity on a circle. It can also be thought of as

the NS sector of low energy string theory in Einstein frame. We exploit GL(4, R) integrability

structure of the theory inherited from six-dimensional vacuum gravity and thus employ the

inverse scattering method in six dimensions. A key point in this procedure is the identification

of the seed that can be used to generate the dipole charge.

The new construction presented here below can in principle be used to construct the doubly

spinning dipole black ring and/or the most general black ring in this theory. This situation is

in contrast with the previous approaches, e.g., [6], which rely on a specific SL(2, R) × SL(2,

R) structure, and cannot be extended in a natural way to construct, say, the doubly spinning

dipole black ring. Our approach does not rely on SL(2, R) × SL(2, R) structure, but rather uses

the full GL(4, R) symmetry of the theory. For a discussion on using integrability techniques
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to construct solutions of supergravity theories we refer the reader to [7, 8]. In the next section

we present our construction; in the following section we conclude with some observations and

comments.

2 Inverse Scattering Construction of a Dipole Black Ring

This section is the core of the paper. We first present our setup and then the construction of

the dipole ring solution.

2.1 The Set-Up

The action of the five-dimensional theory we are interested in is

S =
1

16πG

∫

d5x
√−g

(

R− 1

2
∂µφ∂

µφ− 1

4
e−aφFµνF

µν

)

, (2.1)

with

a =
2
√
2√
3
. (2.2)

This action can also be obtained by the circle reduction of six-dimensional vacuum gravity

using the ansatz

ds26 = e
φ
√

6 ds25 + e
−

√

3φ
√

2 (dw +A)2. (2.3)

The sixth dimension is parametrized by w and F = dA. The five-dimensional theory naturally

supports a magnetic one-brane, an electric zero-brane (and smeared versions thereof), and

dipole black rings. In the literature solutions of the ‘electric’ version of the theory under

consideration are studied in greater detail [9]. This is obtained by defining

H = e−aφ ⋆5 F, H = dB, (2.4)

then

S =
1

16πG

∫

d5x
√−g

(

R− 1

2
∂µφ∂

µφ− 1

12
eaφHµνρH

µνρ

)

. (2.5)

The action (2.5) can be interpreted as the NS sector of low energy string theory in Einstein

frame. The fundamental string is a solution of this action. The dilaton σ of string theory is

σ = −
√

3
8φ and the string metric is g

(s)
µν = e

−

√

2

3
φ
gµν . Via string dualities solutions of (2.5)

can be related to other single brane configurations.

In the following we restrict our attention to the ‘magnetic’ version (2.1) and its uplift to

six-dimensional vacuum gravity via (2.3).
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Figure 1: The figure depicts sources for the seed metric G0. The rods are located in the (ρ, z)

space at the z-axis with ρ = 0. The solid rods have positive density and the dashed rod has

negative density. They add up to an infinite rod with uniform density such that detG0 = −ρ2.

2.2 Seed and Soliton Transformations

The inverse scattering method has been widely used to construct analytically many of currently

available asymptotically flat black hole solutions in four and five dimensions. The construction

consists in a series of soliton transformations on a seed solution. Through these ‘dressing’

transformations, or Belinsky-Zakharov (BZ) procedure [10], a more general solution can be

generated exhibiting new free parameters. We use this method below. For our analysis we also

make use of the results of higher-dimensional Weyl and rod diagram representations from [11,

12, 13].

The rod configuration for the seed solution of dipole black ring when lifted to six-dimensions

is shown in figure 1. The thick solid lines correspond to rod sources of uniform density +1/2,

and the dashed line corresponds to a rod source of uniform density −1/2. The rod in the

t direction corresponds to the horizon. In figure 1 when a0 = a1 and a4 = a2 the negative

density rod and the rod in the w direction are eliminated and the solution describes a neutral

static black ring multiplied with the flat direction w. This is an unbalanced configuration. The

negative density rod is included in the seed following [14] to facilitate adding the S1 angular

momentum to the ring. The positive density rod [a2, a4] along the w direction is included to

facilitate adding dipole charge to the ring.

The seed metric corresponding to the rod configuration of figure 1 is given by

ds26 = (G0)ab dx
adxb + e2ν0(dρ2 + dz2), (2.6)

where

G0 = diag

{

−µ0
µ2
,
ρ2µ4
µ1µ3

,
µ1µ3
µ0

,
µ2
µ4

}

, detG0 = −ρ2, (2.7)

and the conformal factor of the seed is

e2ν0 = k2
µ1µ3
µ0

(µ0µ1 + ρ2)(µ0µ2 + ρ2)(µ0µ3 + ρ2)(µ1µ4 + ρ2)(µ2µ4 + ρ2)(µ3µ4 + ρ2)

(µ1µ3 + ρ2)2
∏4
i=0(µ

2
i + ρ2)

. (2.8)
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The integration constant k will be fixed in the next subsection. Our ordering of coordinates is

xa = (t, φ, ψ,w), with t corresponding to the timelike coordinate, φ describing the azimuthal

angle on the S2 and ψ being the angle along the S1 component of the ring. The µi’s are pole

trajectories of the dressing matrices, commonly referred to as solitons, µi =
√

ρ2 + (z − ai)2−
(z−ai), and ai are the rod endpoints. In writing these expressions we have followed established

conventions from the literature. We refer the reader to e.g. [3] for notational details.

We assume the ordering

a0 ≤ a1 ≤ a2 ≤ a4 ≤ a3. (2.9)

The labeling (and hence the ordering) is a little unusual, but is motivated to simplify the

presentation of solution after the inverse scattering transformation. We will see that the

endpoints a0 and a4 will not appear in the rod diagram of the final solution.

The solution (2.7) and (2.8) with ordering (2.9) is singular and not in itself of direct

physical interest. First, with a 1-soliton transformation we add an anti-soliton which mixes t

and ψ directions in such a way that the negative density rod [a0, a1] moves in the t direction

and cancels the segment [a0, a1] of the positive density rod. Taking a4 = a2 at this stage gives

the singly spinning black ring of [1]; this step is the six dimensional analogue of the one used in

[14]. Next, keeping a2 ≤ a4, we apply a further 1-soliton transformation that gives the dipole

black ring. This latter 1-soliton transformation mixes the w and φ directions in such a way that

the positive density rod [a2, a4] moves in the φ direction and merges with the positive density

rod [a4, a3]. The first transformation leaves behind naked singularities at z = a0, but choosing

the corresponding BZ vector appropriately completely eliminates this singularity. Requiring

the final rod [a2, a3] to have uniform rod direction fixes the second BZ vector.

In more detail the steps for generating the dipole ring solution by a 2-soliton transformation

are as follows:

1. Perform two 1-soliton transformations on the seed solution (2.7) followed by a rescaling.

More precisely (i) remove an anti-soliton at z = a0 with trivial BZ vector (1, 0, 0, 0), (ii)

remove a soliton at z = a4 with trivial BZ vector (0, 0, 0, 1), (iii) rescale the metric by

µ0/µ4. The resulting metric is

G′

0 = diag

{

− µ̄4
µ2
,−µ0µ̄3

µ1
,
µ1µ̄4
µ̄3

,
µ0
µ̄2

}

. (2.10)

This metric will be the seed for our next soliton transformation.

2. The generating matrix corresponding to (2.10) is:

ψ′

0(λ, ρ, z) = diag

{

− µ̄4 − λ

µ2 − λ
,−(µ0 − λ)(µ̄3 − λ)

µ1 − λ
,
(µ1 − λ)(µ̄4 − λ)

µ̄3 − λ
,
µ0 − λ

µ̄2 − λ

}

. (2.11)
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3. Perform now a 2-soliton transformation with G′

0 as seed and undo the rescaling. More

precisely (i) add an anti-soliton at z = a0 with BZ vector (1, 0, c1, 0), (ii) add a soliton

at z = a4 with BZ vector (0, c2, 0, 1), and (iii) rescale by µ4/µ0. Denote the final metric

by G. The final rescaling ensures that detG = −ρ2.

4. Construct e2ν . The result (e2ν , G) is the six-dimensional solution we want. Appropriately

tuning c1 and c2 and Kaluza-Klein reducing this solution along the w direction we obtain

the smooth five-dimensional dipole black ring solution of the theory under consideration.

In the next subsection we first present the resulting solution in the Weyl coordinates and

analyze the rod structure and regularity of the solution. We then transform it into the more

convenient (x, y) coordinates. The resulting metric is shown to be identical to the one presented

in [5].

2.3 Dipole Black Ring Solution

The Gtt, Gtψ and Gψψ components of the metric after performing the above described inverse

scattering transformations takes the form:

Gtt = −
µ0

[

µ3(µ0µ1 + ρ2)2(µ0µ2 + ρ2)2 − c21µ1µ2(µ0 − µ3)
2ρ4

]

µ2

[

µ3(µ0µ1 + ρ2)2(µ0µ2 + ρ2)2 + c21µ
2
0µ1µ2(µ0 − µ3)2ρ2

] , (2.12)

Gtψ = − c1µ1µ3(µ0 − µ3)(µ
2
0 + ρ2)(µ0µ1 + ρ2)(µ0µ2 + ρ2)

[

µ3(µ0µ1 + ρ2)2(µ0µ2 + ρ2)2 + c21µ
2
0µ1µ2(µ0 − µ3)2ρ2

] , (2.13)

Gψψ =
µ1µ3

[

µ3(µ0µ1 + ρ2)2(µ0µ2 + ρ2)2 − c21µ
4
0µ1µ2(µ0 − µ3)

2
]

µ0

[

µ3(µ0µ1 + ρ2)2(µ0µ2 + ρ2)2 + c21µ
2
0µ1µ2(µ0 − µ3)2ρ2

] . (2.14)

Similarly, the Gφφ, Gwφ and Gww components of the metric take the form:

Gφφ =
ρ2
[

µ1µ
2
4(µ2µ4 + ρ2)2(µ3µ4 + ρ2)2 + c22µ2µ3(µ1 − µ4)

2ρ6
]

µ1µ3µ4

[

µ1(µ2µ4 + ρ2)2(µ3µ4 + ρ2)2 − c22µ2µ3(µ1 − µ4)2ρ4
] , (2.15)

Gwφ =
c2µ2(µ1 − µ4)ρ

2(µ24 + ρ2)(µ2µ4 + ρ2)(µ3µ4 + ρ2)

µ4

[

µ1(µ2µ4 + ρ2)2(µ3µ4 + ρ2)2 − c22µ2µ3(µ1 − µ4)2ρ4
] , (2.16)

Gww =
µ2

[

µ1(µ2µ4 + ρ2)2(µ3µ4 + ρ2)2 + c22µ2µ3µ
2
4(µ1 − µ4)

2ρ2
]

µ4

[

µ1(µ2µ4 + ρ2)2(µ3µ4 + ρ2)2 − c22µ2µ3(µ1 − µ4)2ρ4
] . (2.17)

The remaining components not related to these by symmetry vanish. Note that setting c1 =

c2 = 0 we get back the static seed metric (2.7). The final conformal factor reads as:

e2ν = k2
(µ0µ3 + ρ2)(µ1µ4 + ρ2)

[

M0,0 + c21Mc1,0 + c22M0,c2 + c21c
2
2Mc1,c2

]

µ0(µ0µ1 + ρ2)(µ0µ2 + ρ2)(µ1µ3 + ρ2)2(µ2µ4 + ρ2)(µ3µ4 + ρ2)
∏4
i=0(µ

2
i + ρ2)

(2.18)
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t

Φ

Ψ

w
a1 a2 a3

H0,1,0,0L

H1,0,WΨ,0L

H0,1,0,WwL

H0,0,1,0L

Figure 2: The figure depicts sources for the six-dimensional lift of the dipole black ring. The

direction for each rod is indicated. The points a0 and a4 are not indicated in the figure, as

they no longer represent real turning points.

where

M0,0 = µ1µ3(µ0µ1 + ρ2)2(µ0µ2 + ρ2)2(µ2µ4 + ρ2)2(µ3µ4 + ρ2)2, (2.19)

Mc1,0 = µ20µ
2
1µ2(µ0 − µ3)

2ρ2(µ2µ4 + ρ2)2(µ3µ4 + ρ2)2, (2.20)

M0,c2 = −µ2µ23(µ1 − µ4)
2ρ4(µ0µ1 + ρ2)2(µ0µ2 + ρ2)2, (2.21)

Mc1,c2 = −µ20µ1µ22µ3(µ0 − µ3)
2(µ1 − µ4)

2ρ6. (2.22)

The metric functions at this stage look somewhat complicated. However, as we will shortly

see, these functions dramatically simplify when we express them in (x, y) coordinates. To

verify that the metric describes the singly spinning dipole black ring, we first analyze the rod

structure of the solution. This analysis is straightforward [12]. We find

• The semi-infinite rod z ∈ (−∞, a0] has direction (0, 1, 0, 0). The Gψψ component of the

metric however diverges as z → a0 for general values of the BZ parameter c1.

• Similarly the rod z ∈ [a0, a1] has direction (0, 1, 0, 0). Again the Gψψ component of the

metric diverges as z → a0 for general values of the BZ parameter c1.

Fortunately, the singularities in both (−∞, a0] and [a0, a1] rods are completely removed

by setting

|c1| =
√

2(a1 − a0)(a2 − a0)

(a3 − a0)
. (2.23)

The condition (2.23) will be imposed from now onwards. Having imposed this condition

we have effectively moved the negative density rod z ∈ [a0, a1] from the ψ direction to

the t direction and have canceled it against the segment [a0, a1] of the rod [a0, a2]. In

the process we have successfully generated rotation in the ψ direction as is illustrated by

the rod direction of the rod [a1, a2].
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• The finite timelike rod [a1, a2] has rod direction (1, 0,Ωψ , 0), where

Ωψ =

√

(a1 − a0)

2(a2 − a0)(a3 − a0)
. (2.24)

• The finite rod [a2, a4] has direction (0, 1, 0, 2(a4−a2)c2
).

• The finite rod [a4, a3] has direction (0, 1, 0, (a4−a1)c2a3−a4
).

Note that directions of rods [a2, a4] and [a4, a3] are in general different. However, if we

choose

|c2| =
√

2(a4 − a2)(a3 − a4)

(a4 − a1)
, (2.25)

then the two rod directions are identical. The condition (2.25) will also be imposed from

now onwards. Having imposed this condition we have effectively displaced the positive

density rod z ∈ [a2, a4] from the w direction towards the φ direction and have mergerd

it to the rod [a4, a3]. In the process we have successfully generated a dipole charge as

illustrated by the rod direction (0, 1, 0,Ωw) of the rod [a2, a3], where

Ωw =

√

2(a4 − a2)(a4 − a1)

(a3 − a4)
. (2.26)

• Finally, the semi-infinite rod z ∈ [a3,∞) has rod direction (0, 0, 1, 0).

All of this discussion is succinctly illustrated in the rod diagram in figure 2.

To verify that the above described solution is indeed the singly spinning dipole black ring

of [5] lifted to six dimensions, we now rewrite the metric in the ring coordinates (x, y). First

recall that the five dimensional fields for the dipole ring take the form [5]

ds25 = −F (y)
F (x)

(

H(x)

H(y)

)1/3 (

dt+ C(ν, λ)R
1 + y

F (y)
dψ

)2

(2.27)

+
R2

(x− y)2
F (x)

(

H(x)H(y)2
)1/3

[

− G(y)

F (y)H(y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)

F (x)H(x)
dφ2

]

where

F (ξ) = 1 + λξ, G(ξ) = (1− ξ2)(1 + νξ), H(ξ) = 1− µξ, (2.28)

and

C(ν, λ) =

√

λ(λ− ν)
1 + λ

1− λ
. (2.29)

The vector field A and dilaton φ take the following expressions:

A = C(ν,−µ)R
(

1 + x

H(x)

)

dφ, e−φ =

(

H(x)

H(y)

)

√
2/3

. (2.30)
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The six-dimensional lift can be readily obtained using the KK ansatz (2.3). We get

ds26 = −F (y)
F (x)

(

dt+ C(ν, λ)R
1 + y

F (y)
dψ

)2

+
H(x)

H(y)

(

dw + C(ν,−µ)R1 + x

H(x)
dφ

)2

(2.31)

+
R2

(x− y)2
F (x)H(y)

[

− G(y)

F (y)H(y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)

F (x)H(x)
dφ2

]

.

Note in particular that in six dimensions all fractional powers of metric functions have disap-

peared.

Our aim now is to show that the metric in Weyl coordinates (2.12)–(2.22) is identical to

the metric (2.31). To establish this we follow the procedure of [12] and appendix A.2 of [14].

The coordinate transformation from Weyl (ρ, z) to ring coordinates (x, y) is

ρ =
R2

√

−G(x)G(y)
(x− y)2

, z =
R2(1− xy)[2 + ν(x+ y)]

2(x− y)2
. (2.32)

The rod end points are related to parameters ν, λ, µ as

a0 =
R2

2
α, a1 = −R

2

2
ν, a2 =

R2

2
ν, a3 =

R2

2
, a4 =

R2

2
β. (2.33)

Here −∞ < α ≤ −ν and ν ≤ β < 1 are constants to be determined. After a straightforward

calculation we see that with the choice

α =
ν(1 + λ)− 2λ

(1− λ)
, β =

ν(1− µ) + 2µ

(1 + µ)
, k2 =

(1 + µ)(1− λ)

(1− ν)2
, (2.34)

all metric components match. The conditions −∞ < α ≤ −ν and ν ≤ β < 1 and the ordering

of the rod end points imply that

0 < ν ≤ λ < 1 and 0 ≤ µ < 1. (2.35)

We therefore have also recovered the correct bounds on the parameters of the singly spinning

dipole black ring. The periodicities of angular coordinates are ∆φ = ∆ψ = 2πk. With k given

in (2.34), these periodicities also agree with the results of [5]. Thus we have shown that the

solution (2.12)–(2.22) is identical to (2.31).

3 Discussion and Outlook

Using GL(4, R) integrability structure of the Einstein-Maxwell-dilaton theory with dilaton

coupling a = 2
√

2/3, we presented an inverse scattering construction of a singly spinning dipole

black ring solution. The finite rod in the Kaluza-Klein direction w plays the key role in our

construction. Recall that finite rods in Kaluza-Klein directions correspond to KK bubbles [11].

Therefore, loosely said, KK bubble is converted into magnetic dipole in our inverse scattering

construction.
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The novel construction presented above can in principle be generalized to construct the

doubly spinning dipole black ring and/or the most general black ring in this theory. We

emphasize once again that this situation is in contrast with the previous approaches, e.g., [6],

which rely on a specific SL(2, R) × SL(2, R) structure, and cannot be extended in a natural

way to construct, say, the doubly spinning dipole black ring. Our approach does not rely on a

SL(2, R) × SL(2, R) structure, but rather uses the full GL(4, R) symmetry of the theory.

The approach presented above has some resemblance to the approach taken in [15], where

the first static self-gravitating loop of string was described. There, starting with the product of

five dimensional Euclidean Schwarzschild and time, and performing a twisted KK reduction,

a static ring solution was obtained. The solution is regular, but the horizon of the ring in

that case is degenerate (extremal) with zero area. The solution is balanced not by rotation

but by a background field. Due to the presence of the background field, the solution is not

asymptotically flat, instead it approaches a fluxbrane. In our approach, since we mix the w

and φ directions via the inverse scattering method, we generate the five-dimensional magnetic

charge without the need to do a twisted KK reduction. Thus, we obtain an asymptotically

flat solution in five-dimensions instead of a fluxbrane. A related technical point that is worth

mentioning is that in our generation of the singly spinning dipole ring it is not necessary to

perform any mixing of the Killing coordinates to obtain the desired asymptotic structure.

Finally, in the process of constructing the dipole black ring we also found its six dimen-

sional rod diagram description. A common picture seems to be that black hole solutions are

uniquely characterized by their charges and rod diagrams [16]. We expect that the rod diagram

description of the dipole black ring presented above will play an essential role in the uniqueness

proofs within the described dilaton theory.

The new procedure implemented in this paper sets the building blocks for the construction

of more general and exotic black hole solutions with dipole charges. One could add dipole

charges to e.g. the bicycling black ring of [17] or a further rotation to the dipole black ring.

In this work we have not attempted to construct the doubly spinning dipole solution, or the

most general black ring solution, but we hope to return to these problems elsewhere.
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