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ABSTRACT

We present a new code for performing general-relativistdiation-hydrodynamics simula-
tions of accretion flows onto black holes. The radiation fieldeated in the optically-thick ap-
proximation, with the opacity contributed by Thomson sty and thermal bremsstrahlung.
Our analysis is concentrated on a detailed numerical ilgag&in of hot two-dimensional,
Bondi-Hoyle accretion flows with various Mach numbers. Wal fignificant differences
with respect to purely hydrodynamical evolutions. In parar, once the system relaxes to
a radiation-pressure dominated regime, the accretios keteome about two orders of mag-
nitude smaller than in the purely hydrodynamical case, meimghowever super-Eddington
as are the luminosities. Furthermore, when increasing taehvhumber of the inflowing gas,
the accretion rates become smaller because of the smalks section of the black hole, but
the luminosities increase as a result a stronger emissithreishocked regions. Overall, our
approach provides the first self-consistent calculatiath@Bondi-Hoyle luminosity, most of
which is emitted within- ~ 100M from the black hole, with typical valuds/ Lyqq ~ 1 —7,
and corresponding energy efficiencigs, ~ 0.09 — 0.5. The possibility of computing lumi-
nosities self-consistently has also allowed us to compdtethhe bremsstrahlung luminosity
often used in modelling the electromagnetic counterpagspermassive black-hole binaries,
to find that in the optically-thick regime these more crudinestes are abo@0 times larger
than our radiation-hydrodynamics results.
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1 INTRODUCTION Until a few years ago, the time dependent solution of the rel-
. - . ativistic radiation hydrodynamics equations of accreflows was

Numerlca_l t:elalntll_v;t]y_faceS an emﬁarrassmg_gapl betweerg(he performed in one spatial dimension only and, typicallyotigh
]t:uracyhmctj whic I fcomputes tbe. grawtatlr:)na -\tl)vlawle( ﬁmlms d Lagrangian finite-difference schemes or through the seddih-
rom the dynamics of compact objects such as black holes an earized block-implicit algorithms. Starting from the pémring

gelljgron E.ta: IM%VTIa Sdzt?w Q‘mwho R;_ezz?lla :the | works by| Gilden & Wheelér| (1980) and_Vitello (1984), relevan
exiguchi e ) an € very rough estimates o €€ results concerning spherical accretion onto black hole weé-

tromagnetic emission that can be currently computed widlest . - ) —
: - tained with a Lagrangian code hy Zampieri et al. (1996), who
. . . . . - ’
of the art numerical codes (Farns et al. 2008 Falenzueli et were able to solve the radiation hydrodynamics equatiorth bo

2009 Mosta et al. 2010: Bode eflal. 2010 Zanotti &t al. 20I6e in the optically thin and in the optically thick regime, by ames

Z:ﬁ{:ggs;lg:;gpnc’: E;?i\::err]ft;g%t?onm?;etrrlialrﬁgge(:ﬁ:mrgf:aa;:s of the projected symmetric trace-free (PSTF) moment formal
. gnetic T . g ol ism introduced béESl) and subsequently reforradla

transfer in the gas, which is often neglected in relatiwistilcula- - - .

fions in view of the large computational costs involved STpiob by [Rezzolla & Millel (1994) for spherical flows. Such fornsati

lons in view 9 putall involved.s’p provides one of the most accurate approximations to thdisnlu

lem is of course common to a large class of relativistic satiohs, - . . .

but it becomes particularly apparent in those cases wheaean of the radiation transfer equations, and, in analogy to ighdone

rate com tat'orr)1 of the e)r/n'tfepd luminosity is at least ascirmt in fluid dynamics, it allows to define moments of the radiafieid
putall ! UMINOsity 1 il similarly to how density, momentum and pressure of a mediten a

as providing E.i faithful description .Of the_ dynamics. Amomg;h_; defined as moments of the distribution function. As a remdtead
cases, accretion onto compact objects is perhaps the mpst-im

tant one.
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of following rays, the moment equations are solved diregith an
Eulerian or a Lagrangian coffe

Despite these initial efforts, the time-dependent sofutid
the relativistic radiation-hydrodynamics equations irrethan one
spatial dimensions remains very challenging. Nowadaysnthl-
tidimensional numerical codes available can be divides&vimrma-
jor classes, accounting for, separately, the optically tiE@gime
or the optically thick one. The former class is mainly foalise
on providing a realistic modelling of core-collapse supeae,
by employing Boltzmann neutrino transport, state-of- éineneu-
trino interactions, and general relativity. Relevant aghiments
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black hole. As the flow relaxes to a radiation-pressure dataih
regime, we find significant differences with respect to pute}-
drodynamical evolutions. In particular, the accretioresadrop of
about two orders of magnitude when compared to the purely hy-
drodynamical case, remaining however super-EddingtorthEr
more, we find that larger inflow velocities lead to smallerration
rates (because of the smaller cross section of the black boleo
larger luminosities (because of the stronger emissioraistiocked
regions).

The plan of the paper is the following: We first describe the
numerical methods in Secti@h 2 while the validation of thdects

have been obtained over the years| by Mezzacappa et al. (2001)presented in Sectidd 3. Sectidn 4, on the other hand, is elvot

Bruenn et al[(2001); Liebendorfer el al. (2001); Lieberfel et al.
(2005)] Messer et al. (2008), who, among other things, stdve
importance of multidimensional simulations to model theckre-
vival via neutrinos in a supernova explosion. In a diffengmysical
context, namely that of accretion discs around black halasstill
in the optically thin regime, Noble etlal. (2009) considesedap-
proximate treatment in which radiation is described throadoss
term in the energy equation. They used fully relativistig-tiaacing
techniques to compute the luminosity received by distaséplers.
For a disc with aspect ratiff /r ~ 0.1 accreting onto a black hole
with spin parameter. = 0.9, they found a significant dissipation
beyond that predicted by the classical mod

(1973).

The numerical investigation of the optically thick reginos,
the other hand, has received less attention. The semin& byor
|Hsieh & Spiegel|(1976) already set the basis for the forrmnat
of the relativistic radiation-hydrodynamics equationsanserva-
tion form and therefore suitable for an Eulerian numeriogblie-
mentation. Later on, interesting advances were obtainm
(1996), [ Parlk [(2006) anld Takahashi (2007). Finally. Fatrale
) have shown that for optically-thick gases and gragyb
opacities, the general relativistic radiation-hydrodyizs equa-
tions can indeed be written in conservation form, thus ahgw

for the use of numerical methods based on Riemann solvers tha

have been successfully adopted by many relativistic hydraih-
ics and magnetohydrodynamics codes. Very recently, anle whs
paper was being completéd, Shibata étal. (2011) have pessan
modified truncated moment formalism allowing for the comaer
tive formulation of the relativistic radiation-hydrodymés equa-
tions both in the optically thin and in the optically thicknit. This
formulation could represent a major step forward with respe
present leakage schemes accounting for the free streariadio

ation (Sekiguchi 2010; Sekiguchi etal. 2011).

In this paper, which is the first of a series, we extendECHO
code (Del Zanna et al. 2007) by following the strategy suggkes
by I.8), and concentrate on one of the sirples
accretion flows scenarios, namely: Bondi-Hoyle accretinto@
black hole. This problem has recently been studied by Fera
-) in the context of merging supermassive black holarins
in full general relativity, but neglecting the back-reactiof radia-
tion onto matter. By assuming that opacity is made of coutigins
by Thomson scattering and thermal bremsstrahlung, we ctampu
here the luminosity emitted in hot Bondi-Hoyle accretiortcoa

1 In a nonrelativistic context, recent interesting develepis have been re-
ported by Petkova & Springel (2009) and Petkova & SpringlL®, who
adopted the moment formalism within the SPH Gadget code ard a
variable Eddington tensor as a closure relation, folloviegOptically Thin
Variable Eddington Tensor suggestio mom

radiative Bondi-Hoyle accretion flows and contains the megults

of our work. The conclusions are presented in §kc. 5. We assum
a signature —, +, +, +) for the spacetime metric and we will use
Greek letters (running frora to 3) for four-dimensional spacetime
tensor components, while Latin letters (running fromoe 3) will be
employed for three-dimensional spatial tensor compondhise-
over, we set = 1, G = 107! and extend the geometric units
by settingm,, /ks = 1, wherem,, is the mass of the proton, while
kg is the Boltzmann constant. We have maintained, andk g in

a explicit form in those expressions of particular physiogrest.
Appendix[A describes the extended geometrized system ¢$ uni
adopted in the code.

2 RELATIVISTIC RADIATION HYDRODYNAMICS
2.1 Covariant formulation

The total momentum-energy tensbf” of a fluid immersed in a
radiation field comprises two terms<® = 7.%% 4+ 7% The first
one is the ordinary one describing the energy and momentuihe of
matter

Taf = phu®u’ +pg®” @)

where¢®? is the spacetime metric tensa” is the four-velocity

of the fluid, whilep, h = 1 + ¢ + p/p, e andp are the rest-mass
density, the specific enthalpy, the specific internal eneagy the
thermal pressure, respectively. All of these quantitiesaeasured

in the comoving frame of the fluid. The thermal pressure iatesl

to p ande through an equation of state (EOS), and we will here
consider an ideal-gas, for which the EOS is expressed as

p=pe(y—1), 2

where v is the (constant) adiabatic index of the gas. The sec-
ond term describes instead the radiation field and is given

by (Mihalas & Mihalak 1984; Shaplfo 1996)

B l/IUNO‘NdedQ,
C

©)

whereI, = I,(z N' v) is the specific intensﬂ/of the ra-
diation, N“ is the four-vector defining the photon propagation
direction, dv is the infinitesimal frequency and() is the in-
finitesimal solid angle around the direction of propagatidfe re-

call that the direction of propagation of the photon is defias

N¢ = p*/hpiv, wherep® is the photon four-momentum, while
hp1 and v are, respectively, the Planck constant and the pho-
ton frequency as measured in the comoving frame of the fluid.

2 We note thafl,, is an energy flux per unit time, frequency and solid angle,
so that in cgs units it has dimensionseof cm =2 s—! Hz— ! sr—1.
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Since the two terms/dvdQ and I, /v® are relativistic invari-
ants (Rybicki & Lightmahl 1986), their product with the tenso
p“p” is stillatensor, and indeed it provides the integrand of(By.

In the frame comoving with the fluid, the moments of the radi-
ation field are the energy density, the radiation flux andaldéation
stress tensor, which are respectively given by

E. = % / I,dvdQ, (4)
B = b / L dvdQON® ©)
- % / 1, dvdQON® N* )

where the tensoh®® = ¢°# + u“u” projects any other tensor
into the space orthogonal t6*, namelyh®?u, = 0. In terms of
such moments the radiation energy-momentum tefi$drcan be

rewritten as|(Hsieh & Spiegel 1976)

TP = (Br + Pouu” + FOu’ + u*FP 4+ P.g*?

@)

whereE, andP; are the radiation energy density and pressure, re-
spectively. As iI@OS), we make the additicrad
strong physical assumption that the radiation is very ctoske-
ing isotropic in the comoving frame of the fluid, thus mimiagi
the conditions of the optically thick regime. However, vehihe ra-
diation pressure is actually set to % = E,/3, as the isotropic
assumption implies, the radiation flux is allowed to assume-n
vanishing values, although with the constraint thdy £, < 1.
Hence, the radiation field is only approximately isotropic.

The full set of equations describing the dynamics of the sys-
temis

Va(pu®) =0, 8)
VoI =0, ©)
VoI = -GP . (10)

While Egs. [8), and[{9) represent the well known continu-
ity equation and the energy momentum equation, Egl (10) ex-
presses the evolution of the radiation field, whétg is the ra-
diation four-force density. The latter depends on the ptatsin-
teraction between matter and radiation and is thereforeifspé&o
the problem considered. In full generality this tensor igegi by

(Mihalas & Mihalas 1984; Shapito 1996)

Gy %/(XVL, — 1y )N“dvdQ2,

= (11)
wherey, = x, + x5 andn, = n!, + 7S are the total opacity and
emissivity coefficientd, each containing a thermal contribution, in-
dicated with the superscript “t”, and a scattering one datid with
a superscript “s”. In addition, we assume th@tthe scattering is
isotropic and coheren(ji) the thermal emissivity and the thermal
opacity coefficients are related to the Planck functignthrough
Kirchhoff's law !, = B, ., (iii) that electrons and ions are main-
tained at the same temperatuie) the opacity coefficients are in-
dependent of frequency., = ryp, Wherer, is the gray-body
opacity. The last assumption, in particular, prevents o ftaking
into account photoionization effects, which are therefooe con-
sidered in our analysis.

Under these conditions, which are indeed the same considere

3 Note that although both are referred to as “coefficients’,andz, have
different units. The dimensions of, arecm™!, while those ofy, are
erg cm 3s1Hz lsr— 1,

by [Farris et dl.[(2008), the radiation four-force can be teritin
covariant form as

G = X' (Br — 4rB)u” + (X' + x*)F?, 12)
wheredrn B = a,.qT* is the equilibrium black-body intensity, with
T the temperature of the fluid and.q is the radiation constant.
The temperature is estimated from the ideal-gas EOS viaxhe e

pression
mp P
= k’_;; ) (13)

where, we recallkp is the Boltzmann constant andh,
rest-mass of the proton. In this paper we consider the case of

bremsstrahlung opacity (Rybicki & Lightman 1986)

1.7 x 1072 T1;7/2 Ve Ne N em ™!

t
Xor -
25 7/2 P2 1
1.7 x 10~ TK m—g2 cm s

P

(14)

wheren. andn; ~ n. are respectively the number densities of
electrons and ions (protons) expressed in cgs units, Whilés the
equilibrium temperature of both electrons and protonsesged in
Kelvin. For the scattering opacity we consider the Thomszat-s
tering opacity and we recall that the Thomson cross sectbns
electrons and protons arer,. = 6.6524586 x 10~ **cm? and
or,p = (me/myp)*or.c, respectively. Hence, the Thomson scatter-
ing opacities of electrons and of protons are given by

Xe = O0T,eNe = 0T,c <mL> = 0.397726 pegs em™', (15)

P
s _ _ Py _ -7 —1
Xp =0T pNp =0Ty (m—> = 1.17968 X 10™ " pcgs cm
P
(16)

We recall that the electron-scattering opacity dominates tree-
free opacity at low densities and high temperat ),
where the interaction between electrons and ions is weais. It
worth stressing that, because of the assumptions madecaineir
ent process such as Compton scattering, with a cross sélotibis
frequency dependent, cannot be consistently taken intuacand
itis therefore neglected. Finally, as customary, the aptiickness
is defined as the line integral of the opacities between tviatpm
the fluid

L
T = / (X" +x°)ds. (17)
0
In practice, we approximate expressiénl(17yas (x* + x°)L,

with L being a typical length scale of the problem.
We refer to AppendiX_A for a summary about the conversion
betweerncgs and geometrized units.

2.2 Numerical methods

We solve the equations of general relativistic non-didsipara-
diation hydrodynamicd{8J-(10) through a modified versidthe
ECHO code [(Del Zanna et HI. 2007), which adopts & 1 split of
spacetime in which the spacetime is foliated into non-seeting
space-like hyper-surfaces, defined as isosurfaces of a scalar time
function¢. Within this approach, the metric is decomposed accord-

ing to (Arnowitt et all 1962)
ds® =—a’dt® + ~i; (dz’ + B'dt)(da’ + B dt),

(18)
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wherea is the lapse function3’ is the shift vectory;; is the spatial
metric tensor, and

ny = —aVut = (—a,0;), (npn"=-1), (19)
is the future-pointing time-like unit vector normal to tHess ;.
The observer moving with four-velocity” = {1/, — 8/a} is
called Eulerian (Smarr & York|1978). Any vectoi/ * (or simi-
larly a tensor) may be projected in its temporal comporiéht=
—n, V* and spatial componentV* = (g% + n*n,)V". As a
result, any spatial vectdv’* (or tensor) must necessarily have a
vanishing contravariant temporal componé&fit = 0, whereas its
covariant temporal component¥ = g,..V* = 3; V", in general
different from zero. The3 + 1 splitting procedure just described
can be applied to the vectors and tensor introduced so fael y

u® = I'm“+Tov®, (20)
TP = W 4 5% + noS? 4+ Unn”, (21)
F* = aF'n>+ f2, (22)
7% = R 4+ 8°0° + n°SP + Unn?, (23)

where all the tensors”, W**, S*, fI, R, S¥ correspond to
the familiar three-dimensional quantities as measuredhéyEule-
rian observers, are purely spatial, and have indices tleataésed
and lowered by the spatial metrig;. In particular, the newly intro-
duced quantities are related to the corresponding quesiiti the
comoving frame by

D = I, (24)
W49 = phT*v' ! +pAyY (25)
Sto= phI'%', (26)
U = phl”—p, (27)
RY = %Eervivj + F(ffvj + frJvL) + Py, (28)
S %Erl“%i +T(aF + ), (29)
U, = %Erl“z 4 20T F! — % . (30)

A few comments about the quantities in the equations abaveea
useful. The vectors® andf; are the velocity and the radiation flux,
respectively, as measured by the Eulerian observers, \White
(1 —v*)~Y2 = au' is the Lorentz factor of the bulk flow. In
particular, the radiation flux vector i§ = F! + 8'F! whereF!

is computed from the orthogonality conditidi™u. = 0 and is
given by

o S} (31)
a — Bivt o
It is interesting to note thal/, = R*’n,ns is the radiation en-
ergy density as measured by the Eulerian observers, ingynadith
what happens for the conserved energy density of the fludte-
fined by [27).
The general-relativistic radiation-hydrodynamics eapret
are then written in the following conservative form
oU+ 8, F =8, (32)
which is appropriate for numerical integration via standaigh-
resolution shock-capturing (HRSC) methods developedi®Bu-
ler equations. The conservative variables and the cornepg

fluxes in thei-direction are respectively given by

SN av'D — B'D ]
s, aWy — 'S,
=y v |, A=y U | @
(S, aR? — Bi(Sk);
A aSi — B,

whereas the sources, in any stationary background metnichbe
written as

0 -
%aWikaj’yik + 518352 — UajOé + a(Gr)j
%Wikﬂjaj’)/ik +Wii9;8° — S70;a + 2G| |

$QR*9;vir, + (8:)i0; 8" — Urdja — a(Gh);

L S RSB0 + (Re),0;8' — 8100 — o*GY
(34)

where only purely spatial quantities are present. We noté th
V7 = /—g/a is the determinant of the spatial metric. In our
setup for two dimensional simulations presented in Bec. 4sve
sume the metric given by the Kerr solution with the limitingse
of Schwarzschild metric for vanishing black-hole spins.

The radial numerical grid is discretized by choosi¥g points
from rmin t0 rmax, NON-uniformly distributed according to the fol-

lowing scheme
ri =

(35)
(36)

Tmin + a1 tan (a2;) ,

T, = (fL — T‘min)/(Tmax - Tmin) B

wherea; = (max — min)/G0, a2 = arctan ao, while 7; are the
coordinate points of the uniform grid fromuin t0 rmax. In prac-
tice, the free parameter, controls the extent to which the grid
points of the original uniform grid are concentrated tovearglin,
and we have chosem in the ranggl5 — 10] in most of our simu-
lations. The angular grid is taken to be uniform.

The set of hydrodynamics equations is discretized in tintke wi
the method of lines and the evolution is performed with a sdeo
order modified Euler scheme. A fifth-order finite-differeraigo-
rithm based on an upwind monotonicity-preserving filter iis-e
ployed for spatial reconstruction of primitive variableghereas
a two-wave HLL Riemann solver is used to ensure the shock-
capturing properties (see Del Zanna et al. (2007) for furthe
tails). As a final remark we note that as customary in HRSC meth
ods, we introduce a tenuous and static “atmosphere” in giens
of the fluid where the rest-mass density falls below a chdsesh-
old value. When this happens, we follow the prescriptioraiked
in Baiotti et al. ) as far as the hydrodynamical quatitre
concerned, while the primitive variables of the radiatiaidiare
frozen to the values at previous time-step.

3 VALIDATION OF THE CODE

The purely magnetohydrodynamic version of the code has been
validated over the same numerical tests extensively destri
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Table 1.Description of the initial states in the shock-tube testhwadiation field. The different columns refer respectivel: the test considered, the radiation
constant, the adiabatic index and the thermal opacity. Adported are the rest-mass density, pressure, velocityaaliation energy density in the “left’Z()

and “right” (R) states.

Model  ~ Grad Kk PL DL uf E. L PR PR uf Er r
1 5/3 1.234x10° 04 1.0 3.0x107° 0.015 1.0x107% 24 1.61x107* 6.25x 1073 251 x 1077
2 5/3  7.812 x 10* 0.2 1.0 4.0x1073 0.25 2.0x 1075 3.11 0.04512 0.0804 3.46 x 10~3
3 2 1.543 x 10°7 0.3 1.0  60.0 10.0 2.0 8.0 2.34 x 103 1.25 1.14 x 103
4 5/3  1.388 x 108 0.08 1.0 6.0x1073 0.69 0.18 3.65 3.59x1072 0.189 1.3
C J 3= 7
2; P —— exact E 2; P __ exact é
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Figure 1. Solution of the shock tube test(left panel) and (right panel) as reported in Talileé 1. From top to bottom theetsareport the rest-mass density,

the velocity, the radiation energy density and the radiatiox.

inlDel Zanna et 21/ (2007), obtaining the same convergermgepr
ties and will not be reported here for compactness. For tiiatian
part of the code, on the other hand, there are only a few acalyt
semi-analytic tests that can be adopted, as we discuss.below

3.1 Shock-tube problems
Considering a flat spacetime, we have folloled Farris e2an8),

who proposed and solved four shock-tube tests in which nonli
ear radiation-hydrodynamic waves propagate. The initates of

these tests are reported in Table 1 and are chosen in such a way

that the discontinuity front at = 0 remains stationary, namely it
has zero velocity with respect to the Eulerian observer ettide.

M), and it implies the solution of the following systefroodi-
nary differential equations

d;U(P) = S(P),

where
p pu® 0
P TOz 0
= u” , U= T , S = 0
E, To® —G?
FY Tr* —-G¥

Figured1 an@2 show the comparison of the numerical solu-
tion with respect to the semi-analytic one in the four cases ¢

The values of the fluxes, not reported in Table 1, are chosen to sidered, which correspond, respectively, to the propagatif a

be two orders of magnitude smaller than the energy densitlyeof
radiation field. In these tests local thermodynamic equiili is
assumed at both ends= + X, with X = 20, and this is obtained
by adopting a fictitious value of the radiation constanti, namely
raa = Ev.1/T4, which is then used to computé. z = araaTh
(here the indiced. and R indicate the “left” and “right” states, re-
spectively). The scattering opacityj is set to zero in all of the
tests, while the value of the thermal opao'ny is reported in Ta-
ble[d.

Each test is evolved in time until stationarity is reachelde T
semi-analytic solution that is used for comparison withrihener-
ical one has been obtained following the strateg@e

nonrelativistic strong shock, of a mildly relativistic atrg shock,

of a highly relativistic wave and of a radiation pressure dmted
mildly relativistic wave. In particular, Fifl 1 reports thelution for
the testsl and2, which contain a true discontinuity represented by
a shock front, while test8 and4 have continuous configurations
and are shown in Fif] 2.

The tests have been performed witi = 800 uni-
formly spaced grid points using the MP5 slope limiter de-
scribed in_Del Zanna et al. (2007) and a HLL Riemann solver. Un
like .8), we have not boosted the solutidis Te-
sults in a more stringent test for the code to maintain statio
ity and it also explains why the profiles of the vector quaesit
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Figure 2. Solution of the shock tube te8t(left panel) and? (right panel) as reported in Talflé 1. From top to bottom theefsareport the rest-mass density,

the velocity, the radiation energy density and the radiatiox.

namely the velocity and the radiation flux, do not match those all the simulations we will consider a gas of nonrelativistiec-

shown b I@bS). The numerical solution is atio-
distinguishable from the semi-analytic one in all of thefites re-
ported in the figures, thus proving the ability of the codedndiiing
different physical regimes of the radiation field within gatioally-
thick approximation.

4 BONDI-HOYLE ACCRETION FLOWS
4.1 Initial and boundary conditions

Our attention is focused on a Bondi-Hoyle accretion flow cmto
black hole of galactic size with/pr = 3.6 x 10° M, that we
investigate by performing numerical simulations on theagqrial
plane,i.e. 6 = x/2. Despite the long history in literature on this
type of accretion (see the review@MOM)), no statipso-
lution for a radiation-hydrodynamics Bondi-Hoyle flow isdwn,
and which could have been used as suitable initial data. Asutr
we let the code converge to the nearest stationary solufien a
specifying the hydrodynamical solution of the Bondi-Hof¥liew,

to which we add a radiation field with uniform and small energy

densityE..

Most of our discussion hereafter refers to accretion onto

Schwarzschild black holes, although also rotating blade$will

be briefly presented in Se€f. 48.3. The code solves therdfier
equations in a general Kerr metric expressed in Boyer-Liigiq
coordinates, so that the initial velocity field, specifiedeénms of

an asymptotic velocity.., is given by [(Font & Ibafiéz 1958)

v = /Y Ve COS (37)
v? = —\/yPussing. (38)

These relations guarantee that the velocity of the injegsed
at infinity is parallel to thez—direction, whilev? = v;0® = vZ,
everywhere in the flow. Other quantities that need to be glig
are: the asymptotic sound speed.,, and the asymptotic pressure,
from which the asymptotic rest-mass density follows directly

(see values reported in Table 2 for all of the models consitjeFor

trons and hence with an adiabatic index= 5/3. The velocities

used in our models and presented in Table 2 are chosen to-be suf

ficiently high so as to open a shock cone (see details belom. A
chosenvs, implies a restricted range of asymptotic sound speeds,
if a reasonable Mach number should be considered. We reimark t
our models do not aim at modelling any specific astrophysicat
nario, but rather at highlighting the role of the back-reacof the
radiation in an optically thick, relativistic Bondi-Hoylaccretion
flow.

Similarly, the radiation field is initialized to a value sutttat
the radiation temperaturB.q = (Er/ara)* ~ 1.5 x 10°K.
While this may seem an arbitrary choice, we have verifiedutino
a series of numerical simulations that, on long-term evohs, the
value of the obtained luminosity is not dependent of thigiahi
choice. The computational grid consists¥df x N, numerical cells
in the radial and angular directions, respectively, caxged compu-
tational domain extending fromin = 2.1 M t0 rmax = 200 M
and fromemin = 0 t0 ¢max = 2m. For our fiducial simulation we
have choseV, = 1536 and N, = 300, but have also verified that
the results are not sensitive to the resolution used or ttaion
of the outer boundary.

The boundary conditions in the radial direction are such tha
at the inner radial grid point we implement inflow boundary-co
ditions by a simple zeroth-order extrapolatiare(a direct copy)
of all variables. At the outer radial boundary, on the otrerd) we
must distinguish between the upstream regignWith 7 /2 < ¢ <
3/2m), and the downstream regiong( with —7/2 < ¢ < 7/2).

In the upstream region we continuously inject matter witn ithi-
tial velocity field of [37)438), thus reproducing a contous wind
at large distances, while in the downstream region we ustoaut
boundary conditions. Finally, symmetricd. periodic) boundary
conditions are adopted &t = 0. The simulations are performed
with a Courant-Friedrichs-Lewy coefficient that may varg@al-
ing to the model and it is typically in the range[0.01, 0.5].

In addition to the “classical” Bondi-Hoyle initial data, well
also consider a set of simulations in which the thermodynarof
the flow is slightly altered in order to reduce the tempertfrthe
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Table 2. Initial models adopted in numerical simulation. From leftright the columns report: the name of the model, the asytiepiow velocity v,
the asymptotic sound speed, -, the asymptotic Mach numbe¥1 ., the initial temperature, the initial rest-mass density #re accretion radius, =
GM/(vZ, + cz’w). Perturbed Bondi-Hoyle solutions are generated througgietion of low pressure gas as described in the text. Eaclehi@dvolved until
stationarity is reached, and in any case up until at least20000 M. The adiabatic index was set{o= 5/3 and the black hole spim = 0. The mass of the
black hole isM gy = 3.6 x 108 M, and the radial grid extends fromy,;, = 2.1 M t0 rmax = 200 M.

Model Voo  Cs,c0 Moo T [K] Poo [cgs] ra [M]
V08.CcS07  0.08 0.07 1.14 3.22x 100 3.22 x 1012 88.5
V09.cS07  0.09 0.07 1.28 3.22x 101 3.22 x 1012 76.9
V10.CS07 0.10 0.07 142 3.22x1010 3.22x 1012 67.1
vV11.cS07  0.11  0.07 1.57 3.22x100 3.22 x 1012 58.8
V07.S06  0.07 0.06 1.16 2.36 x 101 439 x 10712 1176
v07.cS07  0.07  0.07 1.0 3.22x1010  322x10712  102.0
V07.S08  0.07 0.08 0.77 4.22 x 100 245 x 10—12 88.5
V07.c809  0.07 0.09 0.77 5.35x1010 1.93 x 10~12 76.9

p.v09.cSO7  0.09 0.07 1.28  3.22x10° 3.22x 10712 76.9
p.v10.cS07 0.10 0.07 142  3.22x10° 3.22x 1012 67.1
p.V11.cs07 0.11  0.07 1.57 3.22x10° 3.22x 10712 58.8
p.v18.cS07 0.18 0.07 2.57  3.22x 109 3.22x 10712 26.8

gas. We denote these models as “p-models” in Table 2. Inessen sion of the fluid when this has nonzero thermal conducﬁ/i@(

the perturbed Bondi-Hoyle accretion flows are obtained pscin
ing gas of lower pressure than required by the stationamytisol
at the upwind boundary, with a proportionally reduced radia

energy density?, (see Secf. 4.3]2 for details).

4.2 Computation of luminosity

The key new quantity that our code allows to compute is tha-emi
ted luminosity. Since the code explicitly calculates thdiation
fluxes f; at each time step, we use them to compute the intrinsic

luminosity emitted from the optically thick region as

L:/ffmdSopt,
Q

where S, is the surface of the volum@ enclosing an optically
thick region within the computational domain, while the laca

(39)

second contribution to the total luminosify {40) is givendissipa-
tive processes related to shock heating that, as we will siebow,
can provide a considerable contribution to the total erissi
However, since we are dealing with inviscid non-magnetized
fluids, the luminosity [(40) obviously cannot provide the tbn
bution coming from dissipative processes driven by vidgogif
whatever origin), and that can be a significant part of theediom-
powered luminosity in a realistic accretion scenario. Wallefor
instance, that in the classical Shakura-Sunyaev thinrdael the
main dissipative mechanism comes from the viscous stress te
sor, directly proportional to the total pressure via thepta” pa-
rameter. Similarly, in spherical accretion, a realistiscaus fluid
with nonzero bulk viscosity will produce a viscous dissipat
adding to the one coming from the fluid compression. In sum-
mary: in realistic accretion scenarios one should expeatthtoth
thermal conductivity and viscosity act as transport coieffits of
dissipative processes and lead to contributions to theteaniti-

productf; n; provides the projection of the local radiation flux onto minosity. In our treatment, however, only the effects of fae

the normal to the radiating surface. Because of the neantyoigic

mer one can be accounted for. Hereafter, the luminositidstas

assumption made for the radiation field and because of tlghrou  accretion rates will be reported in Eddington unite, Lgaqa =

spherical symmetry of the physical system under considerathe
fluxes in the angular directions are expected to to be muchiema
than the radial ones and to almost cancel. As a result, arsirfer

plicity, we approximate the scalar product abovefas; = f7,

thus computing the luminosity as

Ny
L=2%"[V7 (), An] =
n=1

(40)

AnGMmype/or.e ~ 1.26 x 10 (M/Mg)ergs™, Mpaa =
Lgaa/c® ~ 1.39 x 10'7 (M/Mg)gs™'. See also[{AB) for the
Eddington luminosity in the geometrized units of the code.

4.3 Results

Before entering into the details of our results, it is usédubriefly
review the main features of the relativistic Bondi-Hoylecrae

whereA¢,, is the angular size of a grid cell and we perform the sur- tion as investigated through purely hydrodynamical sirtioites

face integral at the radial position of the last opticatyek surface,
i.e.wherer = 1, the factor2 accounts for both the contributions

above and below the equatorial plane.

by [Petrich et dl.[(1989]; Font & Ibafez (1998): Font ét/AB9B)
andl.9). Overall, these studies have higtdajthat

when a homogeneous flow of matter moves non-radially towards

The luminosity computed in this way comprises two different

contributions. The first one is an accretion-powered lusitydhat
it is directly proportional to the mass-accretion ratethrough a
relation of the typeL... = nM, where the coefficieny expresses
the efficiency of the conversion of gravitational bindingregy into
radiation. The main dissipative mechanism is provided bypmes-

4 We recall that the thermal conductivity is related to theaifyaand its

effects are therefore accounted for in our analysis. Faaite, the thermal
conductivity computed using the ordinary diffusion appnaation of stellar

interiors is given byyr = (4/3)araqacT?/x* (SchwartZ 1967).
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Figure 3. Rest-mass density in cgs units on a logarithmic scale forahoeb.CcS07 in a purely hydrodynamical evolution (left panels) and iradiation-
hydrodynamics evolution (right panels). Different rowfereto different times of the evolution and white regionsregpond to densities slightly below the
threshold for the colour code at arouhd—12 g/cm 3. Note that the presence of a radiation field reduces themast density considerably near the black
hole, suppressing the accretion rate.
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Figure 4. Left Panel:logarithm of the ratio of radiation pressure over gas pnestar the model09.CS07 at early timesRight Panel:ithe same as the right

panel but at later times, when stationarity had been reached

compact object, a shock wave will form close to the accr&er.
pending on the adiabatic index and on the asymptotic Mach- num
beﬁ M, the shock can either come very close to the accretor
or be at a certain distance from it [see, for insta.
M)]. In general, for any given value of the adiabatieixdhere

is a minimum asymptotic Mach number above which a shock wave
of conic shapé,e.a“shock cone”, forms downstream of the accre-
tor. On the other hand, asymptotic Mach numbers below tlie cri
cal value produce a shock wave that, initially formed in tbevd-
stream region, opens progressively and reverses in theeapste-
gion as a bow shock. More recently, two different studiestsned
additional light on the physics of relativistic Bondi-Hey&ccretion
flows. In the first onel_Donmez etlal. (2010), reported theuncc
rence of the so calleflip-flop instability of the shock cone in the
relativistic regime and have also shown that quasi-peciodcilla-
tions of sonic nature are produced in the shock cone. In thenske
one/Pennkl (20011) investigated the effects of a uniformnetig
field, finding that it produces an increase in the cone opeanugie

and in the mass accretion rate.

4.3.1 Classical Bondi-Hoyle accretion

We start our analysis by considering the extent to which eatimh
field affects the dynamics of the classical Bondi-Hoyle floam-
paring the dynamics for very similar physical conditionseTini-
tial models, which are the first seven reported in TEblem
high temperatures and, consequently, high thermal coiwiti

As mentioned above, for any given value of the adiabaticxnde
there is a critical asymptotic Mach numb#t . ., usually close to

5 We recall that the relativistic Mach number is defined as
M =Twv/(csT's), where " and I's are the Lorentz factors of the
flow and of the sound speed, respectively.

6 The present version of the code does not allow to handlessiiffce terms
that arise in the radiation-hydrodynamics equations wherconductivity

is small 6). Work is in progress to cope ttith difficulty.

unity, above which a shock cone forms in the downstream regio
and below which the shock cone reverses in the upstreamniegio
Our simulations indicate that, for values of the Mach nuntbese

to the critical one, the radiation effects on the dynamiesraost
evident. This is shown in Fid.] 3 for mod&b9.cs07, where we
have reported the distribution of the rest-mass densitiraetdif-
ferent times in a purely hydrodynamical evolution (left pk) and

in a radiation-hydrodynamic evolution (right panels). §hiodel,

in particular, provides an example in which the radiatioidfi@e-
vents the reversal of the shock cone from the downstreanmegi
into the upstream region, which instead takes place in thelyphy-
drodynamical evolution. Since the dynamicsiob.CS07 becomes
radiation-pressure dominated arounst 5000 M, the explanation
of this effect is simple: In such conditions the effectiveahatic
index of the fluid-plus-radiation medium is smaller thart thizthe

fluid alone [see Eq. (70.22) bf Mihalas & Mihalas (1984)]

5/2 + 20q + 16¢°
3/2+12¢)(144q)’

whereq = P./p. This fact has two important consequences. The
first one, which we will discuss shortly when commenting Hg.

is to increase the rest-mass density jumps across shodk fiime
second one, is exactly to favour the generation of the shoolk ¢
downstream of the accretor, as firstly noticef@mnd
later confirmed by Font & Ibafiez (1998).

As clearly shown in Fid.13, the radiation-hydrodynamics-evo
lution of modelv09.CS07 is remarkably different from the purely
hydrodynamical one, and it can be divided in the followiragss.
After the shock cone has fully opened in the downstream regio
(top right panel of Fig[13), the flow becomes radiation-puess
dominated, making the shock cone oscillate from one siddef t
accretor to the other, in a way that resembles the flip-flop in-
stability already encountered in relativistic Bondi-Heylows by
[Dénmez et dl.[(2010). This transient behaviour, capturedhe
right-middle panel of Fid.]3, is accompanied by an outflow afm
ter expelled by radiation pressure beyond the computdtignic
After that, the system relaxes to a stationary configuratiarac-

(41)

Yeff =
(
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Figure 5. Rest-mass density in cgs units on a logarithmic scale forahoth.CS07 in a purely hydrodynamical evolution (left panels) and iradiation-
hydrodynamics evolution (right panels). Different rowfereto different times of the evolution and white regionsregpond to densities slightly below the
threshold for the colour code at arouhd—12 g/cm 3. Note that the presence of a radiation field reduces themast density considerably near the black
hole, suppressing the accretion rate.
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Figure 6. Evolution of the mass accretion rate in Eddington units fodeisv07.CS07 andv07.CS09 (left panels) an@09.CS07 andv10.CS07 (right panels).

terized by the presence of a shock cone with a much smallerope
ing angle than in the hydrodynamical solution, giving rigat‘re-
duced” shock cone. Also shown in FIg. 4 is the ratio between th
radiation pressure and the fluid pressure, reported in thpdeel

for an early and fluid-pressure dominated stage of the a@wvolut
and in the right panel for a late and radiation-pressure datad
one.

A very similar behaviour to the one discussed so far is shown
in Fig.[d for modelv10.€cs07, the initial Mach number of which is
only slightly larger than modei09.CS07. However, in this case the
higher fluid velocity causes supercritical behaviour batlhie hy-
drodynamical and the radiation-hydrodynamical evolusonthat
the shock cone remains in the downstream region. The close si
ilarity between the dynamics of model$9.CS07 andv10.CS07
in the presence of the radiation field is also testified by gyargo-
totic mass accretion rate, which i ~ 13.14Mgqq for model
v09.€S07 and M =~ 10.24Mgaq for V10.CSO07.

An information complementary to that of Figl 31 5 is pro-
vided by Fig.[6, which shows the evolution of the mass accre-

1 ]
-0.6

-04 -02 0
x[M]

[ TR B RTRATE AR
o

0.2 0.4

Figure 7. Comparison of the rest-mass density jump across the shook fr
at timet = 9500 for modelsv09.CS07 in a purely hydrodynamics evolu-
tion (red solid line) and in a radiation hydrodynamics etiolu (blue dashed
line). The location of the shock was re-normalized to liecat 0 and is
displaced byAz ~ 0.2M between the two runs.

work where only the electron Thomson cross section corteghto
the radiation pressure.
Additional differences between the hydrodynamics and the

tion rate for a few selected models. For each of these models radiation-hydrodynamics evolutions emerge after conmgathe

both the purely hydrodynamical evolution (red solid linas}ll the
radiation-hydrodynamical one (blue dashed lines) areidensd.
A few comments are worth making about this figure. The first one
is that, once stationarity is reached, the mass accreti@s &
the radiation-hydrodynamics models are significantly $enahan
those of the corresponding hydrodynamics models. Thidtresis
of course expected, because of the obstructive effect aéthiation
pressure. The second comment is that the reversal of thi sbne

in the hydrodynamics model®9.cs07, v07.CS07, V07.CS09 and

in the radiation-hydrodynamics model97.cS07 and V07.CS09
leads to an increase dff, as highlighted by the arrows. For the
hydrodynamical version of mod&9.cs07, for instance, this in-
crease starts @t~ 12000 M, as reported in the top-left panel of
Fig.[8. Finally, we find that all models accrete at super-Egdttin
rates even when a radiation field is present. This is not simgy
since the Eddington limit holds strictly only in sphericghsmetry,
which is not fulfilled in wind-like accretion. Moreover, ihsuld be
remarked that the classical Eddington limit is computedfiame-

jumps experienced by the rest-mass density across a shaek wa
in a representative model. Such a comparison is reportedyifidF
for modelv09.¢S07, showing the variation of the rest-mass density
across the shock that is produced at time 5000 and visible
in the two top panels of Fil] 3. The two curves have been obdain
after slicing the rest-mass density along andirection” perpen-
dicular to the shock front, and sliding the two profiles sa the
shock is located at the same= 0 position for both the hydrody-
namical and the radiation-hydrodynamical evolution. Nisgeand
positive values of the-coordinate refer therefore to the unshocked
and to the shocked region, respectively, while the restsrdassity
has been normalized to the value in the unshocked region.

The first comment about this figure is that the density jump in
the hydrodynamics evolution is slightly smaller than thiigaof 4
predicted by the theoretical expectatiorpef p1 ~ (v+1)/(y—1)
valid for an ideal gas EOS. This effect may be due to the preseh
both numerical diffusion and tangential velocities alohg shock
front. The second comment is that the compression raticadhe
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Figure 8. Left Panel:logarithm of the optical thickness for the mod&i9.CS07 once stationarity is reacheRight Panel:Logarithm of the modulus of the

radiative flux (in geometrized units) in the same model astimae time.

Table 3. Mass accretion rate, luminosity and efficiengy,, as defined in
Eq. [42) of Bondi-Hoyle accretion in the quasi-stationaggime.

Macc/MEdd

Model Moo L/LEdd urem
V08.CS07 1.14 17.9 3.10 0.14
V09.Cs07 1.28 13.14 4.11 0.22
V10.CS07 1.42 10.24 6.18 0.36
V11.CS07 1.57 8.32 6.77 0.38
V07.CS07 1.0 27.64 1.44 0.05
V07.CS08 0.87 21.74 2.14 0.09
V07.CS09 0.77 17.44 1.91 0.10

p-V10.CS07 1.42 11.58 5.35 0.29
p-V11.Cs07  1.57 8.34 7.05 0.40
p.V18.CS07  2.57 4.02 30.5 0.69

shock increases b§% in the transition from a hydrodynamical
to a radiation-hydrodynamical evolution. This effect caaia be
understood by regarding the fluid in the radiation—hydreatyits
evolution as an effective fluid havingsmalleradiabatic index, as
indeed expected in the radiation-pressure dominated eegiims
result is also in agreement with analytical investigatibpfGueds
(1960) and Mihalas & Mihalas (1984§104).

Before computing the luminosity as described in §ed. 4ig, it
important to make sure that the physical conditions chosere¢
spond to those required by the code, namely the presenceh@and
persistence) of an optically thick regime. Of course allhaf mod-
els considered in our simulations and reported in Table tharech
a physical regime, with only very limited regions where tiptical
thickness can be- O(1) during the evolution. As a representative
example, the left panel of Fifll 8 shows the optical thicknelsen
the system as relaxed to stationarity, for the same mioaieCso7
that we have extensively described so far. The right paneigp,
on the other hand, shows the corresponding intensity of tiraen-
tum of the radiation field. After comparing with the rightibmm

panel of Fig[3, it is easy to realize that the distributionhe radia-
tive fluxes is obviously correlated with the rest-mass dgruis-
tribution, but also that a good portion of the radiative esias is
concentrated along the shock fronts of the reduced shoak con

The evolution of the emitted luminosity and of the mass-
accretion rates are illustrated in the two panels of Elg. &reM
specifically, the left panel, which reports models with easing
Mach number but having the same initial temperature, shbafs t
the luminosity increases with, and reaches stationary values
of a few Eddington units. On the other hand, the right panklciv
reports models with the same asymptotic velocity but dffetem-
peratures, shows that stationarity is reached on longerstales
and a correlation with the final luminosity is less robustalhof
the models shown, the first bump aroung 2000 M is due to the
initial opening of the shock cone.

By providing the first self-consistent computation of thealu
nosity in a Bondi-Hoyle accretion flow, our calculationoallus to
derive the efficiency of the accretion flayy,, . We remark that the
concept ofy,,, for a Bondi-Hoyle flow, with a nonzero velocity of
the matter at infinity, is not the same as in standard accreligcs,
where the gas flow is supposed to start from matter at resfiat in
ity. Thus, we define an effective Bondi-Hoyle luminosity eiffincy

Ny 8S

L
= - n 5 42
773% MaccC2 + %Moovgo ( )

where the denominator takes into account a kinetic corttdbuo

the energy flux. We report the valuesf,.. / Mgaq, L/Lgaa and
Nz N Table[3 for those models presenting a quasi-stationary ac
cretion pattern. From the data reported in the Table it isiptesto
deduce the existence of two different regimes in a radidiwedi-
Hoyle accretion flow. A first regime, correspondingtd.. < 1,
where the luminosity is dominated by the accretion-powdued-
nosity and thus proportional tb/. A second regime, correspond-
ing to Mo 2 1, where the luminosity is instead dominated by
the emission at the shock front. In particular, by compatirfirst
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Figure 9. Luminosity and mass-accretion rates in Eddington unitéassical Bondi-Hoyle accretion flows. The left panel cdbemodels with different initial
velocities but with the same sound speed. In contrast, ¢ie panel collects models with the same initial velocities$ with different values for the sound
speed. All simulations were evolved until they reachedastatity, and up t¢ = 30000 M at most.

four models that have the same initial asymptotic sounddspee
note that, as the asymptotic Mach number is increased, tire-ac
tion rates decrease. This effect is due to the reduced apamnigle
of the shock cone. The corresponding luminosity, on therdtaed,
increases, because of the enhanced dissipation at the sbotk

The remaining three models, which all have higher Mach numbe
develop the usual shock cone downstream of the black hols. Th
behaviour is reported in the four panels of Hig]l 10, showimg t
evolution at different times of the rest-mass density far thodel
p-V10.CS07 in a radiation-hydrodynamical evolution. Note that the

As afinal remark we note that, as already discussed i Séc. 4.2 accretion cone, that is fully formed at time~ 3000 M, is highly

the luminosities we have reported here can only provide idwe
its on the energy efficienay,,, . We have in fact neglected not only
viscous dissipative processes from the accretion flow, Isatany
nonthermal emission, such as inverse Compton or synchroé-o
diation, which could arise from a corona developing neabthek
hole.

4.3.2 Perturbed Bondi-Hoyle flow

As mentioned in Sedi. 4.1, in addition to the standard artébsta
ary Bondi-Hoyle flows, we have also considered initial ctindis

that would lead to perturbed Bondi-Hoyle accretion patemme

recall that we have tagged these as the “p-models”). Thenalt

behind this choice is that of investigating how the accreflows

varies when the initial conditions are no longer those éngua

stationary flow. At the same time, this allows us to considedm
els that have lower temperatures and, consequently, |dveemil

conductivities.

In practice, we trigger the perturbation of the Bondi-Hoyle
flow by acting on the thermodynamic conditions of the fluidhie t
upstream region and by producing models with values of tiialin
temperature that are typically one order of magnitude snéian
those in standard Bondi-Hoyle models. Because of the pertur
tion introduced, the dynamics of the perturbed models icafly
characterized by a very dynamical phase before quaséestatty is
reached. However, in spite of these violent transientspénairba-
tion introduced does not destroy the general Bondi-Hoyteepa
which is recovered eventually.

Among the perturbed modelg,v09.CS07 has the minimum
Mach number, and is also the only one producing a shock cae th
progressively reverses into the upstream region as a bogsksho

unstable and it goes through a rapid sequence of oscilkatjener-
ating an undulated stream in the wake. Finally, the systeiches a
quasi-equilibrium state characterized by a reduced showe sim-
ilar to that already encountered in the dynamics of stanaendels.

The extraction of the light-curve and the computation ofexl
maining quantities follows the same procedure used in tresird
models and we have reported the mass-accretion rates aighthe
curves in the two panels of Fig.111. Note that the generalfeat
in the light-curves for the standard models are also preserthe
perturbed models. In particular, there is an initial ris&uiminosity
which corresponds to the formation of the shock cone. Afiat,t
betweent ~ 1000 M andt ~ 2000 M depending on the model,
a peak is produced in the light-curve which is due to the shock
cone changing its geometry to an open cone. Interestingy the
efficiencyn,,, of the perturbed models are very similar to those
of the corresponding standard ones. For the medel1.CS07,
for instance,,, = 0.40, to be compared withy,,, = 0.38 of
V11.CS07.

We remark that the fluid temperature withid M from the
black hole decreases more rapidly for high Mach numbershato t
the build up of the radiation pressure is faster for the régMach
number. It should also be noted that while all perturbed mod-
els are radiation-pressure dominated in the upstreamrregfter
t ~ 10000 M, this regime is reached at different times by different
models. Furthermore, even when radiation pressure doesiribe
dynamics, there could be isolated portions of the flow wheeeas
pressure is not completely negligible. This is the caseinfstance,
in the undulated downstream part of the flow, where the rdtiae
pressure to radiation pressures ratio can be as highi7as~ 0.1.

The dominant role played by the radiation pressure is im-
printed on the accretion rate for the p-model18.CS07, as
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Time = 3000.07 M

=50

Time =16800.00M

Time =16000.00M

Time =18000.00M

=100 =50 0 il

Figure 10. Rest-mass density in cgs units on a logarithmic scale fop#reurbed Bondi-Hoyle moded.v10.CS07 at four different times in a radiation-
hydrodynamics evolution. The two rows refer to differentes of the evolution and white regions correspond to dess#ightly below the threshold for the
colour code at arountlo—12 g/cm 3. Note that a highly dynamical transient precedes the dpueémt of a stationary flow.

it is clear from Fig.[Ill. This model features the lowest quasi

equilibrium accretion rate and the highest luminosity. &meral,

4.3.3 Spinning black holes

we have found that the higher the Mach number, the higher the Although the results presented so far refer to Schwarzbtttéick

radiation pressure, and the smaller the average densitjmariine
black hole. The perturbed modei18.cS07 shown in Fig[ID, for
instance, has a rest-mass density which is a fadt@smaller than
that in modelp.v09.€S07, which has the minimum Mach num-
ber among the perturbed models and the longest relaxatioa ti
(cf. Fig.[11). At the same time, the accretion ratepof09.CS07
does not show the typical decline up urti= 20000 M, although
it is radiation-pressure dominated everywhere in the nigaledo-
main. It is possible that the behaviour of mogel09.cs07 would
change, with the mass-accretion rate decreasing and thiedsity
increasing, if the evolution was carried on a much longeesicale.

holes, a number of different simulations have been perfdratgo

for spinning black holes, with dimensionless spin paransat@ng-
ing betweerD and0.999. The interest, in these cases, was that of
determining the influence that the black-hole spin may havthe
flow pattern and on the emission properties, for both thesdab
Bondi-Hoyle configurations and the perturbed ones.

Overall, the modifications introduced by the black-holenspi
are not particularly large to deserve a dedicated discus$fore
specifically, as far as the dynamics is concerned, we have con
firmed that as the spin of the black hole is increased, thekshoc
cone that may form in the downstream part of the flow is pro-
gressively wrapped (this was originally pointed out .
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Figure 11. Left Panel:Luminosity in Eddington units for the perturbed Bondi-Heyccretion flowsRight Panel:Mass accretion rates in Eddington units for

the same models in the left panel.

)). This distortion, however, is evident only in the iedliate
vicinity of the horizon, and typically below < 20 M. Further-
more, no significant change has been found, either quaétsitor
quantitatively, in the luminosity, to the point that theHtgcurves
for different black hole spins overlap to withir¥s. These results
suggest that if spin-related signatures in the electroetagemis-
sion should exist and can be extracted, these will beconueeti
only when a more sophisticated modelling of the emissiorr pro
cessesd.g.through inverse Compton in a rarefied corona) will be
considered. This will be part of our future work.

4.3.4 Impact on electromagnetic counterparts of superivass

black-hole binaries

Considerable attention has been recently dedicated to dbsi-p
bility of detecting the electromagnetic counterpart ofpinal and
merger of supermassive binary black holes (SMBBHSs) systems
Such a detection would not only confirm the gravitational-evee-
tection and help localize the source on the sky, but it woldd a
provide a new tool for addressing a number of astrophysigas¢
tions (seee.qg. I.9)). These include the possibility
of testing models of galaxy mergers and clues on the masghdist
tion of supermassive black holes (seqy.[Sesana et al. (2011) and
references therein).

Computing the EM counterpart to the inspiral of such a bi-
nary is not an aspect of our investigation and the physical con-
ditions considered here badly match those expected instieali
scenarios describing this process, to which we plan to déslic
a separate investigation. The results obtained here, lemwesn

in Newtonian physics by Corrales el dl. (2010) by enforcing a
isothermal evolution.

To prove our conjecture that the estimates made so far irsterm
of the bremsstrahlung luminosity are optimistic, provigizooling
times that are too short, we have computed the bremsstighlun
luminosity emitted in the classical Bondi-Hoyle accretaimmodel
V09.¢s07 following the general relativistic prescription adopted b
the works cited above, namely

Lr ~ 3 x 107 / (T1/2p2fﬁdV) (%) erg/s, (43)

and compared the results obtained using the estirhale (4B) wi
those obtained through our radiative-transfer treatmienaddi-

tion, we have also considered an alternative calculatiomtiich

an isothermal evolution is enforced, and where it is assutiat

all the changes in the temperature that are due to a local com-
pression are dissipated as radiation. This idea, propasé&tbiv-
tonian framework bk Corrales etldl. (2le0), has been extbtula
general-relativistic context Mbm), arzbd also
here for comparison.

The result of this comparison is shown in Eig.12, where we
have reported the three light-curves computed accordintheo
approaches just described. When stationarity is reachedat
t = 20000 M we find that Lpr/Lgaa = 78. This number
should be contrasted with the result obtained through olir se
consistent radiation-hydrodynamics simulations, whitdtéad in-

serve to shed some light about a common approximation madedicateL/Lgaa = 4.11 (cf. Table[3). Interestingly, the luminosity

in numerical simulations aimed at estimating the luminogibm
binary black hole mergers|_(Bode et al. 2010; Farris £t al0201
O'Neill et all 12009; | Megevand etlal. 2009: Zanotti et al. 2010
Bode et all 2011; Farris etlal. 2011). All these works conmgbiite
bremsstrahlung luminosity without taking the back-reatf the
radiation into account, but rather performing a volumedraé of
the bremsstrahlung emissivity. First efforts to improves tieat-
ment, but still without a proper radiation transfer, weréiated

obtained through the isothermal approximation providesuahm
smaller valuej.e. L/ Lgaq = 0.09.

While this analysis is not exhaustive and has been performed
in the specific scenario of an optically thick Bondi-Hoylegation,
it does point out that the predictions made using the sitiples-
timate of the bremsstrahlung luminosity via Hg.](43) previght-
curves that are a facter 20 larger than those obtained with a more
rigorous approach.
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Figure 12. Comparison among light-curves computed with different
approaches.Solid red luminosity obtained with the full radiation-
hydrodynamics evolution according to EQ._}4Dashed blueluminosity
obtained from Eq.[(43)Long-dashed greerduminosity obtained through
the isothermal evolution approximation. See text for moqganations.

5 CONCLUSIONS

We have implemented and solved in an extension ofE@EIO
code [(Del Zanna et &l. 2007) the equations of relativistiation
hydrodynamics in the optically thick regime and on a fixecckia
hole spacetime when these equations are written in a catsmTv
form 8). Within 3+ 1 split of spacetime, we have
discretized in time the set of equations with the method reédi
and performed the evolution in time with a second-order fiexdli
Euler scheme. A fifth-order finite-difference algorithm édson
an upwind monotonicity-preserving filter was employed fpas
tial reconstruction of primitive variables, whereas a twave HLL
Riemann solver was used to ensure the shock-capturing niespe
The new scheme has been successfully validated throughes ser
of tests involving radiative shock tubes.

As a first application of the new code we have considered
the emission properties of a hot Bondi-Hoyle accretion flawoo
a black hole with the opacity given by Thomson scattering and
thermal bremsstrahlung only. By considering different eiedvith
initial temperatures aroun@ ~ 10'°K, an ideal-gas EOS with
adiabatic indexy = 5/3, and various sub-sonic and super-sonic
regimes, we have found that the inclusion of radiation draly
alters the well known dynamics of Bondi-Hoyle flows in all mod
els considered. In particular, the system quickly enteedation-
pressure dominated regime, characterized by mass accraties
that, once stationarity is reached, decrease by one or tderor
of magnitude with respect to the purely hydrodynamical etioh.
Nevertheless, the measured accretion rates are found favagsa
super-Eddington and as high &8/ Mgaa ~ 25. This is in agree-
ment with the expectation that the Eddington limit shoulddho
strictly only in spherically symmetric flows. In additionetause
the effective adiabatic index in the radiation dominateespure
regime is smaller than the nominal one of the gas, the radiatn
prevent the reversal of the shock cone that is typical of Bétayle
flows with low Mach numbers.

By computing the emitted luminosity through a surface in-

O. Zanotti, C. Roedig, L. Rezzolla, L. Del Zanna

tegral over the radiative fluxes at the last optically thickface,

our approach has allowed the first self-consistent comiputatf

the light-curves for the Bondi-Hoyle flow, finding lumindsis
L/Lgaa ~ 1— 7. These results have been found to be independent
of the initial conditions chosen for the intensity of theiedbn en-
ergy density.

In addition to the classical Bondi-Hoyle accretion flows, we
also performed simulations with perturbed setups, by timjgc
lower-temperature matter in the upstream region of the fidvich
lead to highly-dynamical transients reminiscent of the-fllgp
instability (Foglizzo et dil_2005). Although the qualitati evolu-
tion of the accretion flow remains unchanged, the decreastal i
temperature increases the timescale over which the flownbeso
radiation-pressure dominated and the accretion settlasgunasi-
stationary state. In spite of these differences, we havaddbat
the main features of the Bondi-Hoyle solution, such as tlespr
ence of the shock cone, persist under a wider class of physina
ditions, even in situations departing from stationaritye@ll, our
results confirm and extend related Newtonian studies, ssittioae
bylKley et al. (1995).

Since we have shown that the luminosity is critically aféett
by the evolution of thecoupledsystem of hydrodynamic and ra-
diation equations, significant changes in the luminosisiesuld
be expected in those scenarios which have so far been modeled
through a-posteriori calculations to a purely hydrodyreahévolu-
tion. A first example in this respect is given by multi-coldlack-
body spectra, while a second example is represented by the ca
culation of electromagnetic counterpart to the |nsp|ralsuper-
massive binary black-hole systems (Bode ét al. 2010; Feira
[2010; | O'Neill et al.l 2009] zanotti et Al. 2010; Bode €ftlal. 201
[Farris et all 2011). Postponing a more detailed calculatiothis
process to a future work, we have here shown that the cailculaft
the bremsstrahlung luminosities adopted in the above wedds
to optimistic estimates, which should be regarded as ujpésl|
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APPENDIX A: EXTENDED GEOMETRIZED SYSTEM OF
UNITS

We recall that the definition of geometric units of time anaighs

is obtained by setting the speed of liglrand the gravitational con-
stantG to pure numbers. This implies that seconds and grams of
thecgs system can be written as

1s

2.997924x10"° (1) cm (A1)
(&

(A2)

2
1g 7.424157x 102 <%) cm.
Within this general setup, a convenient unit of space i$
quired. Thecm is of course a bad choice and the gravitational ra-
diusr, = GM/c* is instead chosen. In order for this new unit to
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be convenient with respect to the centimeter, the nidssf the
system has to be sufficiently large. From the physical vafuitbe
solar mass and frori.{A2) we find the relation between the cigs un
and the new unit of length,

lem = 6.772289x107° <%) Ty, (A3)

1s = 2.030281x10° <%> <%) g, (A4)
2

lg = 5.027854x10 (%) (%) ry. (A5)

It is also useful to write explicitly the conversion of resiss den-
sity and luminosity between the two systems, namely

G\ (Mo
Pegs = 6.1776x10"" (?2) (W@) Paco »

Legs = 3.6292 x 107 (G) Lgeo

5

(A6)

(A7)

wherepegs and pgeo (as well asLcgs and Lge,) are the pure num-
bers expressing the mass density (as well as the luminasitie
cgs system and in the geometrized system, respectively. Irréhe t
ditional geometrized systemand G are set equal to unity. How-
ever, for specific physical applications where very low naesssi-
ties are encountered, the corresponding value,of may become
prohibitively small. For this reason, it is convenient ts@se a
smaller value of7, such ag7 = 10 1°.

For convenience, we report the Eddington luminosity and
the Thomson scattering opacity of electrons in geometrizets,

namely
5
Liaa = 3.4636 x 1072 <%) (Mﬁ@) 7 (A8)
XS = 3.628 x 10*% G pgeo (%) . (A9)

The extension of the geometrized system of units to the tem-

perature can be obtained by setting to a pure number anygathysi
constant containing the temperature. In this paper we hagsen
to setm,/kp = 1, wherem,, is the mass of the proton, whiles

is the Boltzmann constant. In this way the temperature isreedt
sionless quantity and the transformation of the tempegafitam
the dimensionless values to Kelvin is given by

Tx = 1.088 x 10" Theo . (A10)

In theseextendedyeometrized units the radiation constanty =
40 /c becomes

1\ ([ M\
Arad = 0.191495 (E) (M_Q) 7'9 .
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