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Abstract
In a data set of 291 spontaneous utterances from German 5-year-olds, 7-year-olds and adults, 
nuclear pitch contours were labeled manually using the GToBI annotation system. Ten different 
contour types were identified. The fundamental frequency (F0) of these contours was modeled using 
third-order orthogonal polynomials, following an approach similar to the one Grabe, Kochanski, 
and Coleman (2007) used for English. Statistical analyses showed that all but one contour pair 
differed significantly from each other in at least one of the four coefficients. This demonstrates that 
polynomial modeling can provide quantitative empirical support for phonological labels in unscripted 
speech, and for languages other than English. Furthermore, polynomial expressions can be used to 
derive the alignment of tonal targets relative to the syllable structure, making polynomial modeling 
more accessible to the phonological research community. Finally, within-contour comparisons of 
the three age groups showed that for children, the magnitude of the higher coefficients is lower, 
suggesting that they are not yet able to modulate their pitch as fast as adults.
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1 Introduction

One of the tasks of intonation research is finding out which types of accents are used in a particular 
linguistic context, such as questions or different focus structures. The conventional way to go about 
this is to manually assign descriptive labels to the speech data that were produced in these contexts. 
Currently these labels are typically drawn from autosegmental-metrical (Ladd, 1996) descriptions 
of intonational grammars (e.g., Pierrehumbert & Hirschberg, 1990), in which intonation patterns 
are described in terms of sequences of high (H) and low (L) tones. It is assumed that for a given 
language intonation patterns can be described using a limited set of labels. Information on how 
these labels should be used is provided in labeling guidelines (e.g., Beckman & Ayers, 1997, for 
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English; Benzmüller & Grice, 1997, for German). The correct application of the labels is some-
times checked by having multiple labelers annotate the same data and comparing their consistency 
(e.g., Grice, Reyelt, Benzmüller, Mayer, & Batliner, 1996; Pitrelli, Beckman, & Hirschberg, 1994). 
Results show that labelers’ agreements are above chance, indicating that there is a non-accidental 
relationship between the speech signal and the labels.

However, these studies are very labor-intensive, and they do not always yield the level of con-
sistency that would be desirable. This sometimes raises questions regarding the validity of the 
labels. Many researchers feel that it would be helpful if the phonological categories could also be 
validated instrumentally (Ladd, 2008, p. 12). In the case of GToBI (German Tones and Break Indi-
ces; Grice & Baumann, 2002) accent categories, there should, for example, be a measurable F0 
minimum within the accented syllable of a L*+H accent. Of course, labelers use these criteria 
implicitly in their judgments, but the parameters in question (e.g., the position of turning points) 
may as well be measured directly to have more objective evidence for the correct application of the 
labeling criteria. However, acoustic landmarks like turning points have to be annotated as well, and 
the labeling process is even more time-consuming. A complicating factor is that the determination 
of these landmarks is not always without problems. For example, certain segments (e.g., fricatives 
such as /v/) cause so-called microprosodic variation in the pitch curve, making it sometimes diffi-
cult to identify the location of turning points (such as the F0 minimum in L*+H accents) unam-
biguously. When in doubt, labelers who have to decide on the location of a turning point may 
(without being aware of it) be inclined to select a location that is favorable to the prosodic label 
they have assigned, which potentially adds a certain amount of subjectivity. In view of these dif-
ficulties, it would be desirable to have an additional, more objective way of obtaining quantitative 
empirical evidence for intonation labels.

Such empirical acoustic evidence for intonation labels in English was presented by Grabe, 
Kochanski, and Coleman (2007). They modeled the fundamental frequency of hand-labeled 
accents mathematically using polynomial equations, and showed that the accents that were assigned 
different labels were also significantly different from each other in their mathematical descriptions. 
Polynomial equations are a way to describe curves, or rather continuous functions (of which F0 is 
one as well), in a mathematical expression constructed from variables and constants (e.g., 3x2 + 4x 
+ 5). They are one of a number of approaches used in speech technology to fit F0 curves. Other 
curve-fitting models include the Fujisaki model (Fujisaki, 1992), MOMEL (Hirst, Di Cristo, & 
Espresser, 1993) or Tilt (Taylor, 2000).

The corpus used in the Grabe et al. (2007) study consisted of 714 read-out sentences, produced 
by 42 speakers. The nuclear accents of these sentences (i.e., the final pitch accent in the phrase and 
the subsequent boundary tone) were manually annotated according to the IViE (Intonational Varia-
tion in English) labeling system (Grabe, 2002), which is an autosegmental-metrical transcription 
system based on ToBI (Tones and Break Index; Beckman & Ayers, 1997), but developed to allow 
dialect-independent transcription of English intonation (for details, see also Grabe, 2004). Seven 
different nuclear accent types were found in the corpus and modeled with orthogonal Legendre 
polynomials (details are given below), resulting in a mathematical description of each accent. Sta-
tistical analyses showed that parameters of the polynomial descriptions of six of the seven accent 
types that had been identified by the labelers differed significantly from each other. The authors 
conclude that polynomial modeling can provide intonational phonologists with a tool to empiri-
cally validate linguistic descriptions of intonation (Grabe et al., 2007, p. 299).

Against this background, the present study sets out to investigate whether polynomial modeling 
can be applied to another language, in this case German, with similar results. In contrast to Grabe 
et al.’s corpus, the speech material analyzed here consists of natural rather than scripted speech. 
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What is more, the speakers in this study were drawn from three different age groups: five-year-
olds, seven-year-olds and adults, adding more variability to the data in terms of speaking rate and 
average pitch. Thus the data provide a real test case for the usability of the polynomial approach.

I also present an extension to the polynomial model that shows how information about the rela-
tive alignment of tonal targets with the segmental string can be derived from the modeled curves, 
connecting this new approach directly with the research on tonal alignment (e.g., Arvaniti, Ladd, 
& Mennen, 1998; Atterer & Ladd, 2004). Finally, I explore how polynomial modeling can provide 
a window into intonational development.

2 Method

2.1 Data and annotation
The data set consists of 291 spontaneous utterances taken from a corpus of narrations that were 
elicited by means of a picture-based story telling task. The data had originally been collected in the 
course of a different study investigating how German speakers of different ages mark the informa-
tion status of discourse referents in narrative discourse (more information on the study can be 
found in De Ruiter, 2010 and Herbst, 2007). The speakers were 29 five- and 26 seven-year-old 
children, and 31 adults, native speakers of German from North Germany. The children were 
recorded individually in quiet rooms at their respective kindergartens and primary schools, the 
adults were recorded in an unechoic chamber in the laboratory of the Linguistics Department of the 
University of Potsdam. The recordings were made using a condenser microphone and a DAT 
recorder, and the signals were digitized directly into the computer at a sampling rate of 44 kHz (16 
bit format). The picture stories featured four referents with disyllabic names that have a mainly 
sonorant segmental make up to facilitate pitch tracking. Three of the words had a trochaic stress 
pattern – Möwe (/ˈmøːvə/, ‘seagull’), Biber (/ˈbiːbɐ/, ‘beaver’), Biene (/ˈbiːnə/, ‘bee’) – one had an 
iambic stress pattern – Kamel (/kaˈmeːl/, ‘camel’). The utterances that were selected for analysis 
were sentences in which these words occurred in final position. Two examples are provided in (1).

(1) a. Er malt eine Biene.
‘He draws a bee.’

b. Sie kommt wieder zur Möwe.
‘She comes back to the seagull.’

The utterances were annotated and analyzed using the speech-analysis tool Praat (version 5.0.35, 
Boersma & Weenink, 1992–2008). The intonational phrases (IP) containing the target words were 
segmented at the level of the syllable. Following this, intonation of the target words and of the 
subsequent phrase boundary was labeled following GToBI guidelines (Benzmüller & Grice, 1997; 
Grice & Baumann, 2002; Grice, Baumann, & Benzmüller, 2005) based on a combination of audi-
tory analysis and visual inspection of the F0 tracks. The labeling was first done by the author (a 
native speaker of German), and subsequently extensively discussed with a second researcher (also 
a German native speaker) experienced in GToBI annotation.1

Six different nuclear pitch accent types and four different boundary tones were identified in the 
data. In addition, a substantial number of items were deaccented. Not all possible combinations of 
pitch accents and boundary tones occurred, and some combinations occurred only very rarely. In 
order to arrive at a reasonable number of items per category (i.e., items per pitch accent + boundary 
tone combination), the four different boundary tones were pooled into two major groups, high and 
low boundary, using the simplified labels H% and L%. The boundary tones H-% (high boundary) 
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and H-^H% (upstepped boundary) were subsumed under H%.2 The boundary tones L-% (low 
boundary) and !H-% (downstepped boundary) were subsumed under the label L%.3 Following 
Grabe et al. (2007), accent labels (e.g., H*) and boundary tone labels (e.g., L%) are separated by 
commas in the transcription. Table 1 displays the pitch accent + boundary tone combinations that 
occurred at least ten times. For brevity, these combinations will be referred to as nuclear contours. 
The first column of Table 1 gives the autosegmental-metrical labels, the second column provides a 
stylized representation of the typical F0 shape, and the third column gives the frequency of the 
contour in the data set. Note that the category of the downstepped contours !H*,L% was not col-
lapsed with its non-downstepped counterpart (which was done by Grabe et al., 2007). With ten 
different nuclear contours, the data set contains a larger number of contours than was modeled in 
the Grabe et al. study, where seven different nuclear contours were analyzed. On the one hand, this 
is due to the fact that I also included deaccented items in the data, and on the other to the fact that 
the GToBI system also contains right-headed accents (e.g., L+H*), which do not exist in the IViE 
transcription system, where an accent like L+H* would simply be described as H*.

2.1.1 Polynomial modeling.  In this section, first the polynomial approach by Grabe et al. (2007) is 
described. I will then give details of the way polynomial modeling has been implemented in this 
study, and point out where the method differs from the approach taken by Grabe et al.

In their study, Grabe et al. analyzed the region of F0 beginning 100 milliseconds before the 
nuclear accent of each sentence in the corpus, and extending to the end of the voiced part of the IP. 
All utterances in their corpus were designed to be fully voiced, but some voiced fricatives tended 
to be devoiced phrase-finally, so that some utterances contained unvoiced material. These parts 
were discarded from the analysis. In addition to measuring F0, Grabe et al. also extracted measures 
of loudness and aperiodicity from the signal (details can be found in Kochanski, Grabe, Coleman, 
& Rosner, 2005). In the course of fitting the polynomial model to the data, these measures were 
later used to give more weight to loud and sonorant regions, such as syllable centers, assuming that 
in these regions, F0 measures are more reliable and F0 movements may be more perceptually rel-
evant (Grabe et al., 2007, p. 287). Before fitting, all F0 values were normalized by dividing them 
by the speaker’s mean, and subtracting 1. Thus, a normalized F0 of zero corresponded to the 
speaker’s average F0. Furthermore, Grabe et al. shifted and scaled (i.e., compressed or extended) 
the time axis so that the nuclear contour region spanned values between –1 and 1, which is a pre-
requisite for Legendre polynomials. The F0 data in the analysis region of each sentence were then 
modeled as a best-fit sum of Legendre polynomials (the exact details of the procedure are given in 
Kochanski et al., 2005). Legendre polynomials belong to the class of orthogonal polynomials. As 
argued by the authors, orthogonal polynomials have the advantage of minimizing the correlations 
among the coefficients, which would otherwise have to be taken into account in the statistical 
analysis. In contrast to other orthogonal polynomials, Legendre polynomials ensure that the coef-
ficients are equally sensitive throughout the utterance (Kochanski et al., 2005). After fitting, each 
nuclear contour is described by a model. This model M is specified by a set of coefficients, ci, that 
multiply the different Legendre polynomials before they are added together:

M x c c x c x c x x( ) ( ) ( )= + ⋅ + ⋅ −





+ ⋅ −



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0 1 2
2

3
31

2
3 1

1

2
5 3 	 (1)

The polynomial analysis bears similarities to a Fourier analysis in that the lower-ranking polynomials 
identify the more slowly varying properties of the curve, whereas the higher-ranking polynomials 
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identify the more rapidly changing properties (Grabe et al., 2007, p. 289). The more complex a curve 
is, the more polynomials are needed to fully describe it. As noted by Grabe et al., the first four poly-
nomials (c0 – c3, displayed in Figure 1) have straightforward physical interpretations:

Table 1. Autosegmental-metrical contour labels, F0 stylizations and frequency of occurrence (N) of 
the contours observed in the data set. The grey-shaded area indicates the lexically stressed syllable, the 
white areas preceding and following it represent the pre- and post-accentual syllable, respectively. Most 
of the stylized shapes are adapted from Grice and Baumann (2002, p. 279ff.). Following a notation used by 
Baumann (2006), the symbol “” is used to indicate lack of pitch accent, but note that it is not part of the 
GToBI annotation scheme

Contour label Stylized F0 N 

H*,L%   40

L+H*,L%   24

!H*,L%   16

H+!H*,L%   34

H+L*,L%   10

H*,H%   19

L+H*,H%   23

L*,H%   74

,H%   16

,L%   29

Other     6
TOTAL 291
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–	 The first coefficient, c0, corresponds to the average F0 of the accent after pitch 
normalization.

–	 The second coefficient, c1, gives an indication of the overall slope (falling or rising) of the 
accent.

– 	 The third coefficient, c2, specifies the overall curvature of the accent, which can be a broad 
dip or a rise in the middle of the accent.

–	 The fourth coefficient, c3, corresponds to a wave-like shape.

Having outlined the original approach taken by Grabe et al., the following paragraphs now describe 
in detail how the nuclear contours in the present data set were modeled.

Prior to the analysis, the F0 tracks were inspected for errors such as octave jumps and manually 
corrected where necessary. The analyzed domain consisted of the (voiced regions of the) lexically 
stressed syllable, the pre-stressed syllable, and the post-stressed syllable (see below for details on 
how the voiced region was determined). This is different from Grabe et al.’s domain (see above). 
There were two reasons to define the region differently: first, Grabe et al.’s criterion is based on adult 
speech, while the present data set also comprises child speech. Young children typically have a lower 
speech rate, which increases with age until at least age eleven (e.g., Boutsen & Hood, 1996; Sturm & 
Seery, 2007). This means that for the young speakers, a starting point of 100 milliseconds preceding 
the centre of the stressed syllable would still be way into the stressed syllable. As a consequence, the 
analysis region would not even cover the entirety of the stressed syllable, which is clearly undesir-
able. Second, unlike the IViE transcription system, the GToBI scheme also contains right-headed 
accents (e.g., L+H*), which means that the pitch movement on the pre-stressed syllable is considered 
to be an important part of the overall accent shape for some accent types. Any criterion of having the 
beginning of the analysis region start at some arbitrary distance from the center of the stressed syl-
lable (e.g., 200 milliseconds) is in danger of “cutting off” parts of the pre-stressed syllable even with 
adult speakers. The modeled F0 curve would consequently not be a truthful representation of the F0 
curve that the intonational labeling was based on, and could therefore not be used to find empirical 
support for the accent labels. Determining the analysis region on the basis of the syllable structure 
avoids these problems. An illustration of the analysis region is provided in Figure 2. Within the analy-
sis region, F0 was measured in steps of 5 milliseconds. At each point at which F0 was measured, 
intensity and harmonics-to-noise ratio4 (Boersma, 1993) were also extracted. These two measures 
were later combined in a weighting parameter used in the fitting algorithm described below.

Before fitting the data, F0 and time were normalized. For F0 normalization, all F0 values were 
divided by the speaker’s mean (which was calculated by taking the average of all first unstressed 

Figure 1.  The first four Legendre polynomials P0–P3. Following the naming convention introduced by 
Grabe et al. (2007), the first coefficient (c0) will be referred to as AVERAGE, the second coefficient (c1) will 
be referred to as SLOPE, the third coefficient (c2) as PARABOLA, and the fourth coefficient (c3) as WAVE
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syllables in all utterances made by one speaker), and subtracting 1 from it. Thus, a value of 0.1 cor-
responds to an F0 that is 10% above the speaker’s mean. For time normalization, the time axis of the 
analysis domain was shifted and scaled (i.e., compressed or extended) to values between –1 and 1.5

Like in Grabe et al., the model was specified by a set of four coefficients, ci, that multiply the 
different Legendre polynomials before they are added together (see Equation 1). For the estimation 
of the coefficients of the Legendre polynomials that best describe a given intonation contour, I used 
Polyfit (De Ruiter, 2008), a customized computer program written in C++. The program reads in 
normalized F0 values and a weighting parameter (described below) and calculates those Legendre 
coefficients that minimize the difference between the predicted polynomial and the original pitch 
contour as estimated by Praat’s pitch tracking algorithm.6 The weighting parameter w is used to 
de-emphasize regions that are not important for the overall shape of the contour (such as micro
perturbations that are due to the segmental structure), and to give more weight to perceptually 
important loud and sonorant regions such as vowel centers (Kochanski et al., 2005, p. 1043). A 
higher w for a certain time window forces the algorithm to model F0 values in this region with 
more precision. The weighting parameter used in this study is a combination of the intensity and 
the HNR of the signal. Intensity was normalized by dividing each value by the mean intensity of 
the voiced parts of the entire utterance. Unlike intensity, HNR values usually cover a wider range 
of values and can also be negative, in cases where there is more noise than harmonics in the signal, 
which is the case for instance in voiceless regions. I normalized the HNR measures using a sigmoid 
function, which transforms all possible values (from ∞ to -∞) into values between 0 and 1. Hence 
negative HNR values (where there is a lot of noise in the signal) receive a low score near 0, 
whereas positive ones receive a score closer to 1. In Equation 2 below, H refers to the normalized 
HNR value (H-score) that is computed from h, the original HNR value as measured by Praat. The 
constant e is Euler’s number, the base of the natural logarithm. The coefficient k determines the 
steepness of the S-curve produced by the function. I calculated the coefficient k using the criterion 

Figure 2.  Amplitude envelope, spectrogram, intensity (thin light line) and F0 (thick black line) curve of 
an utterance by a five-year-old, Guck, der malt ne Biene ‘Look, he is drawing a bee’. The domain in which F0 
is measured consists of the pre-stressed syllable (“ne”), the lexically stressed syllable (“bie”) and the post-
stressed syllable (“ne”)
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that a HNR value of 15 dB (roughly equal to 97% energy from the harmonic part, see Praat manual 
on “harmonicity”) receives an H-score of 0.75. The resulting coefficient k is 0.02453.

H h
e kh

( ) =
+ −

1

1
	 (2)

The weighting parameter w was then the product of normalized intensity (I) and the standardized 
HNR value (H):

w I H= ⋅ 	 (3)

As described above, the analysis region was a three-syllable domain around the lexically stressed 
syllable. However, unvoiced regions (like devoiced vowels) at the beginning or the end of the 
domain can be problematic. When the program determines the coefficients to model the intonation 
contour, it mainly fits the polynomials to the voiced parts while the polynomials can take any form 
for unvoiced regions. This is not harmful for voiceless regions in the middle of a voiced region, if 
we assume that the F0 contour constitutes a smooth function; the algorithm interpolates between 
the voiced regions. However, for voiceless regions before pitch onset or after pitch offset, the fit-
ting becomes unpredictable. Note that weighting alone cannot solve this problem, as a very low w 
would still “allow” the program to fit almost any curve. To avoid this problem, I set the domain to 
start at the first voiced frame within the original three-syllable domain, and to end at the last one. 
Following this approach, the analysis domain was adjusted for 211 out of the 291 nuclear contours. 
For these contours, the domain was on average shortened by 10% of the overall duration of the 
three-syllable domain.

3 Results

To give an impression of how the modeled curves compare to the empirical F0, Figure 3 shows the 
original F0 curve and the modeled curve of two nuclear contours superimposed onto each other. 
One can clearly see that the microprosodic effects such as the pitch depression in the voiced obstru-
ent [b] of the word Biene in the left panel have not been modeled.

Before presenting the results of the statistical analysis, I will first show the average coefficient 
values for each accent, which make the results of the accent pair contrasts easier to interpret. These 
profiles are shown in Figure 4. If c0 is negative, this indicates that the mean F0 for this accent is 
low, while a positive c0 indicates a mean F0 that is higher compared to the average F0 of the 
speaker. A negative c1 is a sign of a predominantly falling accent, whereas a positive second coef-
ficient means that the slope is mainly rising. If c2 is negative, the F0 curve is convex (dome-
shaped), if it is positive, the curve is more concave (cup-shaped). Finally, c3 describes whether the 
overall shape is falling-rising-falling (if it is negative), or rising-falling-rising (if it is positive).

The statistical analyses were performed using R version 2.6.2 (R Development Core Team, 
2008). Instead of a Multivariate Analysis of Variance (MANOVA), which was used by Grabe et al. 
(2007), I tested for differences between the accents using another statistical technique, linear-
mixed effect (LME) models in R (Baayen, Davidson, & Bates, 2008; Bates & Sarkar, 2007; for 
applications see e.g., Kuperman, Bertram, & Baayen, 2008; Plag & Baayen, 2009; Staub, Grant, 
Clifton, & Rayner, 2009). These models have a number of advantages over traditional analyses like 



De Ruiter	 207

Figure 3.  Examples of the (normalized) original F0 track (circles) and the curve modeled by Polyfit 
(continuous line). The x-axis plots the normalized time (from -1 to 1), the y-axis shows the units of the 
normalized F0. The panel on the left is an example of an accent labeled H*,L%, the panel on the right is an 
example of a contour labeled L*,H%

Figure 4.  Four-coefficient F0 profiles for ten contours observed in the data. The values of the coefficients 
(c0–c3) are mapped on the y-axis
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ANOVA (as discussed by e.g., Baayen, Tweedie, & Schreuder, 2002; Quené & Van den Bergh, 
2004, 2008). They are more robust with respect to handling missing data. This is useful for the 
present analysis, since the groups (i.e., nuclear contours) are not balanced with respect to sample 
size. Furthermore, LME models are more sensitive to differences between groups, because they 
can adjust for random effects such as items and subjects, where necessary. Including a random 
effect for each subject individually allows removal of variance that is due to systematic individual 
variation, making it easier to detect possible effects of the independent variable. Four LME models 
were constructed, one for each of the four coefficients. The models tested whether the contour label 
(henceforth: CONTOUR) is a significant predictor for a given coefficient. The models specified 
the coefficient as dependent variable, CONTOUR as fixed factor. However, as explained before, 
the items are not all of the same structure. The majority of items (N = 167) have an open lexically 
stressed syllable and penultimate stress (e.g., Biber (/ˈbiːbɐ/), but in the Kamel (/kaˈmeːl/) items (N 
= 118), the lexically stressed syllable is closed, and stress occurs on the final syllable of the word. 
Syllable structure and stress pattern of a word affect the shape of the pitch contour. For German, 
Möbius and Jilka (2007) found that in falling contours, the F0 peak occurs earlier in closed sylla-
bles and when the nuclear accent occurs on the last syllable of an IP. These two conditions are both 
met by the Kamel items. We may therefore expect that the contours of the Kamel items differ in 
their shape from the other contours, and consequently also in their coefficients. For this reason, I 
included STRESS (with the two levels penultimate and ultimate) as an additional fixed factor in 
the models. In a first step, full models including both predictors (CONTOUR and STRESS) and 
their interaction were specified. Predictors with a p-value larger than 0.1 were removed if this did 
not deteriorate the fit of the models (as estimated by a likelihood-ratio test). Both SUBJECT and 
ITEM were initially included as crossed random factors. However, in three of the four models (for 
AVERAGE, SLOPE, and WAVE), the variance explained by ITEM was effectively zero, and this 
factor was therefore removed from the model. All reported p-values were obtained by Laplace 
approximation.

The results show that in all models, CONTOUR was a significant predictor for the four coeffi-
cients. With the exception of four nuclear contour pairs, all contours differed from each other in at 
least one coefficient. The four contour pairs for which no statistically significant differences were 
observed were !H*,L% and ,L%, !H*,L% and L+H*,L%, and !H*,L% and H+L*,L%. There was 
no significant main effect of STRESS, but a significant interaction with CONTOUR in three of the 
four models (AVERAGE, SLOPE, and PARABOLA). For three nuclear contours (H+!H*,L%, 
L+H*,H% and L*,H%), items with ultimate stress showed a different pattern than items with pen-
ultimate stress. However, this did not have an influence on whether these nuclear contours differed 
significantly from other nuclear contours or not. Tables 2 to 5 present the results of the analyses.7

In what follows, I will describe the statistical results for the ten different nuclear contours fol-
lowing the order in the half-matrices in Tables 2 to 5 (i.e., going in columns from left to right). In 
keeping with Grabe et al. (2007), I assume that one significant difference between two nuclear 
contours is sufficient evidence that the two nuclear contour patterns that were labeled differently 
do have different mean F0 manifestations. Note, however, that also in the present data, Tables 2 to 
5 show that in most cases the nuclear contour pair comparisons brought about more than one sta-
tistically significant difference. Table 6 gives an overview of the number of significant differences 
that were found for a given nuclear contour pair.

In order to keep the descriptions within reasonable length, not all 55 contour pair comparisons 
will be mentioned. For expository purposes, the descriptions will be restricted to a few compari-
sons for each contour. For ease of orientation, in each of the following paragraphs the contour 
under consideration will be set in boldface.
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Tables 2 to 5.  Half-matrix displaying accent pairs that are significantly different from each other in terms of 
AVERAGE, SLOPE, PARABOLA, and WAVE. Dark-grey cells indicate differences significant at p < .001, lighter 
grey cells indicate differences significant at p < .01, and light-grey cells indicate differences significant at p < .058

Table 2.

AVERAGE H*,L% L+H*,L% !H*,L% H+!H*,L% H+L*,L% H*,H% L+H*,H% L*,H% ,H% ,L%

,L%
,H%
L*,H%
L+H*,H%
H*,H%
H+L*,L%
H+!H*,L%
!H*,L%
L+H*,L%
H*,L%

Table 3.

SLOPE H*,L% L+H*,L% !H*,L% H+!H*,L% H+L*,L% H*,H% L+H*,H% L*,H% ,H% ,L%

,L%
,H%
L*,H%
L+H*,H%
H*,H%
H+L*,L%
H+!H*,L%
!H*,L%
L+H*,L%
H*,L%

Table 4.

PARABOLA H*,L% L+H*,L% !H*,L% H+!H*,L% H+L*,L% H*,H% L+H*,H% L*,H% ,H% ,L%

,L%
,H%
L*,H%
L+H*,H%
H*,H%
H+L*,L%
H+!H*,L%
!H*,L%
L+H*,L%
H*,L%
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The first nuclear contour in the matrices, H*,L%, had a predominantly falling SLOPE (nega-
tive c1) and a dome-shaped PARABOLA (negative c2). With this shape, H*,L% contours differed 
from more cup-shaped contours like L+H*,H% or L*,H%. Furthermore, H*,L% contours were 
different from H+!H*,L% contours with respect to SLOPE. Both contours were predominantly 
falling, but the falling portion was larger in H+!H*,L% contours. From !H*,L% contours H*,L% 
were distinguished only in terms of AVERAGE (c0), which was significantly lower in !H*,L% 
contours. However, no significant differences emerged with L+H*,L% contours.
L+H*,L% contours had a negative (i.e., dome-shaped) PARABOLA. This was sufficient to 

distinguish it from all other contours (except H*,L%), which were either cup-shaped (e.g., L*,H% 
contours), or not as strongly dome-shaped as L+H*,L% contours (e.g., H+!H*,L% contours).

Apart from the difference in AVERAGE, !H*,L% contours were in shape very comparable to 
H*,L% contours (see Figure 4), and contrasted with other contours in similar ways as H*,L% con-
tours. With their mainly falling SLOPE, !H*,L% contours differed for example from H*,H% con-
tours, which were predominantly rising. However, unlike H*,L% contours, !H*,L% contours were 
not found to be significantly different from deaccented items that were followed by a low boundary 
tone (,L%), or from contours labeled H+L*,L%.

Table 6.  Number of significant differences between the nuclear contour pairs. Light-grey shading indicates 
one significant difference, dark-grey indicates more than one significant difference

H*,L% L+H*,L% !H*,L% H+!H*,L% H+L*,L% H*,H% L+H*,H% L*,H% ,H% ,L%

,L% 2 1 0 1 1 2 3 3 1

,H% 1 2 2 3 2 1 2 2
L*,H% 2 3 3 3 4 2 4
L+H*,H% 4 4 4 4 3 2
H*,H% 3 2 2 2 3
H+L*,L% 1 3 0 2
H+!H*,L% 2 2 1
!H*,L% 1 0
L+H*,L% 0
H*,L%

Table 5.

WAVE H*,L% L+H*,L% !H*,L% H+!H*,L% H+L*,L% H*,H% L+H*,H% L*,H% ,H% ,L%

,L%

,H%

L*,H%
L+H*,H%
H*,H%
H+L*,L%
H+!H*,L%
!H*,L%
L+H*,L%
H*,L%
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H+!H*,L% contours were characterized by a predominantly falling SLOPE. With this, they 
differed from deaccented items that were followed by a low boundary tone, which were also fall-
ing, but had much shallower SLOPE than H+!H*,L% contours. SLOPE distinguished H+!H*,L% 
contours also from contours like L*,H%, L+H*,H% and H*,H%, which had a mainly rising 
SLOPE. Furthermore, H+!H*,L% contours were different from H+L*,L% contours both in terms 
of WAVE and in terms of AVERAGE, with the latter being much lower in H+L*,L% contours. 
H+!H*,L% contours were one of the contours for which there was a significant interaction with 
STRESS: in words with ultimate stress, H+!H*,L% contours were less strongly dome-shaped than 
in words with penultimate stress.
H+L*,L% contours, in turn, had a more steeply falling SLOPE than ,L% contours. As in 

H+!H*,L% contours, the falling SLOPE of H+L*,L% contours distinguished them from all con-
tours with a rising SLOPE (e.g., L*,H%).

Moving on to the first contour that had a predominantly rising SLOPE, H*,H%, we see that its 
SLOPE was more steeply rising than that of ,H% contours. H*,H% contours differed from 
L*,H% contours in terms of PARABOLA, which was more narrowly cup-shaped in L*,H% con-
tours than in H*,H% contours. Differences between H*,H% contours and L+H*,H% contours 
emerged for SLOPE, which was much steeper in L+H*,H% contours.
L+H*,H% contours differed from L*,H% contours among other things with respect to 

PARABOLA. Both contours had a cup shape, but it was more narrow in L*,H% contours than it 
was in L+H*,H% contours. There was furthermore a significant interaction with STRESS. In 
items with ultimate stress, these contours had a somewhat lower AVERAGE and a steeper over-
all SLOPE.

Like most other contours, the last “genuine” nuclear contour L*,H% was different from deac-
cented contours in both SLOPE and PARABOLA.9 In addition, L*,H% contours showed a signifi-
cant interaction with STRESS in the two coefficients SLOPE and PARABOLA. In words with 
ultimate stress, the SLOPE was more steeply rising and more narrowly cup-shaped than in words 
with penultimate stress.

The two deaccented contours, finally, differed from each other in AVERAGE, which was higher 
in those contours that ended in a high boundary tone (,H%) than in contours ending in a low 
boundary tone (,L%).

The preceding analyses have shown that the majority of nuclear contours differ significantly 
from each other in at least one coefficient. However, with this type of analysis (especially when 
dealing with many categories), the internal structure of the data often remains rather opaque. A 
technique that can visualize data structures in an intuitive and easy-to-interpret format is clas-
sification trees. Classification trees predict the membership of cases (items) in the classes of a 
categorical dependent variable from their values on one or more predictor variables, and display 
the outcome of this process in a tree-like format. The structure of the tree reflects the structure 
of the data in the sense that similar cases end up in the same branch of the tree, and cases that 
bear less resemblance with each other end up in branches that are further apart. In our case, we 
would like to predict the (label of a) nuclear contour from the four variables c0, c1, c2 and c3. To 
do this, I used the CART (Classification And Regression Tree) algorithm (Breiman, Friedman, 
Olshen, & Stone, 1984) as implemented in the rpart function in R. In a first step, the algorithm 
looks at all the predictor variables and selects the one that is most useful for splitting the data 
into two subsets which are each more homogeneous than the original data set. For each of these 
two subsets, the algorithm then creates two new subsets and so on. The resulting tree for this data 
set is shown Figure 5.
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The tree captures the differences in shape between the nuclear contours in an elegant way. For 
example, predominantly rising nuclear contours are found in the left part of the tree, whereas 
nuclear contours that are mostly falling are located in the right part. This is achieved by the first 
splitting criterion, which is SLOPE: nuclear contours with a high positive c1 (i.e., a predominantly 
rising slope) are sent to the left, nuclear contours with a mostly negative c1 to the right. Another 
illustrative example is how PARABOLA (c2) is used to sort H*,L% and L+H*,L% into different 
leaves: a given nuclear contour is more likely to be L+H*,L% if its c2 is smaller than -0.054 (i.e., 
if it is more strongly dome-shaped). Note at this point that this does not necessarily mean that the 
difference between the two nuclear contours in this coefficient is statistically significant; the crite-
rion informs us that for the algorithm, the “best bet” for CONTOUR is L+H*,L%, if the nuclear 
contour has a c2 smaller than -0.054.

4 Extending the model: adding alignment parameters

In Appendix C of their article, Grabe et al. (2007, p. 305ff.) show in a constructed example how 
polynomial modeling reflects differences in fine phonetic detail such as alignment of F0 peaks with 
the segmental string in differences in the coefficients. They demonstrate that a change in alignment 
will always result in modifications in SLOPE and PARABOLA. We have seen this effect also in 

Figure 5.  CART tree for CONTOUR as predicted by the four polynomial coefficients (c0, c1, c2, c3). The 
expression at each split gives information about the decision rule (e.g., “if c1 is equal to or larger than 0.158, 
follow the left branch, otherwise the right” at the first split). Displayed is the initial tree; branches that 
remained after cost-complexity pruning are set in boldface
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the present data: the nuclear contours L+H*,H% and L*,H% (which should differ in the position 
of the F0 minimum) differed in PARABOLA. However, while the general physical interpretation 
of the first four coefficients is straightforward, “translating” their values into alignment informa-
tion is perhaps less obvious. This led me to investigate a different way of how one could get at 
alignment information that is more easily interpretable.

Each nuclear contour in the data is described by a polynomial function (see Equation 1). From 
this function, the position of local minima and maxima of the curve can be derived. In the present 
study, this was done by first using the polynomial functions calculated by Polyfit to create polyno-
mial objects in Praat, and then applying customized Praat scripts to compute the local minima and 
maxima of these objects. Owing to the standardization of the scale, this position will be between 
–1 and 1. For example, in the left panel of Figure 3 above, the F0 peak is located approximately 
around –0.5. By measuring the absolute position and duration of the lexically stressed syllable and 
mapping it onto the normalized time scale, it is possible to define the location of the turning points 
relative to the syllable structure. Here, the location is expressed in percentage of the syllable’s 
duration (e.g., the maximum may occur at 45% into the lexically stressed syllable).

I calculated the alignment of the F0 minimum in the nuclear contours L+H*,H% and L*,H%, and 
tested the differences between the two nuclear contours statistically using LME models again, with 
the position of the F0 minimum (POSMIN) as dependent variable, CONTOUR as independent vari-
able, and ITEM and SUBJECT as crossed random factors. Since the position of the lexically stressed 
syllable can have an effect on the shape of these contours, STRESS was included as an additional 
factor. The fitting procedure for fixed and random effects was the same as described before.

CONTOUR turned out to be a significant predictor for POSMIN: in L*,H% contours, the F0 
minimum was aligned significantly later than in L+H*,H% contours (16.6% into the stressed syl-
lable vs. –12.7% preceding the stressed syllable, p < .001). STRESS was not a significant predictor 
for POSMIN. Still, in ultimate stress words, the F0 minimum was aligned slightly earlier in L*+H 
words, although the interaction between CONTOUR and STRESS was not significant. The differ-
ences in alignment are illustrated in Figure 6.

Before we come back to these results in the general discussion, I will present another potential 
use for polynomial modeling of nuclear contours. With its capacity to capture fine phonetic detail, 
the polynomial approach not only allows for “comparisons of intonational systems across dialects 

Figure 6.  Graphical representation of the relative position of the F0 minimum (vertical black lines) for 
the two nuclear contours L+H*,H% and L*,H%, expressed as percentage of the stressed syllable duration 
(x-axis). The grey-shaded area marks the lexically stressed syllable, the vertical dotted line indicates the 
syllable onset
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and languages” (Grabe et al., 2007, p. 298), it may also provide a window into developmental 
changes in nuclear contour realization. The next section investigates how the three different age 
groups have realized nuclear contours in these data.

5 Investigating age-related differences with polynomials

The field of child intonation research has become increasingly popular over the past years (for a 
review, see Snow & Balog, 2002). However, the development of pitch accent realization has not 
received much attention. The few studies that have been conducted on the phonetics of child into-
nation report that rising contours in particular may pose some difficulties for children. Snow (1998; 
see also Snow, 2001) asked four-year-olds to imitate falling and rising contours modeled by an 
adult speaker. The sentences used for imitation were short utterances like The cat has a BOTTLE 
(falling contour) or Did you take your BOTTLE? (rising contour). He found that children had the 
tendency to substitute the modeled rising contour with a falling one. When they produced rising 
contours, they did so with longer word durations coupled with narrower pitch range. This means 
that their rate of pitch change (or slope) was slower than that of the adult model. In contrast to that, 
they did not have any problems with imitating falling contours. Similar findings are reported by 
Loeb and Allen (1993), who also used an imitation paradigm.

However, these studies were more concerned with global pitch trends rather than specific pitch 
accents or nuclear contour types. The present data contain a number of different nuclear contour 
types, which allows for a more fine-grained analysis of possible age differences in nuclear contour 
realization. If children’s phonetic realization of nuclear contours develops with age, we should expect 
to find differences between the age groups in one or more of the coefficients that describe their 
nuclear contours. There is to my knowledge up to now only one study that used polynomial modeling 
to investigate pitch accent realization in children, but it used a different model and had a different 
objective: Ota (2006) analyzed the productions of Swedish toddlers in order to find out whether they 
reliably distinguish between the two Swedish word accents.10 Thus Ota was not interested in a devel-
opmental trend, but in whether the children were able to produce a specific contrast. His analysis 
involved the stylization of the children’s F0 contours using the MOMEL algorithm (Hirst et al., 
1993). MOMEL looks for a continuous series of quadratic second-degree polynomials (which are not 
orthogonal) that offer the best fit to the visible F0 curve, and marks the inflections as turning points. 
To determine whether the children realized the contrast between the two accents, Ota checked whether 
the children’s productions contained the sequences of high and low turning points (as identified by 
the algorithm) that were appropriate for the two accent types. Indeed, he found that the children pro-
duced the F0 pattern typical for Accent II words, indicating that they have acquired this phonological 
category. Ota’s study did not compare the children’s production to that of adult speakers, and the 
author himself raises the possibility that the children’s phonetic realization of Accent II contours dif-
fers from adult realizations (Ota, 2006, p. 244). In the present study, I am particularly interested in this 
potential difference. We will look at how children may differ from adults in the specific realization of 
several nuclear contours, that is, if they show differences in the coefficients that describe their con-
tours. Polynomial descriptions offer an ideal way for studying phonetic differences within phonologi-
cally defined nuclear contour types, as differences in the phonetic realizations of one nuclear contour 
category will be reflected in differences in the coefficients.11 Note that because MOMEL describes 
contours in a series of polynomial expressions rather than in one like Polyfit, it would be difficult to 
compare productions with each other. In the MOMEL approach, some F0 contours may be described 
by a series of two polynomial expressions, while others may be described by three. It is unclear 
how one could determine the degree of (non-)similarity of the contours statistically. In addition, 
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non-orthogonal polynomials (as the ones implemented in MOMEL) have the disadvantage that their 
coefficients are not independent from each other and often highly correlated (Grabe et al., 2007, p. 
287). In contrast, Polyfit-modeled nuclear contours are described in one set of minimally correlated 
Legendre polynomials, which can be straightforwardly subjected to analyses between age groups. 
This is exemplified in the following paragraphs.

Table 7 shows how often each age group produced each nuclear contour type. The distributions 
are uneven, with some nuclear contours used much more often by one age group than by the others, 
and some nuclear contours hardly or not at all produced by one age group. (Recall that this is natu-
ral spontaneous production data.) Therefore I only looked at those nuclear contours of which there 
are at least seven tokens in each age group (the bold rows in Table 7). The data set contained 172 
items (42 from the five-year-old group, 74 from the seven-year-old group and 56 from the adults) 
from 68 speakers.

For each of the four nuclear contours (H*,L%, L+H*,L%, H+!H*,L% and L*,H%), I initially 
specified a LME model for each of the four coefficients (c0, c1, c2, c3), with the coefficient in question 
as the dependent variable and age (AGE) as fixed factor. Since the stress pattern (ultimate vs. penul-
timate) had an effect on two of the four nuclear contour shapes investigated, STRESS was included 
as an additional factor for those contours. SUBJECT and ITEM were first included as random factors, 
but in most cases the variance explained by these factors was so low that a simple linear model with-
out random factors (the LM function in R) was fitted instead. Owing to the small sample sizes, the 
statistical power was rather low. For this reason, p-values smaller than .05 will be regarded as signifi-
cant, and p-values up to and including .07 will be reported as marginally significant. As expected, 
there were effects of STRESS on PARABOLA for H+!H*,L% contours and L*,H% contours, which 
will not be reported again. There were significant or marginally significant effects of AGE for at least 
one coefficient in three of the nuclear contours. There was furthermore an interaction of AGE and 
STRESS for L*,H% contours. No significant differences were found for H*,L%.

For H+!H*,L% contours, five-year-olds turned out to produce contours with a larger fourth 
coefficient (WAVE) than adults (-0.002 vs. -0.090, p < .01). The same was true for the seven-year-
olds, whose WAVE was also larger than that of adults (0.009 vs. -0.090, p < .05). Note, however, 

Table 7.  Frequency of nuclear contour types by age. The percentages indicate the relative frequency of 
this nuclear contour type for each age group. Nuclear contours that were produced at least seven times in 
each age group are given in bold

Nuclear contour 5 years 7 years Adults

N % N % N %

H*,L%   8 10.4 25 21.6   7   7.1
L+H*,L%   8 10.4   9   7.8   7   7.1
!H*L%   9 11.7   5   4.3   2   2.0
H+!H*,L% 14 18.2 12 10.3   8   8.2
H+L*,L%   1   1.3   0   0.0   9   9.2
H*,H%   4   5.2   9   7.8   6   6.1
L+H*,H%   4   5.2   8   6.9 11 11.2
L*,H% 12 15.6 28 24.1 34 34.7
,H%   1   1.3   9   7.8   6   6.1
,L% 15 19.5   9   7.8   5   5.1
Other   1   1.3   2   1.7   3   3.1
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that since we are dealing with negative numbers, in this case “larger” means that the children’s 
coefficients were closer to zero, whereas the adults’ were more negative. While the adults’ negative 
c3 shows a falling-rising-falling movement, the children’s near-zero c3 indicates an absence of that 
wave shape. The two younger age groups did not differ from each other in this respect, p = .7.

A marginally significant difference between adults and children in terms of WAVE was also 
found for L+H*,L% contours. Again, the adults’ coefficients were smaller (i.e., more negative) 
than the children’s coefficients (-0.097 in adults vs. -0.0088 in five-year-olds, and vs. -0.011 in 
seven-year-olds, both p = .06), but there was no significant difference between the two child 
groups, p = .9.

In L*,H% contours, there was an interaction between AGE and STRESS for PARABOLA. The 
five-year-olds’ realizations were more cup-shaped than those of adults in penultimate stress words 
(five-year-olds: 0.432, adults: 0.215, p < .05), but less cup-shaped than those of adults in words 
with ultimate stress (five-year-olds: 0.196, adults: 0.353, p < .05). Five-year-olds realized L*,H% 
contours that were more narrowly cup-shaped in words with penultimate stress also in comparison 
with seven-year-olds (five-year-olds: 0.432, seven-year-olds: 0.144, p < .01). Adults and seven-
year-olds did not differ from each other (p > .2 for both stress patterns). However, it is clearly 
problematic for the interaction that there were only four items in the five-year-old group in the 
category of penultimate stress words (while there were eight items in the ultimate stress category), 
casting some doubt on the reliability of this outcome. In Table 8, which summarizes the findings, 
the results for penultimate stress words have therefore been put in parentheses.

The results of the by-age analysis will be discussed along with the other results in the next 
section.

6 General discussion and conclusion

I modeled the F0 of spontaneously produced hand-labeled German nuclear contours quantitatively 
in terms of orthogonal Legendre polynomials. Statistical analyses have shown that the majority of 
these nuclear contours differ from each other significantly in at least one coefficient. These results 
show that on average, nuclear contours that were assigned different phonological labels clearly 
differ in the shape of their F0 contours, paralleling the findings by Grabe et al. (2007) for English 
read-out speech. In what follows, I will discuss some selected examples.

As one would expect, all of the rising contours such as L*,H% and L*+H,H% were found to be 
different from the falling contours such as H*,L% and H+!H*,L%, either in terms of SLOPE (pre-
dominantly rising vs. predominantly falling) or in terms of PARABOLA (more cup-shaped vs. more 
dome-shaped). However, the coefficients also picked up on differences within the group of rising 

Table 8.  Significant and marginally significant effects of age on polynomial coefficients for three nuclear 
contours. The nuclear contour concerned is listed in the left-most column, the second column gives the 
coefficient for which a significant effect of AGE was found, the third column gives information about the 
direction of the effect

Nuclear contour Coefficient Effect of AGE

H+!H*,L% WAVE adults < 7 years = 5 years
L+H*,L% WAVE adults < 7 years = 5 years
L*,H% PARABOLA adults > 5 years

(adults = 7 years < 5 years)
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and falling contours. For example, I found that the contour H+L*,L% had a more steeply falling 
slope than H*,L%. Within the group of rising contours, L*,H% proved different from L+H*,H% 
contours for instance in PARABOLA, which was more strongly cup-shaped in L*,H% contours.

But there were also three statistically non-significant differences. Interestingly, they all involved 
the downstepped counterpart of H*,L% contours: !H*,L% contours. The accents H* and !H* have 
the same shape, but differ in their relationship with the preceding pitch peak. While the pitch maxi-
mum of H* accents is typically about the same height as that of the preceding high pitch accent or 
slightly lower, !H* accents are clearly lower than the preceding pitch peak. Hence, in order to be 
able to distinguish H*,L% contours from downstepped !H*,L% contours, information about the 
previous high pitch accent is necessary. However, the analyses showed that the two contours dif-
fered from each other, namely in their AVERAGE. This is not surprising, given that !H* accents 
especially in phrase-final position would be expected to be lower in the speaker’s pitch range than 
H* accents. At the same time, the fact that the two contours share the same overall shape justifies 
combining them in one category, and this is also what Grabe et al. (2007) did in their analyses. 
Against this background, I collapsed the two contour categories in the present data (resulting in 55 
items in the new H*,L% category) and re-ran the analyses. As a result, two of the three previously 
non-significant differences with other contours became statistically significant: the difference 
between H*,L% and H+L*,L% was significant for PARABOLA, p < .01, with H*,L% contours 
being dome-shaped, but H+L*,L% contours being overall more cup-shaped. In a similar vein, 
H*,L% contours differed from ,L% contours, whose PARABOLA was also slightly cup-shaped, 
p < .05. Especially when dealing with small to medium-sized data sets, it seems useful to combine 
downstepped and non-downstepped nuclear contours in order to gain more statistical power for 
comparisons with other nuclear contour types. However, the difference between H*,L% and 
L+H*,L% did not reach significance even after combining downstepped and non-downstepped 
contours. This is an interesting finding, because it backs proposals that H* and L+H* accents 
should be regarded as belonging to the same category (e.g., Grabe, 1998, for German; Ladd & 
Schepman, 2003, for English).

As in the English data, models using the first three coefficients (c0–c2) were sufficient to distin-
guish the majority of nuclear contours in this data set from each other. The nuclear contour pair 
H+!H*,L% and H+L*,L%, though, differed from each other only in the fourth coefficient, WAVE, 
suggesting that this coefficient is necessary to distinguish these two nuclear contours from each 
other. This is somewhat surprising, as one would probably also expect a difference in SLOPE (cf. 
Table 1). In fact, we have seen that SLOPE was the most useful splitting criterion for the CART 
algorithm (cf. Figure 5). The fact that the difference between these two contours was small could 
be seen as support for the proposal that they are actually phonetic variations of the same accent 
type (e.g., Grice, Baumann, & Jagdfeld, 2007; Rathcke & Harrington, in press). However, it needs 
to be borne in mind that H+L*,L% nuclear contours occurred only ten times in the data. More data 
are needed to find out whether the two contours differ consistently from each other in their 
coefficients.

An important question that this study has not addressed is to what extent statistically significant 
differences in coefficients correspond to differences in the perception of human listeners. Some of 
the differences in the present data are quite large and should be perceptible. For example, at the end 
of the utterance the mean difference between H*,L% contours and H*,H% contours is 0.225 nor-
malized F0 values. For a speaker with a mean F0 of 160 Hz, this would correspond to a difference 
of 36 Hz or 4.1 semitones, a difference a human listener should be able to perceive without prob-
lems. Perception experiments that systematically vary the coefficients that describe an F0 contour 
could shed more light on how much change in a coefficient is needed for it to be perceptible to 
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listeners. For these types of experiments it is advantageous that polynomial expressions can serve 
directly as input for speech (re-)synthesis: the coefficient values can be entered into Equation 1 
above to generate the number of data points necessary for a given stretch of (to-be-synthesized) 
speech. After multiplying the data point values with the appropriate fundamental frequency (e.g., 
160 Hz) to get from normalized F0 to absolute F0, the data points can be plotted onto a speech 
sound object (using for instance Praat’s “Manipulation object” functionality). The speech sound 
can subsequently be synthesized with the PSOLA method.

Another issue concerns the variability in the realization of the different nuclear contours. As 
discussed by Grabe et al. (2007), it is possible that the mean properties of all contours of one cat-
egory (e.g., L+H*,H%) might be significantly different from contours of another category (e.g., 
H*,H%), but that the two classes might be so variable that they overlap considerably (p. 296). In 
the present data, the variation in coefficients produced by individual speakers was on average 
smaller than the mean differences in coefficients between the nuclear contours. For PARABOLA 
for instance, the mean adjustment for SUBJECT was 0.008, whereas the average difference 
between contours was 0.06, indicating that the overlap between categories is rather small.

In addition to applying the polynomial approach to German data, this article has introduced a 
way to derive relative alignment measures from the polynomial models, which are more easily 
interpretable than the plain coefficients. The position of tonal targets is expressed relative to the 
duration of the lexically stressed syllable. Using this parameter, the two rising nuclear contours 
L+H*,H% and L*,H% were shown to differ in their alignment of the F0 minimum. This result is 
in line with the descriptions of the accents in the GToBI literature (Benzmüller & Grice, 1997; 
Grice & Baumann, 2002; Grice et al., 2005): in L+H*,H% contours, the F0 minimum occurs in the 
pre-stressed syllable. In contrast, in L*,H% accents, it should be located in the stressed syllable, 
which is the case in these data as well. Although the effect of stress pattern (i.e., penultimate vs. 
ultimate stress) was not statistically significant, the direction of the effect suggests that tonal 
crowding may be present. Tonal crowding occurs when several tones are associated with the same 
segmental material, which can lead to small differences in alignment (Arvaniti, Ladd, & Mennen, 
2006a, p. 670). In the present data, the F0 minimum in L*,H% contours occurs slightly earlier in 
ultimate stress items. This could be explained by the fact that both tones are associated with the 
final syllable, causing the L* tone to move further to the left, away from the H%. This finding 
would be in accordance with the results of Möbius and Jilka’s (2007) corpus study for falling con-
tours, which found that in ultimate stress words, the F0 maximum occurs earlier than in penulti-
mate stress words owing to tonal repulsion. However, more data are needed to confirm the tendency 
observed in the present corpus.

Thus, relative alignment parameters derived from polynomial modeled curves are able to cap-
ture the phonetic differences between nuclear contours in an easily interpretable format. These 
alignment parameters always indicate the position of the minima and maxima with respect to the 
stressed syllable, irrespective of whether that syllable is preceded or followed by more than one 
syllable. In this respect this way of representing alignment can be more useful with more variable 
speech material than the plain coefficients. Importantly, deriving the F0 turning points from the 
modeled curve is a less subjective procedure than determining them manually from the original 
pitch track. As mentioned in the introduction, in many cases, tonal targets cannot be unambigu-
ously identified because of discontinuities in the visible contour, which means for the labelers that 
they have to make (sometimes arbitrary) decisions as to where to locate the targets. The alignment 
parameter provides intonational phonologists with a simple tool to compare how nuclear contours 
differ in the alignment of their tonal targets with the segmental string, avoiding the problems 
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associated with manual location of pitch events. In this way, the polynomial approach can be 
smoothly integrated with the productive line of research on “segmental anchoring” (among others, 
Arvaniti et al., 1998; Arvaniti, Ladd, & Mennen, 2006b, for Greek; Atterer & Ladd, 2004, for 
German; Prieto, Santen, & Hirschberg, 1995, for Spanish; Silverman & Pierrehumbert, 1990, for 
American English).

Finally, this study has shown how polynomial modeling can be used to investigate differences 
in nuclear contour realization across age groups. Although the sample sizes are small, the within-
category analysis of four nuclear contours has yielded some interesting findings. In ultimate stress 
words, five-year-olds turned out to have a less strongly cup-shaped PARABOLA than adults in 
L*,H% contours. This indicates that the cup shape of this contour was somewhat “flatter” than that 
of adults. I also found that in two nuclear contours, H+!H*,L% and L+H*,L%, for both the five- 
and the seven-year-olds, the absolute value of the fourth coefficient (WAVE) was low. This is a sign 
that their nuclear contours were not as “wiggly” as the ones produced by the adults.

The flatter PARABOLA in L*,H% contours in five-year-olds could be an indication that the 
children have difficulties raising the pitch towards the end of the utterance. This is in accordance 
with previous studies, which found that young children’s rising contours are not yet adult-like 
(Loeb & Allen, 1993; Snow, 1998). In particular, these studies found that children produce slower 
speeds of pitch change in rising contours than adults. Researchers have tried to explain this phe-
nomenon by the increased physiological effort in rising accents (cf. Lieberman’s breath group 
theory, Lieberman, 1967; Snow, 1998). Xu and Sun (2002) found that adults, too, take longer to 
increase pitch than to decrease it. If rising contours are more difficult for adult speakers, it seems 
reasonable that they are even more demanding for children whose laryngeal and respiratory sys-
tems do not become adult-like before age twelve to fourteen (Stathopoulos & Sapienza, 1997). 
However, since there were not enough items in the corpus to compare also the other rising contours 
(H*,H% and L+H*,H%) across age groups, we do not know if it is rising contours in general that 
are difficult to produce for young children, or rather contours in which the lexically stressed syl-
lable is low and followed by a rise, as in L*,H% contours. Previous studies that reported difficulties 
with rising contours did not specify the type of contours; it is therefore possible that the contours 
that the children had to imitate happened to be ones containing L* accents.

The findings regarding the absence of the wiggly shape in H+!H*,L% and L+H*,L% contours 
are new and have not been reported before. Other studies have concentrated on either the falling 
portion or the rising portion of a nuclear contour, but not on the overall movement of a nuclear 
contour, such as the fall-rise-fall movement in L+H*,L% nuclear contours. This movement is 
reflected in the fourth coefficient of the polynomial model. As explained before, the higher-ranking 
coefficients pick up the more rapidly changing properties of the F0. The fact that the children’s |c3| 
was so small seems to indicate that they are not (yet) able to modulate their pitch as fast as adults. 
The increased articulatory effort needed for raising F0 appears to pose problems for children not 
only in continuously rising contours, but also when more complex pitch movements are involved 
in realizing a contour. Here polynomial modeling may enable us to gain even better insights into 
children’s pitch contour realizations. More research (for example along the lines of Xu & Sun, 
2002) is needed to obtain more conclusive information about the developmental trajectory of speed 
of pitch change control.

With regard to the age group differences found here the same caveat applies as with the differences 
between nuclear contour types: the differences in coefficients may not be perceptible. On the other 
hand, they can still be informative. In connection with the acquisition of segmental phonology the 
term “covert contrasts” (Scobbie, Gibbon, Hardcastle, & Fletcher, 1996) has been used to describe 
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situations in which children already produce a contrast between two categories (e.g., the voice onset 
time contrast between voiced and voiceless stops such as /t/ and /d/), but because realizations fall 
within one perceptual category for adults, the contrast is not recognized by the adult listeners. Analyz-
ing children’s speech acoustically can recover these imperceptible differences and can tell us some-
thing about what a speaker has acquired (Scobbie et al., 1996, p. 44). The same rationale can be 
applied the other way round: even though children may produce sound patterns (such as nuclear 
contours) that are perceptually equivalent to adult productions, there may still be systematic underly-
ing differences, which can tell us something about the way the speech patterns mature with age.

To conclude: first, the polynomial approach can be readily applied to German natural speech 
and be used as a tool to obtain quantitative evidence for phonological labels. Second, the polyno-
mial approach can be extended to include linguistic alignment information, making it even more 
accessible to the phonological research community. Third, by enabling the analysis of phonetic 
variation within nuclear contours across speaker groups, polynomial modeling can improve our 
understanding of language development.
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Notes
  1	 One might object that it is unclear whether child speech should be labeled using an annotation system 

developed for adult speech. However, it is reasonable to assume that children are striving to model the 
intonation of adults, and it seems therefore useful to describe their speech in terms of that target model. 
Furthermore, previous analyses of the five-year-olds’ data (Herbst, 2007) and of other parts of the corpus 
(De Ruiter, 2009) have already shown that the children’s intonation patterns can be described using the 
GToBI system.

  2	 Originally, there were 32 H-% boundary tones and 45 H-^H% boundary tones.
  3	 Originally, there were 87 L-% boundary tones and 3 !H-% boundary tones.
  4	 Harmonics-to-noise ratio (HNR) quantifies the amount of additive noise in the speech signal. Additive 

noise can arise from airflow turbulences occurring at the vocal folds during phonation: when the vocal 
folds are not completely closed – as is the case in irregular phonation like creaky voice – air passes 
through the vocal folds and causes turbulence. This results in friction noise, which is in turn reflected in 
a higher noise level (Ferrand, 2002, p. 481). Hence, HNR can be used as an indicator of the periodicity 
of the speech signal.

  5	 The mean absolute duration of the analysis domain was 0.697 seconds (SD = 0.221 seconds).
  6	 The quantity that is minimized is a chi-square related merit function:
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	 where wi is a weighting quantity indicating the relative contribution of data point i to the merit function. 
The program uses a General Linear Least Squares algorithm based on normal equations and Gauss- 
Jordan elimination, and is described in detail in Press, Teukolsky, Vetterling, and Flannery (1988).

  7	 There was no difference between the three age groups with respect to the mean error (a measure of dis-
tance between model and data) of the curves modeled by Polyfit. The mean error for the adult group was 
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0.12, which was not significantly different from the mean error in the five-year-old group (0.15, p = .65) 
and the mean error in the seven-year-old group (0.08, p = .45), as determined by means of a LME model 
with mean ERROR as dependent variable, AGE as fixed factor and WORD as random factor. The two 
younger age groups did not differ significantly from each other, either (p = .24).

  8	 For reasons why Bonferroni correction and other p-value adjustments are inappropriate for this type of 
analysis, see Gelman, Hill, and Yajima (2009), and Gelman and Tuerlinckx (2000).

  9	 One of the reviewers remarked that it would be problematic to compare “real” nuclear contours with 
post-nuclear ones (i.e., deaccented syllables plus boundary tone), as the tonal movement in the latter ones 
depends solely on the type of boundary tone: the type of tonal movement around the accented syllable is 
constitutive for a nuclear contour, but this tonal movement is lacking on deaccented syllables. I fully 
agree with the reviewer that the tonal movement is lacking in deaccented contours. However, this is 
exactly what the polynomial models reveal. Unlike most other contours, deaccented contours do not 
“score high” on any of the four coefficients; they do not have a distinctive shape. All that can be said 
about them is that they have either a slight upward movement (as in the case of deaccented items fol-
lowed by a high boundary tone) or a slight downward movement (as in the case of deaccented items 
followed by a low boundary tone), as can be seen in their SLOPE and PARABOLA.

10	 Swedish has two lexically contrasting pitch patterns associated with the stressed syllable, which are usu-
ally referred to as Accent I and Accent II.

11	 Of course, this approach presupposes that there is a phonology of intonation, a viewpoint that is still 
disputed by some researchers (e.g., Xu & Xu, 2005). A discussion of this debate is beyond the scope of 
this article, but the interested reader is referred to Ladd (2008) and Arvaniti and Ladd (2009) for an in-
depth treatise of the issues involved.
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