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Abstract. In this paper we discuss a class of models that address the issue of explaining the grav-
itational dynamics at the galactic scale starting from a geometric point of view. Instead of claiming
the existence of some hidden coupling between dark matter and baryons, or abandoning the existence
of dark matter itself, we consider the possibility that dark matter and gravity have some non trivial
interaction able to modify the dynamics at astrophysical scales. This interaction is implemented as-
suming that dark matter gets non–minimally coupled with gravity at suitably small scales and late
times. After showing the predictions of the model in the Newtonian limit we also discuss the pos-
sible origin of it non-minimal coupling. This investigation seems to suggest that phenomenological
mechanisms envisaged for the dark matter dynamics, such as the Bose–Einstein condensation of dark
matter halos, could be connected to this class of models.
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1 Introduction

Modern cosmology is living a golden age, characterized by a growing number of striking discoveries
and by a stream of increasingly more accurate observations. The overall picture emerging from this
wealth of information is encoded in a simple and elegant model: the standard model of cosmology
(ΛCDM).

This is just based on general relativity (GR), a cosmological constant (not theoretically under-
stood so far), and a certain number of cosmological fluids representing the matter fields in a hydrody-
namic limit description. These fluids are assumed to be minimally coupled to the gravitational field
and, at least in the case of the dark matter (DM), collisionless (i.e. pressureless).

However, the quest for a better understanding of the small scale cosmological dynamics is one of
the major challenges for contemporary cosmology: despite ΛCDMsuccess in explaining observations
at the largest scales [1] (and the extremely good agreement of GR with observations at the scale of
the solar system [2]), observations at the galactic (and cluster) scale seem to indicate that some key
ingredient is missing [3] from the above picture.

On the one side there is the inability to properly fit the rotation curves of spiral galaxies [4, 5] and
to reproduce the dark matter density profiles, the so called core–cusp problem [6]. On the other side
observations have pointed out the existence of universal relations, the so called universal conspiracy,
between baryons and dark matter, like the Tully–Fisher relation [7] or the constant central surface
density [8, 9] and of baryons independent dark matter features, like the luminosity independent core
mass for satellite galaxies of the Milky Way [10].

If the first discrepancies might be explained through a better understanding of the baryon dy-
namics [11, 12], the second kind seems more problematic as it can be explained only at the price of
inserting a fine balance between DM and baryons [13]. The universal conspiracy mentioned above
may represent a strong hint on the intimate nature of the dark matter and, as a consequence, a
modification in the CDM paradigm might be necessary at those scales.

An alternative proposal to the DM is the well known MOND paradigm [14, 15]. There, in
order to explain the mass discrepancy, no DM is requested. What is assumed is that there exists an
acceleration scale, a0, below which the Newtonian law is modified:

∇ ·
(
µ

( |∇φ|
a0

)
∇φ

)
= 4πGρ, (1.1)

where ρ is the baryonic mass density and µ(x) is a function whose asymptotic values are 1 for x≫ 1
and x in the opposite regime. This formula is able to give reason of many of the observed universal
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properties, like the barionic Tully–Fisher relation or the constant central surface density [16] as they
rise as intrinsic properties. Following this line of reasoning, Tensor-Vector-Scalar (TeVeS) theories of
gravity or Bimetric MOND gravity have been developed as general relativistic implementations of the
MOND paradigm [16–19].

Despite its ability to reproduce some of the above mentioned universal relations (see e.g. [16])–
a test for which it was originally designed – the MOND paradigm encounters a number of difficulties,
especially in fitting CMB peaks [20] and in describing galaxy clusters; so much so that even in this
framework one ends up requiring some amount of dark matter in order to fully explain observations
at different scales [22–24].

Summarizing the situation, we can say that the present understanding of the late time universe
seems to be fractioned into the successes of two schemes which however per se are not able to reproduce
entirely the phenomenology inferred from observations.

In an attempt to happily marry the merits of a MOND-like picture with the strengths of a CDM
framework, a new framework aimed to the reconciliation of the two approaches has been suggested
in [21]. There, it was shown how it is possible to reproduce a MONDian behavior at galactic scales
in a standard CDM scenario by requiring DM to couple with baryons in a suitable way. In other
words, the MONDian behavior would emerge as an effect of the specific interaction between DM and
baryons. If this interaction can be built so to be active at special scales and times, then one might
be able to achieve the aforementioned marriage between competing models.

As said, the proposal hinges on a realization of an effective non–minimal coupling between dark
matter and the gravitational field, which is otherwise described as in GR. The origin of this coupling
should not be viewed necessarily as a form of fundamental interaction between DM and baryons, but
rather as a geometric effect due to a non trivial interaction between DM and gravity.

This proposal has (at least) two distinctive features: one is that DM fluid is no longer perfect at
the scales at which the non–minimal coupling is relevant; the other is that the physical metric (the
one along which baryons move) gets redefined in a way that depends only on how DM and gravity are
coupled. This leads to a modified effective dynamics for the fluid and for the gravitational field even
in the Newtonian limit, as we shall see. The first feature may address the problems of dark matter
density in halos, while the second one may provide an explanation to the above mentioned universal

conspiracy.

Here we will further extend the analysis of this coupling between DM and gravity. We will con-
sider a dark matter fluid in a standard General Relativistic scenario in which we have dropped the
assumption of minimal coupling and study the consequences of the most generic coupling that can
be built keeping second order gravity. The possibility that DM has non trivial geometric properties
has not yet received full consideration, and a detailed study of this topic might shed light not only
on the phenomenology of small scales dynamics but also on possible interplays between matter fields
and gravity.

The plan of the paper is as follows. In section 2 we will introduce the concept of geometric matter
action, briefly revising past approaches to the subject, while in section 3 we will extend this idea to
a non–minimally coupled fluid while in section 4 we will describe the phenomenology expected from
our model when applied to cosmological fluids. In section 5 we shall then discuss some ideas about
the origin of the non–minimal coupling before to finally draw our conclusions in section 6.

2 Geometric action for dark matter

In general relativity, matter minimally couples to a metric, the so called physical metric, and this
metric is assumed to be the same that describes the dynamics of the gravitational field, the gravita-

tional metric. However there is no first principle that forces to do this choice, if not the requirement
of simplicity1. Relaxing the assumption allows for the physical metric and the gravitational to not

1Indeed, if we do not introduce additional fields and we want to keep the equations of motion local, the option that
we are considering in the following is the only one remaining.
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coincide, as the physical metric can be made out of a combination of gravitational metric and extra
field, the most common example being conformal relations.

It was shown in [36] that the most generic transformation between physical and gravitational
metric that preserves causality and the weak equivalence principle (WEP) can be of the general form:

g̃µν = A(φ)gµν +B(φ)∇µφ∇νφ, (2.1)

where A and B are functions to be specified and φ is an extra scalar field. This is the so called
disformal relation. Causality, i.e. the existence of light cones, imposes constraints on the functions
A(φ), B(φ).

From the study of scalar–tensor theories of gravity we know that if we express both the gravita-
tional action and the matter action in terms of the physical metric (Jordan frame), then extra field
gets non–minimally coupled to gravity. On the contrary if one wants to express everything in terms
of the gravitational metric (Einstein frame), the standard Einstein–Hilbert action is recovered but
matter degrees of freedom get coupled with the extra scalar field [33].

The introduction of an ad hoc scalar field to solve the mass discrepancy puzzle may seem not
physically justified. If one identifies the extra scalar field with the DM field and takes into account the
presence of baryons, then it is natural to ask whether and how the coupling can modify the dynamics
of baryons.

The basic idea of [21] is to extend this picture, keeping the geometrical interpretation of the
interaction term between dark matter and baryonic fluids, but including the possibility of disformal
transformations. In this way, the coupling between DM and baryons can be designed to modify the
dynamics of baryons, to mimic as close as possible the MONDian phenomenology at galactic scales,
keeping the model within the CDM paradigm.

The starting point is the following action:

S = SEH [gµν ] + SMat[gµν , ψ] + SDM [gµν , φ] + SInt[gµν , ψ, φ], (2.2)

made by the Einstein–Hilbert action, the standard baryonic and dark matter actions, and the inter-
action one respectively. Here, the (scalar) fields ψ and φ are thought as collective variables encoding
baryons and DM particles, respectively. In order to reproduce a MONDian behavior the coupling
should be able to produce an extra–force that applies to baryons only. This can be achieved assuming
that the interaction term is such that

SMat[ψ, gµν ] + SInt[gµν , ψ, φ] ≈ SMat[ψ, gµν + hµν ], (2.3)

where the net effect of the interaction can be then summarized into a modification of the metric felt
by the baryons. Up to order O(h2) the interaction term is:

SInt[gµν , ψ, φ] =
1

2c

∫
d4x

√
g T µν

Mathµν , (2.4)

where the detailed shape of hµν is fixed in such a way to give MONDian behavior at the scales of
interests.
Up to order O(h2) the theory is bimetric and if now we express the full actions in terms of the
physical metric g̃µν ≡ gµν + hµν we get that the DM field gets non–minimally coupled to gravity in
the following way

S = SEH [g̃] + SMat[g̃, ψ] + SDM [g̃, χ̃]− 1

16πG

∫
d4x

√−g(Gµν(g̃) + Λg̃µν)hµν , (2.5)

where Gµν is the Einstein tensor expressed in terms of the physical metric and where the DM field
has been implicitly redefined χ → χ̃. It is this geometric interaction, with a suitable choice of the
tensor hµν , that allows to reproduce the MONDian regime.

This approach has some unpleasant ambiguities and interpretational shortcomings. First of all,
the model has been formulated in terms of scalar fields, which are indeed relevant to understand
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the behavior of certain gravitational phenomena, but are not, perhaps, the best tools to describe
cosmological fluids, especially at the galactic level. Second, they were introduced as phenomenological
fields, to be used as fluid variables, but there is no easy way to derive them, as well as their dynamics,
from a particle physics model. Third, the needed interaction term must be carefully designed, at the
field–theoretic level, in a way that seems very counterintuitive. Finally, the very nature of the dark
matter field φ seems ambiguous: in such a framework, is it a fluid field, or an additional gravitational
potential (i.e. a fifth force)?

To address these issues, we leave the field–theoretic language and use, in a systematic way,
the relativistic fluid dynamics language, which is certainly more reasonable to apply for describing
gravitational phenomena of galaxies and larger systems, provided that the averaging scale L necessary
to define the fluid variables is small enough, compared to the size of the structures that we want to
analyze.

Furthermore we are entitled to use such a description for dark matter since all its quantum
properties are negligible or averaged out at the scales of interest.2

The case of non-minimally coupled fluids was first considered in [25], where some basic rules
for building a consistent theory of gravity with a non–minimal coupling (NMC) matter sector were
posed. Due to the particular coupling to gravity, in general a NMC perfect fluid is no longer perfect,
being equipped with anisotropic stresses and momentum flows that are originated by the coupling to
the curvature tensors. Therefore, it is reasonable to expect that all this corrections may play a role
in galactic scale cosmology, even if, from a naive point of view, one might expect that in regions of
very small curvature these terms should be negligible. In the next section we will then reconsider this
analysis, extending it to a broader class of non–minimal couplings and investigate to which sort of
bimetric theories this leads to.

3 Non–minimally coupled dark matter fluid

Consider a system in which DM is described as a perfect fluid with a barotropic equation of state
which couples non minimally to gravity. The easiest way to do this is to couple a scalar function of
the DM variables to the Ricci scalar, adding to the Lagrangian a term like f(R)Ldm, where f(R) is a
generic function of the Ricci scalar and Ldm would be the DM Lagrangian (for a thorough discussion
of these models see, for instance, e.g. [27] (but see also [28, 29] for further investigations on the class of
models). However this particular scalar coupling would not affect the propagation of light rays, given
that the Maxwell action is conformally invariant. Such a coupling would not be enough for enhancing
gravitational lensing as it seems necessary in order to account for the observed DM phenomenology
[30–32]. Obviously a more general coupling is required.

Moreover, since the deviations from ΛCDMare effective only at galactic scales (where densities
are higher than the cosmological ones), the coupling has to be active only above a certain density
threshold, at late times. This would fix a minimum scale at which deviations from ΛCDMare expected
to be present. Clearly, we need to elaborate more on this, since we do not want to spoil the description
of equally high density but spatially homogeneous early universe cosmology. We will come back to
this point in the concluding section.

It is rather clear that, working with perfect fluids, there are not many possibilities to couple DM
to gravity, given that we have at our disposal only scalars and the four vector field encoding the four
velocity at each spacetime point. If we add the constraint that we want to keep the gravitational field
equations of second order in the metric tensor, so that we do not introduce additional physical modes
for the graviton3, there are only two possible couplings, namely

Rψ(ρ) and Rµνξ(ρ)u
µuν . (3.1)

The requirement of second order gravitational equations forces us to consider terms which contain
the second order derivatives of the metric at most linearly, i.e. terms that are linear in the Riemann

2An exception to this statement could be realized in the presence of torsion.
3These extra modes would be dangerous for our program, given that they could affect gravitational physics in regimes

where we do not want to have noticeable discrepancies with the standard predictions of GR.
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tensor. The latter must be contracted with suitable tensorial structures in order to produce scalars
that can enter an action. We have only the metric tensor and the vector uµ. Therefore, we end up
with only the two terms that we have just introduced, as long as curvature is concerned. Furthermore,
if we use perfect barotropic fluid, the residual information about the coupling can be parametrized
completely with two arbitrary functions of the mass density.

Before moving on, let us remind the reader that we are denoting as ρ the mass density, that
uµu

µ = −1 and that for the rest we are following the treatment presented in [37].

3.1 Action and equations of motion

As it has been discussed at length, we are considering a case in which the baryons, by definition, are
coupled minimally to the physical metric, while the dark matter fluid is coupled to it non-minimally.
As a consequence, the equation of motion for baryons (continuity and Euler) are the textbook ones.
Therefore, in this section, we will consider only the case of a non–minimally coupled fluid. The action
will be,

S =
c3

16πGN

∫
d4x

√−gΨ(ρ)R+
αRicc

3

16πGN

∫
d4x

√−gRµνξ(ρ)u
µuν + SDM . (3.2)

The DM fluid action is the action for perfect fluid as reported in [37]:

SDM = −2c

∫
d4x

[√
−gρ(n, s) + Jµ(φ,µ + sθ,µ + βAα

A
,µ)

]
, (3.3)

where n is the particle number density, s is the entropy per particle and the second term implement
the constraints for the flow of perfect fluid. The densitized four vector Jµ is related to the fluid
variables:

Jµ = nuµ
√
−g . (3.4)

The function Ψ(ρ) = 1+αScalψ(ρ) controls the coupling of the dark fluid to the Ricci scalar, while the
function ξ(ρ) mediates the coupling to the Ricci tensor. Both these functions are dimensionless, and
hence they must involve, for dimensional reasons, at least another density parameter ρ∗ which sets a
characteristic, phenomenological, scale of the model. Finally, the dimensionless constants αScal, αRic

control the strength of the non-minimal coupling. In fact, they could be reabsorbed in the functions
ψ and ξ, without loss of generality. However, it is useful to keep them explicit since they can be used
as dimensionless parameters for an expansion whenever the non–minimal coupling is expected to be
a subdominant effect.

Following the standard rules of the calculus of variations, one can find the equations of motion
for the system. The equations obtained varying the action with respect to the metric are:

Gµν =
8πGN

c2
ρuµuν + αscal

(
−ψ(ρ)Gµν −�ψgµν +∇µ∇νψ − R

2
ψ′ρHµν

)
+

+
αRic

2

(
−�tµν +∇ρ∇µtρν +∇ρ∇νtρµ − gµν∇α∇βt

αβ +Rαβu
αuβ

(
ξ − 1

2
ξ′ρ

)
Hµν

)
, (3.5)

where we have introduced the notation

Hµν = gµν + uµuν , (3.6)

for the projector on the subspace orthogonal to uµ, and the tensor

tαβ = ξ(ρ)uαuβ , (3.7)

to slightly simplify the expressions.
As one can easily see, the Einstein equation do not contains higher derivatives of the metric

tensor. However, in addition to the SET for a fluid made of dust, there are a certain number of terms
that concur to define an effective SET, depending on higher derivatives of the fluid variables and on
the curvature.
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This is indeed what should be expected, given that the basic idea of non–minimal coupling is
that the field, or fluid, is able to probe geometry on a given length scale, not only point–wise as in
the standard case.

The equations of motion for the fluid can be obtained either varying the action with respect to
the various fluid fields, or by using the Bianchi identities on the modified Einstein equations. We will
discuss them elsewhere, in full generality. For the purpose of this paper we shall limit ourselves to
their Newtonian limit, which is the relevant regime to discuss galactic dynamics.

3.2 Newtonian limit

To properly discuss the Newtonian limit, it is important to carefully work out the weak field limit
of Eq.(3.5). Indeed, it is important to understand how to establish a comparison between terms
that have different physical dimensions. As we have discussed, ψ, ξ are dimensionless, as αScal, αRic.
Assume that the typical size of the system under consideration is of order ℓ. With this length scale,
we can redefine the coordinates in such a way that they are dimensionless:

xµ → yµ = xµ/ℓ. (3.8)

This allows to rewrite the Einstein equations in such a way that all the terms are dimensionless, and
hence enables us to compare the different terms in a consistent way. The weak field limit is achieved
whenever the curvature radius is much larger than the size of the system, i.e.

|Gµν | ≪ ℓ−2. (3.9)

For consistency, then, ξ, ψ must be small quantities, as well as the properly normalized energy density.
In short, the weak field limit is achieved when the following condition holds on the SET:

ψ ≃ ξ ≃ 8πGN

c2
ρℓ2 ≪ 1. (3.10)

To keep this systematically under control, we need to reparametrize ψ and ξ in order to introduce
c2 factors that will be used to take into account that ψ, ξ are as small as ρ, even if they are measured
in different units. We can always rescale ψ and ξ so that

ψ(ρ) =
8πGN

c2
ℓ2ρfidψ̃(ρ), (3.11)

ξ(ρ) =
8πGN

c2
ℓ2ρfidξ̃(ρ), (3.12)

where ρfid is a fiducial density that has to be determined by some condition, like

ψ(ρfid) =
8πGN

c2
ℓ2ρfidψ̃(ρfid) =

8πGN

c2
ρfidℓ

2, (3.13)

that is
ψ̃(ρfid) = 1. (3.14)

With this treatment, we can consistently extract the weak field limit of the equations Eq. (3.5), taking
systematically into account the relative size of the various terms. If we define

gµν = ηµν + γµν ; γ̄µν = γµν − 1

2
ηµνγ; γ = ηµνγµν , (3.15)

the modified Einstein equation, in the weak field limit, in the transverse gauge, reads:

− 1

2
�γ̄µν =

8πGN

c2

{
−ρfid

[
αScal

(
ηµν�ψ̃ − ∂µ∂ν ψ̃

)
+
αRic

2
Ωµν

]
+ ρuµuν

}
, (3.16)

where
Ωµν = δ0µδ

0
ν�ξ̃(ρ)− δ0ν∂0∂µξ̃(ρ)− δ0µ∂0∂ν ξ̃(ρ) + ηµν∂0∂0ξ̃(ρ). (3.17)
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As one immediately sees, the effect of the non–minimal coupling is still present, even in the weak
field limit, and the fluid is not behaving as a perfect fluid in Minkowski spacetime: the non–minimal
coupling has generated a SET which contains additional terms, constructed out of the derivatives
of the fluid variables. These terms will enter the fluid equations, that we will briefly discuss in the
appendix. For now, we will simply point out their presence.

Putting everything together, and considering the static, nonrelativistic limit (i.e. the c2 → ∞
limit), we get the Poisson equation for the Newtonian gravitational field:

∇2ΦN = 4πGN

(
ρ− αRic

2
ρfid∇2ξ̃ + αScalρfid∇2ψ̃

)
. (3.18)

As it happens for the fluid equations, even the Newtonian potential has as sources not only the mass
density ρ, but also a certain number of derivative terms. In light of the fact that the operative
definition of the dark matter mass density is given in terms of the density that enters the right hand
side of the equation of motion for the gravitational field (either the Poisson equation or the general-
relativistic version), one might define an effective mass density and effective stresses, that do not
coincide with those that are defined out of the fluid action when the non–minimal coupling is absent.

4 Phenomenological constraints

Now that we have lied down our model and analyzed its Newtonian limit, we are in the condition to
discuss more accurately its predictions in different regimes and consequently use current observations
to bound it (in particular by constraining the behavior of the functions ψ(ρ), ξ(ρ)). There are two
obvious such regimes at which the model has to offer new phenomenology: galactic dynamics and
cosmology. However, to be viable, any modified gravity model (in a broad sense) must be compatible
with solar system constraints on gravitational phenomena. We shall hence start our discussion from
here.

Solar System scales: Of course, our model must reduce to general relativity (or be very close to
it) at these scales. In particular, if we impose that ψ(0) = ξ(0) = 0, we are sure that the dynamics of
a purely baryonic system will be described by general relativity without corrections. Given that, at
the level of solar system, it is safe to say that the density of baryonic matter is much larger that the
density of dark matter, this condition ensures that the agreement with observational constraints will
be achieved, provided that αScal, αRic are not too large.

Galactic dynamics: We have shown that the Poisson equation gets modified by a term which
depends on gradients of the density. This means that the more inhomogeneous a distribution of DM
is, the stronger is the effect. As a consequence, structures may grow faster or slower than expected,
according to the structure of the additional terms, and, ultimately, to the signs of the coupling
constants αScal, αRic.

As we have mentioned, the NMC coupling also generates a pressure term, which is structured in
two components. On the one hand, there is an isotropic pressure that again is related to gradients of
the density. This is a key feature as pressure may stabilize halo’s cores preventing the formation of
cusps, given that its magnitude increases as the inhomogeneity increases.

On the other hand, there is an anisotropic pressure term which represent a distinguishing feature
of our model. In standard CDM model particles forming halos are collisionless and hence they have
no global collective motion. This anisotropic pressure may generate a net overall rotation of DM
halos which modifies the caustic structure of the infalling dark matter particles with respect to the
irrotational flow. There is convincing evidence that such overall rotation can lead to a caustic structure
closer to the observed one [38].

These generic features of the here proposed models are definitely interesting, given that they are
able to affect, in a rather transparent way, some important issues of the galactic dynamics, which are
not easy to address within standard ΛCDMapproaches.

Given that the puzzles related to mass discrepancies are harder to address at the galactic scale,
one needs the NMC terms to be larger in these regimes and consequently to set ρ∗ ≈ ρgal; basically
assuming that the functions ψ, ξ will attain their maxima in this density regime.
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Cosmology: As pointed out earlier, a key feature of this model is the presence of spatial gradients
of the density in the non-relativistic limit. However, in the full relativistic theory, not only spatial
derivatives, but also time derivatives are relevant, and the additional terms might be active even in
spatially homogeneous cases. The NMC may affect the cosmological evolution in a dramatic way that
might lead to a sharp contrast with the observations, whenever the time derivatives become relevant,
i.e. at sufficiently early times in cosmology.

Consider the FFRW metric:

ds2 = e2n(t)dt2 + e2a(t)dx2. (4.1)

We can compute the Lagrangian for our model inserting the metric defined by the above line element
in the action 3.2. This gives the following effective Lagrangian density (where a boundary term has
been discarded):

Lgrav =
e−n+3a

16πG

{
−6

[
ȧ2 + (αScalψ

′ + αRicξ
′)ȧρ̇

]
− 6αScalψȧ

2 − 3αRicξȧ
2
}
, (4.2)

to which the fluid Lagrangian density has to be added.
We now want to recover, at large scales and at early times, the ΛCDMmodel. Given that on

large scales we can safely use spatially homogeneous configurations, we need only to take care of
temporal gradients. To be sure that these are not effective in changing much the dynamics away from
ΛCDM , we need to ask that the non-minimal coupling terms disappear for sufficiently dense or hot
fluid.

This requirement suggests that our functions ψ, ξ must be strongly peaked around ρ∗. Concretely,
this means that as the density reaches the value ρ∗, then we get modified cosmological evolution, until
ρ drops well below ρ∗. If we take today cosmological DM density to be of the order of .24×10−29g/cm3

and the reference density to be ρ∗ ≈ 10−21g/cm3 – the typical value for dwarf spheroidal galaxies –
we get that:

1 + z∗ =
( ρ∗

ρdm0

)1/3

∼ 700. (4.3)

This seems to indicate that our model may strongly affect the background evolution in a small redshift
window in the matter dominated era, something for which there is no evidence.

However, the above discussion holds only if the NMC is taken as fundamental so that its action
is present all along the whole history of the universe. We have no reason to believe that this is true
and we shall argue below reasons to expect the contrary.

5 Origin of the non-minimal coupling

Up to now we have not given any reason why only dark matter should couple non minimally to gravity.
Furthermore, we have seen that a parametrization of the functions ξ, ψ with only densities might lead
to discrepancies from the expected behavior starting at relatively large redshift. Therefore, to address
this tension we need to understand more of the possible mechanisms that can lead to the non-minimal
coupling as a phenomenologically more accurate description of the dark matter fluid.

The fact that only DM couples to gravity in a non trivial way may be seen as a violation of the
weak equivalence principle (WEP). However, here we are dealing with fluids, not elementary particles.
Hence WEP is safe as long as single particles have the same coupling with gravity, while the WEP
can be nonetheless violated at the level of the collective behavior of the fluid.

There are two main mechanisms that may can produce a non–minimal coupling: either it appears
through an averaging procedure that brings from particles to fluids or it can emergence from some
collective behavior of the DM particles.

In the first case there is a scale, the averaging scale (which depends on the number density
of the DM particles, on statistical grounds). If these are heavy, the size may be large enough to be
comparable with the curvature radius of the galaxy and hence generate a non-minimal coupling, given
that the minimal cell needed to define a fluid element is able to probe geometry in a nonlocal way,
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becoming explicitly sensitive to curvature. In this case, however, the reasoning applies to DM as well
as to baryons, for which the non-minimal coupling does not seem so well motivated (see, however
[28, 29, 34] for a proposal to explain dark matter as an effect of non–minimally coupled baryons).

The second picture is related to the possibility for DM particles to develop a macroscopic co-
herence length. One recently explored instance of this is Bose–Einstein condensation (BEC) [35]. In
BEC, the condensate possesses a characteristic coherence length, the healing length, that controls the
deviation of the fluid dynamics of the condensate from the one of an ordinary perfect fluid. The BEC
option seems to be rather intriguing for our model, given that it would be able to reconcile the puzzle
between the large density MONDian behavior of galaxies and the large density ΛCDMbehavior of
early universe.

The answer to the puzzle would be that the functions ψ, ξ, besides the density, depend on the
temperature of the fluid itself: if the temperature of the fluid is smaller than the critical temperature,
condensation sets in, and with it non-minimal coupling (provided that the coherence length is large
enough). On the contrary, if the fluid is too hot, the condensation is impossible, and the fluid behaves
like an ordinary fluids. Noticeably, in trapped BECs, the critical temperature increases with the depth
of the potential well in which they are confined. Similarly, clumping of dark matter halos at the galactic
scale might raise the critical temperature so that it is actually larger than the temperature of the
dark matter fluid, triggering condensation. On the contrary, large density but too high temperature,
as in high redshift universe, might make condensation impossible.

6 Conclusions

In this paper we investigated how a non-minimally coupled dark matter fluid can modify the dynamics
in the nonrelativistic regime with respect to the standard CDM picture. Let us summarize the key
points.

• We have found that such coupling is able to modify the Poisson equation, introducing an addi-
tional source term for the gravitational field. This implies that the source for the gravitational
field is not just the number density: also inhomogeneities in the distributions of particles affect
the gravitational field.

• The non–minimally coupled fluid is described by a rich stress tensor. The pressure term has two
components: isotropic and anisotropic. While at a first glance they might seem unpleasant, they
can lead to two welcome effects on DM halos. The isotropic part can stabilize DM distribution
and avoid the formation of cusps leading to a more cored density profile, while the anisotropic
can give a preferred direction leading to an overall rotation of the DM distribution.

• With this model we may be able to address some of the problems that ΛCDM is suffering,
by reproducing, at suitable scales, a MOND–like behavior. We have seen that gravitational
dynamics becomes nontrivial, and might ultimately lead to the appearance of a full fledged
MOND regime. However, we do not have yet established a one to one correspondence between
our model and MOND in its traditional incarnation. Actually, this correspondence could be
achieved only if baryons would end up tracking DM. Indeed, if we interpret the extra contribution
emerging from the modified dynamics of MOND as DM, it would be nonetheless locked to the
baryon density. To settle this point, the detailed analysis of the gravitational dynamics of a
galaxy, within this model, is required. While the form of the Poisson equation gives the feeling
that at least a slight tracking will be present, it worth stressing that this model will generically
show a richer phenomenology than MOND and could at most mimic it in some regimes.

Non–minimal coupling is not a new topic in gravitational physics. However, as we have discussed
in this paper, there is today a convergence of evidences and ideas that are pointing in the direction
of effective descriptions of cosmological fluids mainly at galactic scales, that include additional, phe-
nomenological quantities, and seem able to explain current observations. Nonetheless, the physical
mechanisms that would introduce such quantities and justify a departure from ΛCDMare largely
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unknown, and probably will be ultimately clarified only when the exact properties of the dark matter
particles will be understood.

In this sense, it is intriguing the idea that, due to the formation of deep enough gravitational
potential wells, a dark matter condensation can be triggered at suitable scales and times and that this
phenomenon might be indeed considered as a candidate for the physical origin of the here generalized
non-minimal coupling. While this is an exciting perspective worth exploring, we feel that some caution
should be used, especially when applying our laboratory based intuition of BEC features to cosmology.

First of all, for this mechanism to take place and be effective in cosmology, a tight balance between
the microscopic properties of the dark matter bosons and the various macroscopic parameters observed
must be realized (e.g. the required size of the healing length, needed to solve the cusp problem, appears
to be of the order of some parsecs).

Secondly, there is a big qualitative difference between the fluid dynamics of a standard BEC and
the fluid dynamics of the NMC fluid that we have explored in this paper. In fact, the pressure of the
BEC gets corrected by the so–called quantum potential,

pBEC = phydro(ρ) + VQ; VQ = − ~
2

2m

∇2ρ1/2

ρ1/2
. (6.1)

This gives rise to a dependence of the pressure of the fluid on the gradients of the density closely
resembling what found in the Newtonian limit of our model. However, it is easy to see that no
anisotropic stresses are present in this case while the NMC seems to lead generically to the appearance
of off-diagonal terms in the SET. This issue probably requires a more accurate analysis possibly by
considering more general theoretical settings for the condensation with respect to the standard one
based on scalar fields.4 We live this to future explorations.

In conclusion, we have here lied down a new framework for dark matter fluid dynamics which
seems able to conciliate several ideas which have been advanced to improve on ΛCDMpredictions.
We think that now further investigations can, on the one side, focus on extracting more detailed
predictions from the model, for example by considering the issue of structure formation. On the other
side, is worth exploring the above mentioned issue about the origin of the extended non–minimal
coupling of dark matter both for its connection with extant ideas about the nature of dark matter
(BEC) as well as for its implications with regard the particle physics nature of this evasive cosmological
component. We hope to be able to develop both these lines of research in the next future.
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A Fluid equations and their stability

The shape of the Einstein’s equations suggests that we identify an effective SET of the form:

T eff
µν = T standard

µν + αscalℓ
2ρfid

(
−ψ(ρ)Gµν −�ψgµν +∇µ∇νψ − R

2
ψ′ρHµν

)
+

+
αRic

2
ℓ2ρfid

(
−�tµν +∇ρ∇µt

ρ
ν +∇ρ∇νt

ρ
µ − gµν∇α∇βt

αβ +Rαβu
αuβ

(
ξ − 1

2
ξ′ρ

)
Hµν

)
,

where we have removed the tilde from the functions ψ, ξ. As we have said, ℓ represent the linear
scale of the system we are going to describe, while ρfid is a suitable normalization mass density.

The fluid equations of motion can be derived from the Bianchi identities. Indeed, from the
Einstein equations for the system:

∇µT eff
µν = 0. (A.1)

4Furthermore, notice that the quantum pressure is not just the Laplacian of a function of the density, while our
equations tell us that the additional pressure term (for the non-minimally coupled fluid in the Newtonian limit) will be
always a Laplacian of a function of the density.
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In order to compute the covariant derivative of the SET notice that:

∇µHµν = ϑuν + uµ∇µuν, (A.2)

where
ϑ = ∇µu

µ, (A.3)

is not yet defined as the expansion of the bundle of geodesics (but rather as the expansion of the
bundle of curves whose tangent vector field is uµ).

Then using the commutation rules for the covariant derivatives:

∇α∇β∇νf = ∇α∇ν∇βf = ∇ν∇α∇βf −Rρ
βαν∇ρf, (A.4)

and
∇ρ∇νt

ρµ = ∇ν∇ρt
ρµ +Rρ

σρνt
σµ +Rµ

σρνt
σρ, (A.5)

we have that the complete fluid equations reduce to the following expression:

∇µT standard
µν = −αScalℓ

2ρfid

(
R

2
∇νψ − 1

2
Hµν∇µ(Rψ′ρ)− Rψ′ρ

2
ϑuν −Hνµ

Rψ′ρ

2
uρ∇ρu

µ

)
+

−αRicℓ
2ρfid

[
−gαβRρ

ναµ∇βt
µ
ρ +∇µ

(
Rρ

σρν t
σµ +Rµ

σρν t
σρ
)

+Rσν∇µt
µσ +Hµν∇µW +Wϑuν +HµνWuρ∇ρu

µ] . (A.6)

Notice that this expression contains the full Riemann tensor, and in particular the Weyl tensor.
Therefore, this kind of non-minimally coupled matter can have nontrivial behavior even in Ricci-flat
spacetimes (as, for instance, Schwarzschild spacetime).

In the weak field limit, these will reduce to:

∇µT standard
µν = 0, (A.7)

the one for the minimally coupled fluid, as expected. However, given that the fluid variables ρ, p
entering the definition of T standard

µν are not directly accessible, for the dark matter fluid these should
be inferred by the sources of the gravitational field, i.e. they should be written in terms of the
components of T eff

µν . In terms of these components, the fluid equations are not of the standard form.
In the case of pressureless DM:

ρeff = T eff
µν u

µuν = ρ+ αScalℓ
2ρfid(�ψ + ∂20ψ)−

αRic

2
ℓ2ρfid

(
+�ξ + ∂20ξ

)
, (A.8)

3peff = T eff
µνH

µν = 0 + αScalℓ
2ρfid (−3�ψ +Hµν∂µ∂νψ)− 3

αRic

2
ℓ2ρfid∂

2
0ξ. (A.9)

Constructing these and other quantities one has to re-express ρ, p in terms of ρeff , peff .
We will not discuss the equation of motion in full generality here, leaving this issue for further

works. However we will sketch the effects of the non-minimal coupling in a particular case. Take for
instance the case of scalar coupling (αRic = 0), neglecting time derivatives:

ρeff = ρ+ aρfid∇2ψ, (A.10)

peff = −2

3
aρfid∇2ψ, (A.11)

whence

ρ = ρeff − 3

2
peff . (A.12)

Notice that from the effective stress energy tensor we can also infer the effective EOS. In this
simple case:

w ≈ −2

3
a
ρfid
ρ

∇2ψ. (A.13)

Given that this is related to the speed of sound, the stability of the model requires a ≥ 0 (and the
Laplacian operator defined by a Euclidean metric is always negative definite).

A thourough stability analysis is required in more general cases.
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