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1. Introduction

1.1 Motivation

The quest for a quantum theory of gravity has reached such a level of sophistication

that several independent approaches to this problem have been developed by now.

Each proposes its own physical picture, but they are often related one to the other

[1]. Apart from string theory, we mention in particular group field theory [2], loop

quantum gravity (LQG) [3, 4], spin foam models [5, 6], asymptotically safe gravity

(or quantum Einstein gravity, QEG) [7]–[10], and simplicial quantum gravity [11]–

[13], the latter having a particular incarnation in causal dynamical triangulations

(CDT) [14]. All these approaches, starting from different assumptions and using

different techniques, have achieved important results concerning both the kinematical

description of quantum space and its dynamics. However, many formal aspects of

such dynamics are still to be understood and we still lack a conclusive proof that,

within any of these models, the proposed quantum dynamics of space as a discrete

entity lead to a continuum description of the same, and to the general relativistic

dynamics at large scales and in the classical limit.

Another important issue is the extraction of effective models of quantum gravity

dynamics for both spacetime and matter. These effective descriptions should be used

to predict new phenomena and quantum gravity corrections to known particle and

astroparticle physics, as well as to large-scale cosmological scenarios. An example of

the type of phenomenology one might deal with is dimensional flow. It has been no-

ticed that independent models such as CDT [15, 16], QEG [17], and Hořava–Lifshitz

gravity [18, 19] all exhibit a running of the spectral dimension of spacetime such

that at short scales the physics is effectively two-dimensional (see also [20]). This

number is not accidental and plays an important role in the construction and renor-

malizability properties of quantum gravity [21]–[23]. The change of dimensionality at

different scales and its acquiring non-integer values is typical of multi-fractals, so it

is customary to describe dimensional flow as a “fractal property” of spacetime. The

idea that spacetime is “fractal” in extreme regimes has been hovering for a while [24],

especially in relation with the classical mixmaster behaviour of the BKL big bang

singularity [25]–[32] and with the notion that renormalization properties of gravity
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improve on a microscopic “spacetime foam” [33]. The concept of fractal spacetime

has been often shrouded in a halo of vagueness, devoid of any clear-cut definition,

and it has begun to be realized concretely in quantum models only in recent times.

Aside from the above cases, there are hints of fractal spacetime behaviour at high

energies also in effective κ-Minkowski non-commutative field theories [34]. These

findings prompted similar investigations in the context of LQG spin foam models,

with some preliminary results obtained using certain approximations to the full spin

foam dynamics [35]–[37].

The scenario is that of a fundamental dynamics where the usual notions of space,

time and geometry emerge only in specific regimes and approximations of the theory.

At high energies/small scales, the effective dimension of spacetime is two, while at

lower energies the dimension should instead run to four, and the dynamics be well-

described by general relativity. This suggests the intriguing possibility that Nature

admits a multi-fractal formulation with good ultraviolet (UV) behaviour.

In the attempt to encode dimensional flow in a physically intuitive framework, in

[23, 38, 39] a field theory living in a fractal spacetime was proposed. The key point

is to replace the standard Lebesgue measure in the action with a Lebesgue–Stieltjes

measure with anomalous scaling,

dDx→ d̺(x) , [̺] = −Dα ≥ −D , (1.1)

where D is the number of topological dimensions, ̺ is a (possibly very irregular)

distribution, square brackets denote the engineering dimension in momentum units,

and 0 < α ≤ 1 is a real parameter interpreted as running with the scale. In the

ultraviolet, α achieves the critical value

α→ α∗ :=
2

D
, (1.2)

and the measure becomes effectively two-dimensional. Several characteristic features

were highlighted for the generic measure (1.1) [23, 39], but the Lebesgue–Stieltjes for-

malism is too general to be manipulated. Therefore, the special case of an absolutely

continuous measure was considered, where d̺ can be written as d̺(x) = v(x)dDx, for

some scalar v. In particular, the Poincaré algebra of these models is deformed [38]

and at sufficiently small scales an observer should see deviations from Lorentz in-

variance. At the quantum level, eq. (1.2) helps field theories with Lebesgue–Stieltjes

measure to be power-counting renormalizable, gravity included. The reason is that

the dimension of the couplings changes with the scale and goes to zero in the ultra-

violet. Dimensional flow also affects cosmology, leading to possible applications to

inflation and the cosmological constant problem [38].

Seen as effective models of quantum gravity, fractal field theories can provide a

useful tool to describe the physics at scales large enough to smoothen any discrete
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structure into a continuous spacetime, but small enough to retain some properties

(such as dimensional flow) of the putative full theory.

Although Hořava–Lifshitz gravity is presently facing some criticism, one of its

major merits has been to advance the perspective that treating gravity as an ordi-

nary field theory has nothing wrong in itself, but it requires some rethinking of the

geometric structure of spacetime. In this spirit, the framework of [23, 38, 39] can

be regarded simply as an alternative to any of the more complicated quantum grav-

ity scenarios mentioned at the beginning, and the interest shifts from a comparison

with the continuum limit of discrete models to a detailed study of properties such

as renormalization and the breaking of ordinary Poincaré symmetries. Also, there is

a conspicuous hiatus between the rigorous mathematical literature on fractals and

generic ideas of “fractal” structures in field theory and quantum gravity. Letting

aside dimensional flow, in what sense is spacetime “fractal”? What is the geometric

meaning of a fractal in Lorentzian signature [38]?

It is the purpose of this paper to begin a study of these problems, triggered by the

qualitative treatment of [38, 39], in a more rigorous framework. Fractional calculus is

the natural candidate, since it is known to provide a reliable continuum description

of certain properties of fractals. Fractional measures have the desired characteristics

of having anomalous scaling and inducing power-counting renormalizability. Their

study with the techniques of fractal geometry will fulfill the initial expectations and

unravel a number of new, and perhaps surprising, phenomena.

The relation between matter and spacetime and the concept of spacetime itself

are radically different when comparing field theories in Minkowski and general rela-

tivity. Although realistic models of Nature should include gravity, the introduction

of the present formalism of fractional dynamics in a flat non-dynamical space will

help in clarifying how to construct a covariant notion of spacetime with non-integer

dimension. This will eventually result in a model of multi-fractal geometry with

non-Euclidean signature [40, 41].

1.2 Strategy and plan of the paper

Our programme follows the logic of gradually introducing all the necessary and con-

cept to formalize the idea of a general multi-fractional spacetime:

1. First, the fractional analogue of Euclidean space is defined via an embedding

abstract space (ordinary Euclidean space) and a choice of fractional calculus

of fixed real order α. In this arena, we can understand elementary notions of

geometry such as distances, volumes and dimension.

2. Fractional Euclidean space is a particular model of fractal spacetime. It is

very important to clarify this concept using tools of fractal geometry which are

seldom or only partially employed in the literature of quantum gravity. The
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relations between fractional measures and deterministic and random fractals,

and between different rigorous definitions of dimension, are discussed. The

Hausdorff (dH) and spectral (dS) dimensions of space are non-integer and con-

stant at all scales. In general, as expected in fractals, dH 6= dS, although in the

simplest cases dH = dS = Dα.

These two points are the subject of the present paper. There is still little physics

in this setting for many reasons: the dimension of space is fixed and non-integer

(in particular, different from 4), the signature is Euclidean, and gravity and matter

fields are not mentioned. To continue our agenda:

3. Fractional Euclidean spaces are generalized to fractional Minkowski spacetimes

with Lorentzian signature. Their symmetry structure is thoroughly analyzed.

4. A scalar field is introduced as matter, in order to test renormalization properties

of field theories in fractional spacetimes.

5. The Hausdorff and spectral dimensions are made scale-dependent via multi-

fractal geometry techniques. At large scales spacetime is four-dimensional,

while at small scales it is two-dimensional. Contrary to other approaches

where phenomenology is the main guiding principle, both these numbers are

constrained by geometric arguments.

6. A major advancement in the description of fractal spacetimes is to allow the

order of fractional operators to be complex. This entails a radical change

of the physical picture at ultra-microscopic scales, and opens up remarkable

connections with non-commutative spacetimes and discrete quantum gravity

models. Discrete symmetries are fundamental, and are progressively averaged

at larger scales to finally give way to effective continuous symmetries, up to

the point where ordinary Lorentz invariance is achieved.

These features were sketched in [40] and full details will be presented in the compan-

ion paper [41]. Finally, as a future work,

7. One should introduce the notion of fractional manifold in order to realize a

dynamical fractal spacetime and gravity. Consequences for the cosmology of

the early universe are expected.

The strategy, plan, and results of this paper are the following.

• Section 2. We begin by reviewing the basic tools of fractional calculus in

one dimension. Our target reader is the physicist unfamiliar with this area of

mathematics and for this reason we will not attempt a rigorous presentation of

the latter, preferring intuitive descriptions of its properties. This section is not
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a mere compilation of results taken from the literature. In fact, it also includes

several proofs of properties of the Caputo derivative, which are rarely found in

textbooks (section 2.3.2), and a novel discussion on mixed operators (section

2.5). Fractional integral measures are a particular case of Lebesgue–Stieltjes

measure, whose mathematical and physical interpretation is given in section

2.6. The reader acquainted with fractional calculus can skip this section.

• Section 3. The first step towards the description of the physical world as

a field theory on a multi-fractional manifold is to consider a much simpler

object; namely, a fractional generalization of empty Euclidean space with fixed

dimension, denoted as ED
α . This is the ideal playground whereon to understand

the properties of fractional geometry (section 3.1). The notation of fractional

calculus is not always suitable for this task and it is convenient to introduce

a new notation (section 3.3), which makes explicit the geometric properties of

ED
α . After providing hopefully fresh insights on the relations between different

fractional derivatives (section 3.2), we define the distance between two points

(section 3.4). The volume calculations of section 3.5 are instructive for several

reasons. First, they provide examples of multiple fractional integration on non-

rectangular domains. Second, they highlight how different choices of fractional

integration affect volume measurements, both in strongly fractional theories

and in spaces with almost integer dimension. Last but not least, they show

how the Hausdorff dimension of fractional space is related to the fractional

order of the measure (section 3.6).

• Section 4. We discuss at length in which sense fractional Euclidean space

is a fractal. On one hand, by considering in detail each of the most charac-

teristic features of fractal sets, we will show that ED
α can be regarded as a

genuine but peculiar fractal, with a continuum structure and anomalous scal-

ing properties (sections 4.1–4.3). These are hybrid properties interpolating

between the trivial case of smooth space RD (technically a fractal, but with a

most boring structure) and self-similar sets. By this analysis, we identify the

symmetries of ED
α as affine transformations of geometric coordinates, equiv-

alent non-linear transformations in the embedding coordinates (section 4.2).

On the other hand, fractional calculus can be also seen as an approximation

of discrete/disconnected fractals under certain assumptions (section 4.4). We

specify the relation between fractional theories and genuine fractal models in

this section, where the state of the art of this often confusing subject is reviewed

and clarified.

• Section 5. The rigorous definition of the spectral dimension dS on self-similar

fractals is reviewed. In smooth spaces, it can be found via an operational

procedure involving a diffusion process. This is the most widely used tool to
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probe “fractal” properties of spacetime in quantum gravity theories, and we

revisit it at length in section 5.2. Examining every single ingredient of the

recipe will allow us to find the spectral dimension of fractional space in section

5.3. As a byproduct, fractional momentum space and the Fourier transform

thereon are constructed.

1.3 Original and review material

Due to the length of the paper, it may be useful to tell apart original from review ma-

terial. Fractional space ED
α is a novel object and all related statements are presented

here for the first time. Many mathematical concepts had been already explored by a

number of authors, but they had not been collected together into a unified physical

proposal. We employ the well-established mathematical tools of fractional calculus

and fractal geometry, and all statements about these two sectors (including defini-

tions and theorems) are, modulo some exceptions, taken from the literature, which

is quoted in the text. Attempting a somewhat artificial discrimination, section 2 is

a review, except section 2.3.2 (commutation relations are usually reported only for

the Riemann–Liouville derivative, not for the Caputo derivative) and the text dis-

cussion in section 2.5. Section 3 is original except section 3.1, eqs. (3.17) to (3.23),

and the definition (3.56) of Hausdorff dimension. Section 4 is original except general

definitions and statements about self-similarity (eqs. (4.1)–(4.11) and (4.18)–(4.21))

and section 4.4 from eq. (4.23) to (4.32). Sections 5.1 and 5.2 are reviews, while

section 5.3 is new, including the discussion of certain conjectures advanced in fractal

geometry at large.

Most of previous “fractal” field theoretical proposals assumed spacetime to have

a non-integer but fixed, non-dynamical dimensionality, thus drawing the attention to

4− ǫ dimensions with 0 < ǫ≪ 1. On the other hand, here the dimension of space is

fixed, but in [41] we shall enforce a non-trivial dimensional flow via a superposition

of fractional measures. Therefore, we shall not be concerned with the almost-integer

regime except as the infrared limiting case of the multi-fractional theory. A global

comparison with the early literature on spacetime models in non-integer dimension

will be done in [41].

2. Fractional calculus in one dimension

We begin by reviewing some basic formulæ of fractional calculus. The material in

this section can be found in the dedicated literature. Among the many excellent

textbooks on fractional integrals and derivatives, we mention [42, 43] and [44, 45]

(for an historical account, see also [46]). For reasons which will become clear later,

here we make extensive use of Caputo derivatives. Multi-dimensional vector calculus

based on these derivatives has been developed in [47] (see references therein for works

adopting other types of integro-differential operators).
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Unfortunately, this branch of mathematics may sometimes produce a feeling

of estrangement in the reader with field theory/high energy background, thus giv-

ing her/him the impression of a bizarre topic. This may be due to several rea-

sons: (i) Contrary to ordinary calculus, there is no unique definition of derivative

(Riemann–Liouville, Caputo, Erdélyi–Kober, Grünwald–Letnikov, Hadamard, Nishi-

moto, Riesz, Weyl); (ii) The output of fractional operators is almost always quite

different from that of ordinary calculus and, in this respect, counterintuitive; (iii)

Fractional operators are very seldom employed in particle physics, cosmology, and

physics beyond the Standard Model.

A deeper inspection, however, shows that: (i) All definitions of fractional deriva-

tives are related to one another in a precise way (eventually, differences amount both

to the convergence properties of the functional space on which these operators act

and to boundary terms in the formulæ), so there is no mutual contradiction between

different operators; (ii) For any choice of fractional operators, the calculus can be

defined self-consistently, whatever the look of the formulæ; (iii) Fractional operators

are regularly employed in a number of fields in physics and mathematics, such as

statistics, diffusing or dissipative processes with residual memory like weather and

stochastic financial models [48], and system modeling and control in engineering [49].

Moreover, in our context the choice of the Caputo operators over the others will be

motivated by independent arguments, thus further neutralizing issue (i).

Although by now some particular symbols are widely employed, for the sake of

simplicity, and in order not to overburden the unfamiliar reader, we will reserve a

simplified notation for the operators we use the most.

2.1 Integrals and derivatives

Let

x ∈ [x0, x1] (2.1)

be a real coordinate variable defined on an interval with constant extrema x0 and

x1, which may be taken to infinity if desired. We define a space of functions f(x)

on this interval, such that all the following integro-differential operators will be well

defined. A space of particular interest is ACn[x0, x1], that of functions which are

absolutely continuous on [x0, x1] up to their n−1 derivative. This is equivalent to the

space of Lebesgue-summable functions with summable derivatives ∂j , j = 0, . . . , n,

almost everywhere in the interval. Another space we shall use more or less implicitly

is Lp(x0, x1), that of Lebesgue-measurable functions f on [x0, x1] with finite p-norm

‖f‖p. From now on, we assume that for every mathematical statement the functional

space is suitably chosen. One can find precise theorem declarations in [42, 43].

Let f ∈ Lp(x0, x1) and let θ be the Heaviside distribution:

θ(x) =

{

1 , x > 0

0 , x < 0
. (2.2)
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We introduce the left fractional integral of order α as

(Iαf)(x) :=
1

Γ(α)

ˆ x1

x0

dx′

(x− x′)1−α
θ(x− x′)f(x′) . (2.3)

Here α ∈ C is a complex constant parameter, which we shall restrict to be real for

our purposes. This formula is naturally suggested as a generalization to non-integer

n of the Cauchy formula for the n-times repeated integration:

(Inf)(x) =

ˆ x

x0

dy1

ˆ y1

x0

dy2 · · ·
ˆ yn−1

x0

dynf(yn)

=
1

(n− 1)!

ˆ x

x0

dx′ (x− x′)n−1f(x′) .

One can also define the right fractional integral of order α

(Īαf)(x) :=
1

Γ(α)

ˆ x1

x0

dx′

(x′ − x)1−α
θ(x′ − x)f(x′) , (2.4)

where integration now is from x to the end of the interval.1 Because of the x depen-

dence in the step function, the output of fractional integrals is a function of x. These

operators are bounded if f ∈ Lp(x0, x1), for every 1 ≤ p ≤ +∞ [43, eq. (2.1.23)].

Sometimes we will need to specify the integration domain explicitly and we shall

denote the left and right integrals with Iα = Iαx0,x and Īα = Īαx,x1
.

In parallel, for any f ∈ ACn[x0, x1] the left and right Caputo derivatives of order

α [50, 51] exist almost everywhere in [x0, x1] [43, theorem 2.1]:

(∂αf)(x) := (In−α∂nf)(x) , n− 1 ≤ α < n , (2.5)

=
1

Γ(n− α)

ˆ x1

x0

dx′

(x− x′)α+1−n
θ(x− x′)∂nx′f(x′) , (2.6)

(∂̄αf)(x) := (Īn−α∂nf)(x) , n− 1 ≤ α < n , (2.7)

=
(−1)n

Γ(n− α)

ˆ x1

x0

dx′

(x′ − x)α+1−n
θ(x′ − x)∂nx′f(x′) , (2.8)

where ∂ is the ordinary first-order partial derivative and n ≥ 1 is a natural number.2

We shall be interested in the particular case

0 ≤ α < 1 (n = 1) , (2.9)

1The left fractional integral is variedly indicated in the literature with the symbols x0
Iαx , x0

D−α
x ,

x0
d−α
x , Iαx0−

. The right integral, with xI
α
x1
, xD

−α
x1

, xd
−α
x1

, Iαx1+
.

2The left fractional derivative is variedly indicated in the literature with the symbols x0
Dα

x , x0
dαx ,

Dα
x0−

. The right derivative, with xD
α
x1
, xd

α
x1
, Dα

x1+
. All these symbols are further decorated with

tilde’s, in bold font, or with the superscript C when they denote the Caputo derivative. Fractional

operators are often called differintegrals, since one can analytically continue derivative expressions

to α < 0 and vice versa.
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which simplifies the above expression for the left derivative as

(∂αf)(x) =
1

Γ(1− α)

ˆ x1

x0

dx′

(x− x′)α
θ(x− x′)∂x′f(x′) , 0 ≤ α < 1 ; (2.10)

a similar statement holds for the right derivative. An elementary but typically ig-

nored fact is that, under the transformation

x→ x0 + x1 − x , (2.11)

left operators are mapped into right operators:

(Īαf)(x) = (IαF )(x0 + x1 − x) , (∂̄αf)(x) = (∂αF )(x0 + x1 − x) , (2.12)

where F (x) := f(x0 + x1 − x). Therefore, it is sufficient to study the properties of,

say, left operators, and infer their right counterparts by using eq. (2.12). For this

reason, in the following we mainly concentrate on left operators.

An alternative, inequivalent definition of fractional derivation is obtained by

exchanging the order of integration and derivation. This corresponds to the left and

right Riemann–Liouville derivatives (n− 1 ≤ α < n)

(rl∂
αf)(x) := (∂nIn−αf)(x)

=
1

Γ(n− α)
∂nx

ˆ x1

x0

dx′

(x− x′)α+1−n
θ(x− x′)f(x′) , (2.13)

(rl∂̄
αf)(x) := (∂nĪn−αf)(x)

=
1

Γ(n− α)
∂nx

ˆ x1

x0

dx′

(x′ − x)α+1−n
θ(x′ − x)f(x′) . (2.14)

There is a precise relation between Caputo and Riemann–Liouville derivatives. If

∂jxf is continuous on [x0, x] for j = 1, . . . , n, one has

(∂αf)(x) = (rl∂
αf)(x)−

n−1
∑

j=0

(x− x0)
j−α

Γ(1 + j − α)
(∂jf)(x0) , n− 1 ≤ α < n . (2.15)

In particular, for n = 1

(∂αf)(x) = (rl∂
αf)(x)− (x− x0)

−α

Γ(1− α)
f(x0) , 0 ≤ α < 1 , (2.16)

and the two derivatives are the same if f(x0) = 0. In general, the two types of

derivatives differ in the boundary conditions. While (∂αf)(x0) = 0 by definition,

because of eq. (2.15)

(rl∂
αf)(x0) = 0 ⇔ (∂jf)(x0) = 0 , j = 0, . . . , n− 1 . (2.17)

So, the Riemann–Liouville derivative of a constant is not zero. Right derivatives

obey similar relations.
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2.2 Examples of fractional derivatives

Let us see some examples of calculation with Caputo left fractional derivatives with

n− 1 < α < n. A simple function to consider is a power law,

f(x) = (x− x∗)
β , x∗ ∈ [x0, x1] , β ∈ R . (2.18)

If β = m = 0, 1, . . . , n−1, then both the left and right Caputo derivatives vanish for

every x∗,

∂α(x− x∗)
m = 0 = ∂̄α(x− x∗)

m , m = 0, 1, . . . , n− 1 . (2.19)

Barring these cases, and assuming x0 6= −∞, one has

∂α(x− x∗)
β =

1

Γ(n− α)

ˆ x

x0

dx′

(x− x′)α+1−n
∂nx′(x′ − x∗)

β

=
Γ(β + 1)

Γ(n− α)Γ(β − n+ 1)

ˆ x

x0

dx′
(x′ − x∗)

β−n

(x− x′)α+1−n

y=x′−x0
=

Γ(β + 1)

Γ(n− α)Γ(β − n+ 1)

ˆ x−x0

0

dy
[y + (x0 − x∗)]

β−n

[(x− x0)− y]α+1−n

=
Γ(β + 1)

Γ(n− α + 1)Γ(β − n+ 1)
(x0 − x∗)

β−n(x− x0)
n−α

×2F1

(

1, n− β;n+ 1− α,
x− x0
x∗ − x0

)

, (2.20)

where we used [52, eq. 3.196.1] and 2F1 is the hypergeometric function. In the special

case x∗ = x0, we get eq. (2.19) and [52, eq. 3.191.1]

∂α(x− x0)
β =

Γ(β + 1)

Γ(β − α + 1)
(x− x0)

β−α , β 6= 0, 1, . . . , n− 1 . (2.21)

When the lower extremum is x0 = −∞, one can employ eq. 3.196.2 of [52]:

∞∂
α(x− x∗)

β =
Γ(β + 1)

Γ(n− α)Γ(β − n + 1)

ˆ x

−∞

dx′
(x′ − x∗)

β−n

(x− x′)α+1−n

y=−x′

=
(−1)β−nΓ(β + 1)

Γ(n− α)Γ(β − n + 1)

ˆ +∞

−x

dy
(y + x∗)

β−n

(y + x)α+1−n

=
(−1)β−nΓ(β + 1)Γ(α− β)

Γ(1− n+ β)Γ(n− β)
(x∗ − x)β−α

= (−1)−α Γ(β + 1)

Γ(β + 1− α)

sin(πβ)

sin[π(β − α)]
(x− x∗)

β−α , (2.22)

where we used the property Γ(z)Γ(1− z) = π/ sin(πz). This expression is ill defined

for β = α. Otherwise, it is real under certain conditions on the values of α and β

and the sign of x− x∗; consistently, it vanishes for β = m. The Riemann–Liouville,
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Caputo and Grünwald–Letnikov derivatives all collapse to the same operator when

x0 = −∞, the Liouville fractional derivative ∞∂
α (in particular, ∞∂

α1 = 0). When

regarded as an approximation in the limit t ≫ t0, this operator is employed in

mechanics to describe “steady state” systems, that is, systems which evolved well

after the initial transient phase at time t0. The right derivative (or integral) with

x1 = +∞ is called Weyl derivative (or integral). To get the Weyl differintegral from

the Liouville differintegral, it is sufficient to set x0 = −x1 in (2.12) and then take the

limit x0 → −∞:

(∞Ī
αf)(x) = (∞I

αF )(−x) , (∞∂̄
αf)(x) = (∞∂

αF )(−x) , (2.23)

where F (x) := f(−x).
The α-th order integral of (x−x∗)β is given by the analytic continuation α → −α

of the above formulæ for any β. In particular, to prove some commutation theorems

we will need the integral [43, eq. (2.1.16)]

Iα(x− x0)
β =

Γ(β + 1)

Γ(β + α + 1)
(x− x0)

β+α . (2.24)

The extension of eq. (2.22) to negative α is

∞I
α(x− x∗)

β =
1

Γ(α)

ˆ x

−∞

dx′
(x′ − x∗)

β

(x− x′)1−α

y=−x′

=
(−1)β

Γ(α)

ˆ +∞

−x

dy
(y + x∗)

β

(y + x)1−α

=
(−1)βΓ(−α− β)

Γ(−β) (x∗ − x)β+α

=
(−1)−αΓ(−α− β)

Γ(−β) (x− x∗)
β+α . (2.25)

Another example is the derivative of the exponential function,

f(x) = eλx , 0 6= λ ∈ R . (2.26)

For finite x0, we have

∂αeλx =
λn

Γ(n− α)

ˆ x

x0

dx′
eλx

′

(x− x′)α+1−n

y=x′−x0
=

λneλx0

Γ(n− α)

ˆ x−x0

0

dy
eλy

[(x− x0)− y]α+1−n

=
λα

Γ(n− α)
eλxγ[n− α, λ(x− x0)] , (2.27)

where we used [52, eq. 3.382.1] and γ is the incomplete gamma function. Comparing

its series representation

γ(b− 1, z) = Γ(b− 1)zb−1e−z

+∞
∑

k=0

zk

Γ(k + b)
,
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with that of the two-parameter Mittag-Leffler function [53],

Ea,b(z) :=

+∞
∑

k=0

zk

Γ(ak + b)
, a > 0 , (2.28)

one can also express eq. (2.27) as

∂αeλx = λneλx0(x− x0)
n−αE1,n+1−α[λ(x− x0)] . (2.29)

Since γ(z,+∞) = Γ(z), the exponential is an eigenfunction of the Liouville

derivative (x0 = −∞), with eigenvalues λα:

∞∂
αeλx = λαeλx . (2.30)

This can be obtained also from [52, eq. 3.382.2]. For finite x0, the eigenfunction of

the Caputo derivative is the one-parameter Mittag-Leffler function Eα(z) := Eα,1(z):

∂αEα[λ(x− x0)
α] = λEα[λ(x− x0)

α] , (2.31)

which stems from differentiating eq. (2.28) term by term via eq. (2.21) (and remem-

bering that the constant term k = 0 gives zero). Thus, the Mittag-Leffler function

Eα[λ(x− x0)
α] can be considered as the fractional generalization of the exponential

ez = E1(z). With the same procedure, one can get other expressions such as

∂α{(x− x0)
βEa,β+1[λ(x− x0)

a]} = λ(x− x0)
β−αEa,β−α+1[λ(x− x0)

a] . (2.32)

Notice, however, that one should exercise care in inferring some results by analytic

continuation of others. For instance, one does not recover eq. (2.31) from (2.32) in

the limit a → α, β → 0, because Eα,1−α(z) = [Γ(1− α)]−1 + zEα(z). The first term

would give an extra contribution (x − x0)
−α/Γ(1 − α) to eq. (2.31). The reason is

that, contrary to the case of the Riemann–Liouville derivative, the limit β → 0 of

eq. (2.21) does not give the correct result (2.19). In fact, when differentiating the

left-hand side of (2.32) term by term one picks up also the k = 0 contribution, which

is zero if β is set to zero from the beginning.

Analogous formulæ can be obtained for the right derivative by making use of

eqs. (2.12) and (2.23). For example, the right version of eqs. (2.21), (2.22) and (2.30)

are simply

∂̄α(x1 − x)β =
Γ(β + 1)

Γ(β − α + 1)
(x1 − x)β−α , β 6= 0, 1, . . . , n− 1 , (2.33)

∞∂̄
α(x− x∗)

β =
Γ(β + 1)

Γ(β + 1− α)

sin(πβ)

sin[π(β − α)]
(x− x∗)

β−α , (2.34)

∞∂̄
αeλx = (−λ)αeλx . (2.35)
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2.3 Properties of fractional operators

We list some properties of fractional operators, focussing on left Caputo differ-

integrals but quoting some results also for Riemann–Liouville operators. Here,

n− 1 < α < n and m− 1 < β < m.

We detail the derivation of most of the results for two reasons. One is that some

of the theorems below on Caputo derivatives cannot be found in [42, 43]. Another is

to give the unacquainted reader a few examples of the subtleties of fractional calculus.

In order to prove some of the statements, we will invoke the first and second theorems

of fundamental calculus on the interval [x0, x1]:

(∂nInf)(x) = f(x) , n ∈ N . (2.36)

(In∂nf)(x) = f(x)−
n−1
∑

j=1

1

j!
(x− x0)

j(∂jf)(x0) . (2.37)

2.3.1 Limit to ordinary calculus and linearity

When α = n ∈ N, one recovers ordinary calculus of integer order n [42, eq. (2.4.14)]:

lim
α→n

∂α = ∂n , lim
α→n

∂̄α = (−1)n∂n . (2.38)

In particular, when α = 0 derivatives and integrals collapse to the identity operator.

Fractional operators are linear:

Oα[c1f(x) + c2g(x)] = c1(Oαf)(x) + c2(Oαg)(x) , Oα = ∂α, ∂̄α, Iα, Īα . (2.39)

2.3.2 Commutation relations

The commutation relations

OαOβ = OβOα , Oα>0 = ∂α , Oα<0 = Iα , (2.40)

are valid under one of the following conditions.

• IαIβ
?
= IβIα.

If α, β < 0, at almost every point x ∈ [x0, x1], fractional integrals obey the

semi-group property ([42, eq. (2.100)]; [43, eq. (2.1.30)])

IαIβ = IβIα = Iα+β , ∀ α, β > 0 . (2.41)

This property holds everywhere in [x0, x1] if α + β > 1.

• ∂αIβ
?
= Iβ∂α.

If β ≥ α,

∂αIβ
(2.41)
= ∂αIαIβ−α

= Iβ−α , (2.42)
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while if β < α we have, letting k − 1 ≤ α− β < k (so that k = n−m ≤ n),

(∂αIβf)(x)
(2.37)
= (∂αIβIk∂kf)(x) +

k−1
∑

j=1

∂αIβ(x− x0)
j

j!
(∂jf)(x0)

(2.24)
= (∂αIk+β−α+α∂kf)(x) +

k−1
∑

j=1

∂α(x− x0)
j+β

Γ(1 + j + β)
(∂jf)(x0)

(2.21)
= [∂αIαIk−(α−β)∂kf ](x) +

k−1
∑

j=1

(x− x0)
j+β−α

Γ(1 + j + β − α)
(∂jf)(x0)

(2.36)
= (∂α−βf)(x) +

k−1
∑

j=1

(x− x0)
j+β−α

Γ(1 + j + β − α)
(∂jf)(x0) . (2.43)

On the other hand, when β ≥ α,

(Iβ∂αf)(x)
(2.5)
= (IβIn−α∂nf)(x)

= Iβ−αIn∂nf(x)

(2.37)
= Iβ−αf(x)−

n−1
∑

j=0

(x− x0)
j+β−α

Γ(1 + j + β − α)
(∂jf)(x0) , (2.44)

while for β < α

(Iβ∂αf)(x) = (IβIn−α∂nf)(x)
(2.5)
= [In−(α−β)∂nf ](x)

(2.41)
= [Ik−(α−β)In−k∂nf ](x)

(2.36)
= [Ik−(α−β)∂kIkIn−k∂nf ](x)

= (∂α−βIn∂nf)(x)

(2.37)
= (∂α−βf)(x)−

n−1
∑

j=0

(x− x0)
j+β−α

Γ(j + 1 + β − α)
(∂jf)(x0) . (2.45)

Therefore, eq. (2.45) is valid for all α, β > 0 and

∂αIβ = Iβ∂α, α, β ≥ 0 ⇔ (∂jf)(x0) = 0 , j = 0, . . . , n− 1 .

(2.46)

In comparison, for α, β > 0 the Riemann–Liouville relations are rl∂
αIβ = ∂α−β

(for any α and β, not just α ≥ β) and

(Iβrl∂
αf)(x) = (rl∂

α−βf)(x)−
n−1
∑

j=1

(x− x0)
β−j

Γ(1− j + β)
(rl∂

α−jf)(x0) ,

and, via eq. (2.17), one has rl∂
αIβ = Iβrl∂

α if (∂jf)(x0) = 0, j = 0, 1, . . . , n−1.
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• ∂α∂m
?
= ∂m∂α.

If β = m ∈ N
+, (2.40) holds if

(∂jf)(x0) = 0 , j = n, n+ 1, . . . , n+m− 1 . (2.47)

In fact, on one hand we have

∂α∂m = In−α∂n∂m

= I(n+m)−(α+m)∂n+m

= ∂α+m . (2.48)

On the other hand, by using eq. (2.15) twice and ∂mrl∂
α = rl∂

α+m, one gets

(∂m∂αf)(x) = (∂α+mf)(x) +
n+m−1
∑

j=n

(x− x0)
j−m−α

Γ(1 + j −m− α)
(∂jf)(x0) , (2.49)

hence the result. For the Riemann–Liouville counterpart of eq. (2.40), plug

(2.15) into (2.48): then,

(rl∂
α∂mf)(x) = (rl∂

α+mf)(x)−
m−1
∑

j=0

(x− x0)
j−m−α

Γ(1 + j −m− α)
(∂jf)(x0) ,

and rl∂
α∂m = ∂m rl∂

α when (∂jf)(x0) for j = 0, . . . , m− 1.

• ∂α∂β
?
= ∂β∂α.

Another case of interest is the commutation relation between two Caputo

derivatives. When α, β > 0, one has

(∂α∂βf)(x)
(2.5)
= (In−α∂n∂βf)(x)

(2.49)
= (In−α∂β+nf)(x) +

n+m−1
∑

j=m

In−α(x− x0)
j−n−β

Γ(1 + j − n− β)
(∂jf)(x0)

(2.24)
= (In−α∂β+nf)(x) +

n+m−1
∑

j=m

(x− x0)
j−α−β

Γ(1 + j − α− β)
(∂jf)(x0)

(2.45)
= (∂α+βf)(x)−

m−1
∑

j=0

(x− x0)
j−α−β

Γ(1 + j − α− β)
(∂jf)(x0) . (2.50)

(Incidentally, notice that one cannot analytically continue eq. (2.50) to the

cases β = m and α = n. For β = m, there is an obstruction in the step from

the first to the second line, while for α = n there is an obstruction from the

third to the fourth line. The correct expressions (2.48) and (2.49) are obtained
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from the first and third line, respectively.) Switching (α, n) and (β,m) and

comparing the expressions, one finds that

∂α∂β = ∂β∂α (2.51)

if either

n = m, (2.52)

or

α + β = n+m− 1 , (2.53)

or

(∂jf)(x0) = 0 , j = r, r + 1, . . . , r̄ − 1 , (2.54)

where r = min(n,m) and r̄ = max(n,m). Interestingly, fractional derivatives

do commute if α and β have same integer part. The reason is that eq. (2.50)

is symmetric in α and β. Notice also that ∂α∂β 6= ∂α+β unless (∂jf)(x0) = 0

for j = 0, . . . , r̄ − 1 or eq. (2.53) holds. In the latter case there fall the values

α = β = 1/2, and one has ∂
1
2∂

1
2 = ∂.

The commutation relation for the Riemann–Liouville derivatives is ([42, eq.

(2.126)]; [43, eq. (2.1.42)])

(rl∂
α

rl∂
βf)(x) = (rl∂

α+βf)(x)−
m
∑

j=1

(x− x0)
−j−α

Γ(1− j − α)
(rl∂

β−jf)(x0) .

Switching (α, n) and (β,m), the relation

rl∂
α

rl∂
β = rl∂

β
rl∂

α

holds if, simultaneously, (rl∂
β−jf)(x0) = 0 for j = 1, . . . , m and (rl∂

α−jf)(x0) =

0 for j = 1, . . . , n . Using eq. (2.17), the combined condition is

(∂jf)(x0) = 0 , j = 0, 1, . . . , r̄ − 1 .

Summarizing for 0 < α, β < 1 and m ∈ N+,

IαIβ = IβIα , ∀ α, β , (2.55a)

∂αIβ = Iβ∂α ⇔ f(x0) = 0 , (2.55b)

∂α∂m = ∂m∂α ⇔ (∂f)(x0) = 0 , (2.55c)

∂α∂β = ∂β∂α , ∀ α, β (2.55d)

for the Caputo left derivative, while

rl∂
αIβ = Iβ rl∂

α ⇔ f(x0) = 0 , (2.56a)

rl∂
α∂m = ∂m rl∂

α ⇔ f(x0) = 0 , (2.56b)

rl∂
α

rl∂
β = rl∂

β
rl∂

α ⇔ f(x0) = 0 (2.56c)
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for the Riemann–Liouville left derivative. Finally, the Liouville differintegral ∞∂
α

always commutes, for sufficiently good functions f (i.e., continuous with continuous

derivatives and which fall to zero with their derivatives sufficiently fast for x0 → −∞)

[45]:

∞I
α
∞I

β = ∞I
β
∞I

α = ∞I
α+β , ∀ α, β > 0 , (2.57a)

∞∂
α

∞I
β = ∞I

β
∞∂

α = ∞∂
α−β , ∀ α, β > 0 , (2.57b)

∞∂
α

∞∂
β = ∞∂

β
∞∂

α = ∞∂
α+β , ∀ α, β > 0 . (2.57c)

2.3.3 Fundamental theorems of calculus

The fractional derivative is the left inverse of the integral. Setting α = β in eq. (2.42),

(∂αIαf)(x) = f(x) , α > 0. (2.58)

This equation holds also for the Riemann–Liouville derivatives ([42, eq. (2.106)]; [43,

eq. (2.1.31)]).

The extra term in eq. (2.15) is responsible for the following, important difference

between Riemann–Liouville and Caputo derivatives. One of the points where frac-

tional calculus may show its worst trickiness is upon generalization of the theorems

of calculus, such as the Newton–Leibniz formula
ˆ x

x0

dx′ (∂f)(x′) = f(x)− f(x0) .

The same formula is not valid for the Riemann–Liouville derivative. In fact, one can

show that ([42, eq. (2.108)]; [43, eq. (2.1.39)])

(Iα rl∂
αf)(x) = f(x)−

n
∑

j=1

(x− x0)
α−j

Γ(α− j + 1)
(∂n−jIn−αf)(x0) , n− 1 ≤ α < n ,

so that for n = 1

(Iα rl∂
αf)(x) = f(x)− (x− x0)

α−1

Γ(α)
(I1−αf)(x0) , 0 ≤ α < 1 .

On the other hand, the Caputo derivative is the only fractional derivative obeying

a simple Newton–Leibniz formula without imposing particular boundary conditions

on the functional space. Thanks to eq. (2.41), one has

(Iα∂αf)(x) = (IαIn−α∂nf)(x) = (In∂nf)(x) ,

so that we get

(Iα∂αf)(x) = f(x)−
n−1
∑

j=0

1

j!
(x− x0)

j(∂jf)(x0) , n− 1 < α ≤ n , (2.59)
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which could have been obtained from eq, (2.45) with α = β. For n = 1,

(Iα∂αf)(x) = f(x)− f(x0) , 0 < α ≤ 1 . (2.60)

Therefore, both fundamental theorems of calculus are satisfied by the Caputo deriva-

tive. If the terminal points are not equal in Iα and ∂α, composition laws become

more complicated; we do not consider this case, since these operators are always

thought of as defined on the same domain.

2.3.4 Leibniz rule, non-locality, composite functions

Unfortunately, the Leibniz rule of derivation for a product of functions f and g is

complicated whatever the choice of derivative, since it contains an infinite number

of terms [42, eq. (2.202)]. If f, g ∈ C∞ in [x0, x], then

rl∂
α(fg) =

+∞
∑

j=0

(

α

j

)

(∂jf)(rl∂
α−jg) ,

(

α

j

)

=
Γ(1 + α)

Γ(α− j + 1)Γ(j + 1)
, (2.61)

where ∂α−j = Ij−α are actually integrations for j ≥ 1. If f and g are, respectively,

analytic and continuous in [x0, x], eq. (2.61) is valid also for α < 0 (i.e., for fractional

derivatives replaced by fractional integrals) and for Liouville/Weyl operators [45].

Equation (2.61) shows the non-local nature of fractional operators: fractional

integration by parts or derivation gives rise to an infinite number of terms. Setting

g = 1 or g = θ(x− x0), one obtains an expression of the Caputo derivative ∂α as an

infinite series of ordinary derivatives. For n = 1,

(∂αf)(x) =
1

Γ(1− α)

f(x)− f(x0)

(x− x0)α

+
+∞
∑

j=1

sin[π(j − α)]

π(j − α)

Γ(1 + α)

Γ(1 + j)
(x− x0)

j−α(∂jf)(x) , (2.62)

where we used eqs. (2.16) and (2.24).

Equation (2.62) is useful for writing down the fractional derivative (or integral)

of a composite function f [g(x)]. In fact, the simple rule

∂x[f(g)] =
∂f

∂g
∂xg (2.63)

no longer holds. The j-th derivative ∂jx[f(g)] can be further expanded as a series,

using the Arbogast–Faà di Bruno formula [42, section 2.7.3].

2.3.5 Integration by parts

For an ordinary integral where the integrand contains fractional derivatives, one has

[43, eq. (2.1.50)]
ˆ x1

x0

dx f ∂αg =

ˆ x1

x0

dx g ∂̄αf , (2.64)
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and the same formula, under suitable conditions on the functions, holds for ∂α and

∂̄α replaced by Iα and Īα, respectively. One can also consider the opposite situation,

i.e., a fractional integral where the integrand has only ordinary derivatives:

Iαx0,x1
{g∂f} =

1

Γ(α)

ˆ x1

x0

dx

(x1 − x)1−α
g∂f

=

ˆ x1

x0

dxG∂f

(

G =
1

Γ(α)

g

(x1 − x)1−α

)

= −
ˆ x1

x0

dx f∂G

= − 1

Γ(α)

ˆ x1

x0

dx

(x1 − x)1−α
f

(

∂g +
1− α

x1 − x
g

)

= −Iαx0,x1

{

f∂g +
1− α

x1 − x
fg

}

. (2.65)

The integration by parts of fractional integrals of fractional integrands can be inferred

by combining these two cases. As an example, we take a fractional integral over the

positive semi-axis. Denoting with a left subscript the lower (upper) extremum of

integration in left (right) derivatives,

Īα0,∞
{

g∂βf
}

=
1

Γ(α)

ˆ +∞

0

dx xα−1 g 0∂
βf

(2.64)
=

1

Γ(α)

ˆ +∞

0

dx f(x)∞∂̄
β [xα−1g(x)] , (2.66)

assuming that the functions f, g are good enough for all steps to be well defined.

2.4 Exterior derivative

Fractional differentials were early proposed in [54]–[57] for the Nishimoto derivative,

in [58]–[60] for the Riemann–Liouville derivative, and in [47, 61, 62] with Caputo

derivatives; early applications of fractional differential forms to mechanical systems

can be found in [62]–[66]. We shall mainly follow the results of [47, 58], with adap-

tations.

The fractional exterior derivative is defined via the left derivative as

dα := (dx)α∂α , (2.67)

and a right definition also exists: d̄α := (dx)α∂̄α. The reader may wonder, on one

hand, whether this definition is natural and, on the other hand, about the meaning

of the writing (dx)α, the “α-th power of dx.” These two questions are actually

interrelated. We shall postpone the answer to the first in section 3.3, where we will

see how the second fundamental theorem of fractional calculus (2.60) immediately

suggests eq. (2.67) as the obvious candidate for the fractional differential of a function.
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As for the second question, the object (dx)α is a compact rewriting of the fractional

differential of a certain function of x, which will be later recognized as the natural

coordinate in fractional space. By eq. (2.21), one sees that ∂α(x − x0)
α = Γ(1 + α)

and

dα(x− x0)
α = Γ(1 + α)(dx)α , (2.68)

and (dx)α is shown to be, up to a constant, the fractional differential of

q :=
(x− x0)

α

Γ(1 + α)
, [q] = −α . (2.69)

Therefore, we can recast eq. (2.67) as

dα = dαq ∂α . (2.70)

For integer α, the fractional differential behaves as the ordinary one. Taking again

eq. (2.21), one has d0(x−x0)β = (x−x0)β, d1(x−x0)β = β(x−x0)β−1dx, d2(x−x0)β =

β(β − 1)(x− x0)
β−2(dx)2, and so on.

Notice that the left-hand side of eq. (2.68) seems to be ill defined for x = x0 or

x0 = −∞ at any x, but the right-hand side just shows that these are artifacts of the

presentation in fractional coordinates. The internal structure of dα conspires with

that of the fractional coordinate to give a finite, well-defined result.

An exact fractional 1-form is the differential of a scalar function, dαf . A generic

fractional 1-form is ω = (dx)αf(x), for some function f . The exterior derivative

of ω yields a 2-form, which requires an extension of the coordinate space to many

dimensions. In that context we shall describe a geometric interpretation of fractional

differentials [56, 57].

2.5 Mixed operators

After choosing to work with the left or right sector, one can consistently define all

the elements of differential calculus within the same sector. However, in a fractional

calculus of variations we expect to have a mixing of the sectors because of eq. (2.64).

This may be a first reason to also consider versions of fractional calculus with mixed

operators.

As far as derivatives are concerned, Cresson defined the complex linear combi-

nation [67]3

Dα
λ :=

iλ+ 1

2
∂α +

iλ− 1

2
∂̄α , (2.71)

such that integration by parts becomes
ˆ x1

x0

dx f Dα
λg = −

ˆ x1

x0

dx gDα
−λf , (2.72)

3This operator was actually defined for Riemann–Liouville derivatives of mixed fractional order.
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When λ = −i and λ = +i, one recovers ∂α and −∂̄α, respectively. For λ = 0, the

same derivative operator would appear on both sides of the equation. However, the

operators ∂α and ∂̄α have complementary domains and it is not possible to define

a generalized fractional coordinate associated with the operator Dα
λ . In the interval

[x0, x), the natural fractional coordinate is eq. (2.69), while in the interval (x, x1], it

is

q̄ :=
(x1 − x)α

Γ(1 + α)
. (2.73)

One of the extrema in differintegral operators varies and, very roughly speaking, one

cannot envisage a functional which is constant in the first and second interval for

any x (compare eqs. (2.21) and (2.33) with β = α). There seems to be no natural

geometric interpretation of a theory defined with Dλ, for any λ.

Another motivation to construct mixed operators is in the way fractional inte-

gration is carried out. In fact, there are different prescriptions for generalizing the

definite Lebesgue integral
ˆ x1

x0

dx′f(x′)

to a fractional integral. The left operator Iα, eq. (2.3) with x = x1, carries a measure

weight (x1 − x′)α−1, such that the major contribution to the integral comes from

the area under the curve with x ∼ x1. On the other hand, the right operator Īα,

eq. (2.4) with x = x0, carries a measure weight (x′ − x0)
α−1 dominating near the

lower extremum, x ∼ x0: the output value of the two integrals is not the same. This

will not result in different physical qualitative properties, but will eventually lead to

different physical measurements, as we shall see in the next section. Therefore, it

may be interesting to explore other possibilities. A mixed-type generalization of the

definite integral draws inspiration from the splitting
ˆ x1

x0

dx′f(x′) =

ˆ x∗

x0

dx′f(x′) +

ˆ x1

x∗

dx′f(x′) , ∀ x∗ ∈ [x0, x1] ,

so that one can define

Ĩαx∗
f := [(Iα + Īα)f ](x∗) , (2.74)

or, more explicitly,

Ĩαx0,x∗,x1
f := Iαx0,x∗

f + Īαx∗,x1
f . (2.75)

Actually, and contrary to the Lebesgue case, due to the fractional weights the split-

ting is no longer arbitrary and Ĩαx∗
is a class of inequivalent integrals parametrized

by x∗ ∈ [x0, x1].

Notably, Ĩα can be written in terms of just one sector [63, 64, 68, 69]. After

obvious coordinate transformations, one has

Ĩαx∗
f =

1

Γ(α)

ˆ x∗−x0

0

dx′

x′1−α f(x∗ − x′) +
1

Γ(α)

ˆ x1−x∗

0

dx

x1−α
f(x∗ + x) .
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Upon changing integration variable in the first term as x′ = [(x∗ − x0)/(x1 − x∗)]x,

we obtain

Īαx∗,x1
f = Īα0,x1−x∗

f+ , (2.76)

Iαx0,x∗
f =

(

x∗ − x0
x1 − x∗

)α

Īα0,x1−x∗
f− , (2.77)

where

f+(x) := f(x∗ + x) , f−(x) := f

(

x∗ −
x∗ − x0
x1 − x∗

x

)

. (2.78)

Thus,

Ĩαx∗
f =

2

Γ(α)

ˆ x1−x∗

0

dx

x1−α
f̃(x)

= 2Īα0,x1−x∗
{f̃} , (2.79)

where

f̃(x) :=
1

2

[

f+(x) +

(

x∗ − x0
x1 − x∗

)α

f−(x)

]

. (2.80)

Therefore, the mixed integral Ĩα is equivalent to a right integral on the positive semi-

axis (the weight dominating near the origin), acting on a modified function space.

Expression (2.79) simplifies under some conditions. First, if the definite integral is

symmetric (x0 = −x1 = −R), we have

Ĩα−R,x∗,Rf =
2

Γ(α)

ˆ R−x∗

0

dx

x1−α
f̃(x) , (2.81a)

f̃(x) =
1

2

[

f(x∗ + x) +

(

R + x∗
R− x∗

)α

f

(

x∗ −
R + x∗
R− x∗

x

)]

. (2.81b)

In particular, the symmetric choice x∗ = 0 yields

Ĩα−R,0,Rf =
2

Γ(α)

ˆ R

0

dx

x1−α
f̃(x) , (2.82a)

f̃(x) =
1

2
[f(x) + f(−x)] . (2.82b)

When f is even, f̃(x) = f(x). We will use this property later to calculate multiple

volume integrals. Also, sending R → +∞ in eq. (2.81), the mixed fractional integral

can be presented as

Ĩα
R,x∗

f =
2

Γ(α)

ˆ +∞

0

dx

x1−α
f̃(x) , (2.83a)

f̃(x) =
1

2
[f(x∗ + x) + f(x∗ − x)] , (2.83b)
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which can be further specialized to x∗ = 0, if desired. Notice that this is a gener-

alization of the ordinary integral over the whole real axis, despite the fact that the

presentation (2.83) is on the positive semi-axis. Taking the absolute value |x| in the

measure, one can formally extend this presentation to the whole axis, but we prefer

to keep (2.83) because it makes explicit the existence of a boundary (the special point

x = 0). This will be the object of much discussion when defining the symmetries of

fractional spacetime [41].

Unfortunately, also the mixed integral has unattractive properties. Integration

by parts follows from the results of section 2.3.5. When the integrand has only

ordinary derivatives, one has

Ĩαx∗
{g∂f} (2.65)

= −Ĩαx∗

{

f∂g +
1− α

x∗ − x
fg

}

+
(−1)α − 1

Γ(α)
lim
x→x∗

f(x)g(x)

(x∗ − x)1−α
. (2.84)

The last term must vanish, thus imposing a function space such that for any f and

g, (fg)(x) ∼ (x∗ − x)1−α+ǫ near x ∼ x∗, where ǫ > 0. The physical meaning of this

constraint is not clear a priori. Finally, the fundamental theorems of calculus do not

hold, since there is no left inverse of the mixed integral (a linear combination of left

and right derivatives would produce cross-terms which, in general, do not cancel).

2.6 Lebesgue–Stieltjes measure and interpretation of fractional integrals

Equation (2.69) can be also regarded as the Lebesgue–Stieltjes measure associ-

ated with left fractional integrals. Indeed, the distribution q(x) defines a mea-

sure ̺α over the interval [x0, x]. This measure is the Carathéodory extension of

m̺((x∗, x]) := q(x)− q(x∗), m̺({x0}) := 0, for any x∗ ∈ [x0, x]. In fact, ̺α is mono-

tonic, non-decreasing and right-continuous. Furthermore, the properties of measures

are satisfied. We can see this intuitively by considering m̺: (i) m̺(∅) = 0, (ii)

m̺(A) ≤ m̺(B) if A ∈ B /∈ [x0, x], (iii) given a countable or finite union of sets,

m̺(
⋃

iAi) ≤
∑

im̺(Ai), where the equality holds if the Ai are disjoint Borel sets; in

particular, m̺(A \B) = m̺(A)−m̺(B). Therefore, the Riemann–Liouville integral

(2.3) can be regarded as a Lebesgue–Stieltjes (or Radon) integral [70]–[72]:

Iαf =

ˆ x

x0

d̺α(x
′) f(x′) , ̺α(x) =

(x− x0)
α

Γ(1 + α)
, (2.85)

where we made a slight abuse of notation and identified ̺α(x) withm̺((x0, x]) = q(x).

An important feature of the measure is the scaling property, inherited from q,

̺α(λx) = λα̺α(x) , λ > 0 ; (2.86)

namely, the measure of the set obtained by a rescaling x → λx is the same as the

original set, multiplied by a factor λα.
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Fractional integrals admit neat geometrical [73, 74] and physical [75, 76] inter-

pretations. Consider a function f(t) and the time integral

(Iαf)(t1) =

ˆ t1

t0

dt
(t1 − t)α−1

Γ(α)
f(t) =:

ˆ t1

t0

dt vα(t1−t)f(t) =
ˆ t1

t0

d̺α(t) f(t) . (2.87)

The geometric meaning of the left fractional integral (2.87) with α 6= 1 fixed is

shown in figure 1. The continuous curve in the box is given parametrically by the

set of points C = {(t, ̺α(t), f(t))}, where f is some smooth function. Projection

of C onto the t-f plane (̺α = const.) gives f(t), while projection onto the t-̺α
plane (f = const.) yields ̺α(t). Now, build a vertical “fence” under the curve C,
and project it onto both planes. On the t-f plane, the shadow of the fence is the

ordinary integral,

(I1f)(t1) =

ˆ t1

t0

dt f(t) . (2.88)

On the ̺α-f plane, the shadow corresponds to the fractional integral (2.87), the area

under the projection of C on such plane.

Figure 1: Geometric interpretation of Lebesgue–Stieltjes integrals as “shadows” of a

“fence.” f(t) is a generic smooth function and the measure ̺α(t) is given in eq. (2.85)

(specifically, in the figure α = 1/2).

The behaviour of the measure weight vα(t1 − t) leads to different physical sce-

narios at the extreme values of the interval 0 ≤ α ≤ 1. We can regard this weight

as a memory function and the fractional integral as a memory flux. If α = 1, the

fence lies in the t-f plane and the memory function v1 = 1 equally weighs all the

points from the initial time t0 to the final time t, eq. (2.88). Processes described

– 25 –



by integer integrals retain all the memory of the past history. The integral has the

usual meaning of “area under the curve f(t) in the interval [t0, t1].” Also, if f(t) is

the speed of a point particle, I1f is the operational definition of the distance covered

in the time interval ∆t = t1 − t0.

When α = 0, the limit of the memory function in the sense of distributions is a

delta, vα→0(t1 − t) = δ(t1 − t), the fractional integral becomes the identity operator,

and the integral of a function from t0 to t1 equals the function itself, evaluated at

the final point t1:

lim
α→0

(Iαf)(t1) = f(t1) . (2.89)

The past history is completely forgotten. Systems with no memory retention are

called Markovian, and are well described by fractional calculus in the limit α → 0.

Thinking of information as carried by “states,” α roughly corresponds to the fraction

of states preserved at a given time t. In turn, loss of information corresponds to a loss

of energy, at a rate 1−α. Hence, fractional systems are dissipative [77, 78]. Examples

are percolation clusters, porous media, collision systems, and Brownian motion. The

one-sidedness of fractional operators, in fact, is responsible for the irreversibility of

time [79].

3. Fractional Euclidean space

The extension to D topological dimensions (i.e., to D coordinates, where D ∈ N+)

is straightforward. Each direction is associated with a fractional “charge” αµ. The

corresponding Lebesgue–Stieltjes measure is

̺α(x) =
D
⊗

µ=1

̺αµ(x
µ) , (3.1)

with rescaling

̺α(λx) = λ
∑

µ αµ̺α(x) , λ > 0 . (3.2)

In general, the D parameters αµ can be different from one another. To make the

presentation as simple as possible, we shall make an “isotropy” assumption: namely,

αµ = α , ∀ µ = 1, . . .D . (3.3)

This restricts the analysis to fractional manifolds where the fractional charge is

equally distributed among the directions, and all of them are treated on an equal

footing. Anisotropic configurations are possible and different choices of the set {αµ}
(modulo permutations) correspond to inequivalent geometries. Some anisotropic

measures were given in [38].
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Before discussing fractional Euclidean space, we need the extension of fractional

differentials to many dimensions. The partial fractional derivative along the µ direc-

tion is

∂αµ := ∂αxµ , [∂αµ ] = α . (3.4)

A simple summation over coordinates yields

dα := (dxµ)α∂αµ , [dα] = 0 . (3.5)

The Einstein convention of summing over repeated upper-lower indices is employed.

Arbitrary fractional n-forms can be constructed [47, 58]. For instance, the exterior

derivative of the 1-form

ω = (dxµ)αfµ(x) (3.6)

is dαω(x) = (∂αµfν)(x) (dx
µ)α ∧ (dxν)α.

3.1 Interpretation of fractional gradients

Fractional gradients admit a geometric interpretation [56, 57], illustrated in figure 2.

Already in one dimension, the fractional derivative of an α-differentiable function f

on R can be expressed as

(∂αf)(x) = lim
y→x+

(Tαf)(y, x)− (Tαf)(x, x)

(y − x)α
, (3.7)

where Tα is a mapping suitably defined (see [55, 57] for details in the case of the

Nishimoto derivative). In particular,

(Tαf)(x+ h, x) = f(x) + dαfx(h) + hαε(h) , (3.8)

where h > 0, dαfx(h) = hα(∂αf)(x), and limh→0 ε(h) = 0. (Related to this equation

or variations on the same theme, one can develop a fractional Taylor expansion [79]–

[81].) In many dimensions, one can consider a directional fractional derivative and a

bilinear mapping (Tαf)(y,x) acting on RD ⊗RD. Let (gradαf)µ := ∂αµf be the µ-th

component of the fractional gradient of a function f . Indicating a vector x as a point

M in RD, let the gradient exist at the point M0 ∈ RD. If dM is an infinitesimal

vector displacement of the point, with coordinates (dx1, . . . , dxD), one can identify

a fractional displacement dMα as the vector ((dx1)α, . . . , (dxD)α). Therefore, the

differential dαf is given by

dαf = gradαf · dMα . (3.9)

The set Σ of points M satisfying (Tαf)(M,M0) = c, where c is a constant, is called

a level surface passing through M0. The point M0 + dM in a neighborhood of M0

belongs to Σ, but the point M0 + dMα does not. In fact, the latter determines

another level surface Σ′, (Tαf)(M,M0) = c′, at an angle β with Σ determined by

cos β = |c−c′|/‖dMα‖, where ‖ ·‖ is the norm equipping the vector space. Since dαf
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vanishes on Σ, the vectors gradαf and dMα are orthogonal, so that gradαf is not

orthogonal to (tangent vectors on) Σ at M0 for 0 < α < 1. The projection of gradαf

on the unit vector n normal to Σ at M0 has modulus gradαf · n = |gradαf | sinβ.
When α = 1, the two level surfaces coincide and c = c′, β = 0.

αgrad f

n

M

M +dM

M +dM
0

0

0

α

Σ

Σ

’

β

β

Figure 2: Geometric interpretation of fractional gradient. The symbols are explained in

the text.

3.2 Which calculus?

We define fractional Euclidean space ED
α of order α as Euclidean space RD endowed

with a set of rules Calcα = {∂α, Iα, . . . } of integro-differential calculus, a measure ̺α
with a given support, a natural norm ‖ · ‖, and a Laplacian K:

ED
α = (RD, Calcα, ̺α, ‖ · ‖, K) . (3.10)

Different sets of fractional operators in Calcα can correspond to inequivalent frac-

tional spaces. We should now make a commitment on the type of derivative and in-

tegration operators acting in ED
α , and choose between left and/or right integrals, left

and/or right Caputo or Riemann–Liouville derivatives, mixed operators, the range

of α, and so on. In fact, there are many more fractional derivatives we could have

listed here, so the choice is actually larger. For the purposes of this section, the only

ingredient we need to specify is calculus. In particular, for finite-volume calculations

we pick the left fractional integral with 0 < α ≤ 1, while we elect the left Caputo

derivative ∂α with 0 < α ≤ 1 as the building block of the differential structure of

ED
α . We postpone the choice of the Laplacian K to section 5.3, after the discussion

of the so-called harmonic structure of fractal sets. Furthermore, we anticipate that

the measure of ED
α is, for each direction, the Weyl measure ̺α(x) = xα/Γ(α + 1),
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with support on the positive real axis. Here we are interested in local properties of

fractional Euclidean space, so we do not spell the reason why the support of ̺α can

be chosen as [0,+∞) and not something else. That is given in [41].

Let us justify in detail the calculus.

• Left versus right operators : While left operators involve integration from an

initial point x0 up to the arbitrary point x, right operators integrate over

the complementary sub-interval [x, x1]. In fractional mechanics, where x =

t is time and one studies dissipative classical systems, the output of these

operators should depend on the past (rather than future) evolution of the

system, and left derivatives seem more natural. However, on one hand in

our context we do not have this type of physical interpretation and, on the

other hand, both types of operators appear in fractional Lagrangian systems

because of eq. (2.64). Fortunately, “left versus right” is a non-issue, since

the two classes of operators are actually the same under coordinate reflection

(eqs. (2.11), (2.12) and (2.23)). Further discussion of this point can be found

in [41].

• 0 < α ≤ 1: This choice is empirical. One wishes to obtain a model of space

whose dimension is smaller than the topological dimension D of the embedding

space. For a natural isotropic distribution of fractional charge over the D

coordinates, this is achieved precisely for this range of the order parameter.

The range of α will be further restricted in section 3.4.

• Caputo versus Riemann–Liouville (and others): The Caputo derivative carries

several advantages over the Riemann–Liouville operator.

(i) First, the Caputo derivative of a constant is zero for any x0, while for the

Riemann–Liouville derivative it is so only when x0 = −∞. This helps in

rendering fractional calculus more akin to the ordinary one without affect-

ing other properties. We have seen, for instance, that the fundamental

theorems of calculus are generalized in a simple way only for the Caputo

derivative. Another difference, fully appreciated only when doing tensor

calculus on curved manifolds, is that the frame metric ηµν is indeed a con-

stant matrix for the Caputo differentiation; hence, tensor calculus keeps

many of its usual rules.4 In [41], we shall see that it is possible to define a

simple fractional generalization of Poincaré symmetries precisely because

of this property of the Caputo derivative.

(ii) A popular reason to prefer Caputo over Riemann–Liouville operators is

the existence, in the former case, of a standard Cauchy problem, where

4This fact was recognized in studies of manifolds with non-holonomic structure [82]–[85], a

framework employed to integrate non-linear dynamical equations such as Einstein’s [86, 87].
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one needs to specify only the first n ordinary derivatives [42]. On the

other hand, the Riemann–Liouville operator requires the specification of n

initial conditions of the form limx→x0(I
k−αf)(x), k = 1, . . . , n, which have

no clear physical interpretation. Related considerations hold for general

non-local theories, where the Cauchy problem must be reinterpreted; such

a reinterpretation is known only for special non-local operators (e.g., [88,

89]).

(iii) There is, moreover, a simple but not very well known argument setting

the Caputo and Riemann–Liouville derivatives on a different footing [42],

and favouring the former as the most plausible operator to appear in

dynamical equations. Taking the α→ n limit of eq. (2.15), one obtains

(∂nf)(x) = (rl∂
nf)(x)−

n−1
∑

j=0

∂n−1−jδ(x− x0)(∂
jf)(x0) . (3.11)

This is nothing but the relation between the integer classical derivative,

on the left-hand side, and the derivative in the sense of distributions on

the right-hand side. Therefore, one can consider the Caputo derivative as

the fractional generalization of classical differentiation, and the Riemann–

Liouville derivative as the fractional generalization of functional differenti-

ation. In this respect, the Caputo operator is a much more natural choice

for the fractional derivative in actions defined on ED
α .

(iv) Finally, another difference between Caputo and Riemann–Liouville deriva-

tives emerges within initialized fractional calculus [49, 90]–[94]. We men-

tion it for the sake of completeness, although it has no impact in the

present discussion. Heuristically, while repeated use of ordinary integra-

tion and differentiation generates arbitrary integration constants which

are fixed by the boundary conditions of the problem, fractional integra-

tion is a continuous operator leading to a non-trivial entire function, called

complementary (or complimentary). This function is determined by ad-

ditional input on the boundary conditions. More precisely, in classical

fractional mechanics one is interested in observing a system starting from

a time t∗ later than the initial time t0 when the system began to evolve;

call f(t) the observed history, a continuous function on [t∗, t]. The ef-

fect of past history is incorporated in the complementary function. It

turns out that the inferred history for the Riemann–Liouville derivative

is continuous throughout the evolution period, and it is described just

by the function f(t), analytically continued to the whole interval [t0, t].

On the other hand, if the Caputo derivative is required to be equal to

the initialized Riemann–Liouville derivative, the analytic continuation of

f(t) is the constant f(t) = f(t∗), for t < t∗ [91]; therefore, derivatives
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of f are discontinuous at t∗, and Caputo initialization effects seem not

to be properly taken into account [94]. In our case this is not an issue,

both because we do not ask the two derivatives to coincide (we simply

make one choice and keep it all along the way) and because the context

of fractional evolution is quite different. There is no connection between

the lower terminal of integration, representing a boundary of space(time),

with the notion of performing observations at space(time) points in the

bulk. Here, all functionals are defined to have support in the domain of

the fractional integrals, so there is no need to extend the physics outside

this domain.

Different choices of calculus are not excluded. In principle, they will lead to differ-

ent quantitative details (that is, in the mapping between embedding and geometric

coordinates and in the definition of the geometric integro-differential operators). Oc-

casionally, we will compare the left theory with one with mixed operators. We saw

that these operators do not share many of the simple properties enjoyed by each

individual sector, and because of this we will not pursue a full description of a mixed

theory. Nevertheless, an example of volume calculation will show how geometry

changes from a single-sector to a mixed-sector formulation.

It is important to stress that inequivalent fractional spaces are expected to share

the same physical features. The reason is that the scaling property (3.2) of the

fractional measure is unaffected by the choice of differential operators; see sections

3.5 and 3.6.

3.3 Geometric notation

The geometry of fractional space is characterized by a set of integro-differential oper-

ators, specifying both the measure on the space and its boundary, and the notion of

distance (shortest path) between two points. The latter can be and has been derived

within fractional calculus, but these results are more transparent after introducing

a novel notation, which we call “geometric” and also carries part of the physical

interpretation of the model.

The central idea is to regard a fractional manifold as embedded in an ordinary

D-dimensional manifold constituting a mathematical ambient space. In the case

of fractional Euclidean space, the embedding is RD. While xµ, µ = 1, . . . , D, are

embedding coordinates, on the fractional manifold a natural coordinate system is

provided by the “fractional” (or “geometric”) coordinates qµ, eq. (2.69). The symbol

q leaves implicit both the coordinate dimensionality and the dependence on the

embedding coordinate domain, but this does not differ substantially from what one

does in ordinary geometry. In fact, hiding a fixed α in q is tantamount to hiding

the scaling [x] = −1 in the symbol x. Similarly, one typically specifies a coordinate

system {x} and its domain Dom(x) separately, and not as a joint symbol xDom(x). The
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coordinates (2.69), sometimes called “generalized”, were introduced in the special

case x0 = 0 (and without the Γ factor) in [63, 64, 68, 69, 77, 78] in the context of

dissipative mechanics.

Equations (2.22) and (2.34) state that there is no natural geometric coordinate

for Liouville (and also Weyl) calculus, i.e., no function q(x) such that ∞∂
αq = 1. In

fact, the right-hand side of eq. (2.69) diverges for x0 = −∞ (e.g., for global Carte-

sian coordinates). This fact should not be of concern, since this is just a mapping

stating how embedding and fractional coordinate systems are related to each other.

A singular mapping does not imply a pathology in the embedding coordinate system,

and in fact the final expressions of geometric integrals are perfectly well defined in

the language of fractional calculus, even for |x0,1| = ∞. In other words, even if there

are no geometric coordinates in pure Liouville and Weyl calculi, fractional spaces

equipped with these operators are still meaningful.

The “geometric” differential associated with the fractional coordinates q is just

dα: d := dα , [d] = 0 . (3.12)

We change notation to avoid confusion between the label α and space indices µ, ν, . . . .

From eq. (2.70), d = dq ∂αq , dq = (dx)α , (3.13)

where the “geometric” derivative is the Caputo fractional derivative regarded as a

function of q,

∂αq :=
ddq = ∂αx ; (3.14)

in particular, ∂αq q = 1. Note that eq. (3.13) can be taken as the definition of q

via dαq also in Liouville calculus (x0 = −∞; compare eq. (2.9) in [95]). Also,

∂αq 6= ∂q = (∂q/∂x)−1∂x: comparing with eq. (2.62),

(∂αf)(x) =
α

Γ(α)Γ(2− α)

∂f

∂q
+

1

q

f(x)− f(x0)

Γ(1− α)Γ(1 + α)

+

+∞
∑

j=2

sin[π(j − α)]

π(j − α)

Γ(1 + α)

Γ(1 + j)
(x− x0)

j−α(∂jf)(x) . (3.15)

In many dimensions, d := dqµ ∂αµ , ∂αµ :=
∂α

∂αqµ
. (3.16)

By virtue of the unique property ∂αµ1 = 0 typical of the Caputo fractional derivative,

∂αµ q
ν = δνµ. The symbol ∂αµ will indicate both the partial fractional derivative with

respect to xµ and the one with respect to qµ; the context should make the distinction

clear.
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Finally, we define the “geometric” integral

 q

0

:=
1

Γ(α)

ˆ x

x0

(

dx′

x− x′

)1−α

, [

 

] = 0 . (3.17)

The symbol in the left-hand side of the first equation is borrowed from the standard

notation for mean integrals, which are, of course, out of the present context. The

right-hand side was first introduced by Tarasov [47]. A definite integral over the

whole interval is simply obtained by setting x = x1. In one embedding dimension,

 q

0

dq′ = 1

Γ(α)

ˆ x

x0

(dx′)1−α

(x− x′)1−α
(dx′)α

= Iα {1}

=
(x− x0)

α

Γ(1 + α)
= q .

Therefore, posed f(q) = f(x), Eq. (2.60) is equivalent to
 q

0

df(q′) = f(q)− f(0) , (3.18)

stating that geometric integration in fractional coordinates has formally the same

properties as the ordinary integral. By formally, we mean that there will be a differ-

ence in the functional space over which the integral operators act.

Geometric integrals with different lower extrema are obtained either by a initial-

ization prescription [90] or by the composition law

 q1

q∗

:=

 q1

0

−
 q∗

0

, q∗,1 ≡
(x∗,1 − x0)

α

Γ(1 + α)
, 0 ≤ q∗ ≤ q1 .

Multiple integrals in the coordinate system {qµ|µ = 1, . . .D} follow through,
 dDq :=

 dq1 · · · dqD . (3.19)

Each fractional coordinate qµ is mapped into an embedding coordinate xµ with a

given domain. Examples of nested integral will be seen in section 3.5.

We summarize the three notation systems employed so far in table 1.

3.4 Metric and distance

In the language of first-order general relativity, arbitrary coordinate transformations

define frames which, in turn, determine the metric. Therefore, the notion of line ele-

ment naturally emerges. First-order formalism is somewhat an overkill when dealing

with Euclidean space, but one can foresee obvious applications in more general sce-

narios.
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Geometric Fractional calculus Stieltjes measure

formalism formalism formalism

Coordinates q (x− x0)
α/Γ(1 + α) x

Measure dαq (dx)α d̺(x)

Integration
ffl

Iα
´

Differentiation ∂αq ∂α ∂

Table 1: Equivalent formalisms describing calculus on a fractional manifold. The

Lebesgue–Stieltjes measure formalism, with generic measure ̺, is the most general but

it is often impractical to perform calculations.

Consider two coordinate systems {xI} and {yµ}, the first (denoted with capital

Roman indices) being the Cartesian system and the second a generic curvilinear one.

The exterior derivative of order α can be written in both systems as

(dxI)α∂αI = dα = (dyµ)α∂αµ .

Applying eq. (2.68), we get

(dxJ)α = (dyµ)α∂αµ
[xJ(y)− xJ0 ]

α

Γ(1 + α)
=: (dyµ)αeJµ , (3.20)

where eJµ, a D ×D matrix, is the fractional generalization of the vielbein. To avoid

confusion with space indices, we shall omit labels α for fractional vielbein and metric,

using the same symbols as in ordinary space. Expressing the 1-form (3.6) in y

coordinates and reversing the transformation,

ω = (dxJ)αfJ(x) = (dyµ)αeJµfJ [x(y)] = (dxI)αeµI e
J
µfJ [x(y)] ,

from which it follows the relation

eµI e
J
µ = δJI . (3.21)

One can also define the fractional metric

gµν := ηIJe
I
µe

J
ν , (3.22)

where ηIJ = δIJ is the Kronecker delta in Euclidean space. In turn, the fractional

metric gives the fractional line element

dsα := [gµν(dx
µ)α ⊗ (dxν)α]

1
2 , (3.23)

or, in geometric notation, ds2 = gµνdqµ ⊗ dqν . (3.24)
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This result for fractional two-forms suggests a natural definition of the distance

between two points. The metric of fractional Euclidean space ED
α is gµν = δµν , so in

geometric coordinates it is expressed as

∆α(q, q
′) :=

√

∆αqµ∆αqµ =

√

[∆α(q1, q′
1)]2 + · · ·+ [∆α(qD, q′

D)]2 . (3.25)

This only resembles an ordinary Euclidean distance, since ∆α(q, q
′) 6= |q − q′|. From

eq. (3.23), the coordinate distance is the 2α-norm

∆α(x, y) := {[∆(xµ, yµ)]α[∆(xµ, yµ)]
α} 1

2α :=

(

D
∑

µ=1

|xµ − yµ|2α
)

1
2α

, (3.26)

where ∆(xµ, yµ) = |xµ − yµ|. This is a norm only if α ≥ 1/2, i.e., when the triangle

inequality holds. Therefore, we can further restrict α to lie in the range

1
2
≤ α ≤ 1 . (3.27)

From the perspective of differential forms, the 2α-norm is the natural distance in

fractional space, which is a metric space. In fact, one should not confuse eq. (3.26)

with the choice of a p-norm (all topologically equivalent) in a given space: as α

changes, so does the geometry of space.

In a generic fractional geometry with α 6= 1, the Pythagorean theorem is not

valid and the shortest path between two points is neither a straight line (Euclidean

distance) nor unique. The case α = 1/2 corresponds to the so-called “taxicab” or

“Manhattan” distance, given by the rectilinear distance along the axes. In D = 2,

circles in this geometry are diamonds with edges at 45◦; the inclination of the edges

is fixed, taxicab distance not being rotation invariant (figure 3). As α increases from

(b)(a)

Figure 3: 1-norm and taxicab geometry in two dimensions. (a) Left panel: the shortest

path between two points is not unique. (b) Right panel: circles of radius R are diamonds

with edges at 45◦ with respect to the coordinate axes, |x|+ |y| = R.
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1/2 to 1, the faces of the diamond become convex until they merge into an ordinary

circle. These figures are called supercircles (a particular case of superellipse, or Lamé

curve). See figure 4. In D = 3, taxicab spheres are octahedra (figure 5).

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0
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1.0

x

y

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

q1

q2

Figure 4: Left: circles in two dimensions with unit radius in 2α-norm, |x|2α + |y|2α =

1; increasing thickness corresponds to α = 1/2, 3/4, 1. Right: the same circles in left

geometric coordinates q1 = (x − x0)
α/Γ(α + 1) and q2 = (y − y0)

α/Γ(α + 1), with x0 =

−1 = y0.

Figure 5: Spheres in taxicab geometry are octahedra, |x|+ |y|+ |z| = R.

3.5 Volume

We have already described fractional operators in one dimension, and their repli-

cation to D copies is straightforward. As one might expect, there is a fractional

analogue of areas and volumes, but their scaling properties and values will differ

from their ordinary Euclidean counterparts.
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Let M ⊂ RD be an arbitrary region in space. The fractional volume of M is

(e.g., [47])

V(D)
M :=

D
∏

µ=1

Iα[xµ] , (3.28)

where each fractional integral is defined on an interval [xµ0 , x
µ
1 ] ∋ xµ. These intervals

can be always chosen so that they cover M. If M is a rectangular region, then all

the coordinates xµ0 and xµ1 are constant. Otherwise, one can compute the volume VM

as a nested integration over elementary domains, as in ordinary calculus.

We give an example of multiple integral in the calculation, in D = 2, of the

volume V(2)(R) of a 2-ball with radius R and centered at the origin.5 With the

α-norm distance (3.26), this is the area enclosed by a supercircle B2, i.e., the set

B2 =
{

(x, y) : |x|2α + |y|2α ≤ R2α
}

. (3.29)

When α = 1, this is a disk with radius R; when α = 1/2, it is a diamond with

vertices (±R, 0) and (0,±R). We integrate first y from −r(x) to r(x), where

r(x) = (R2α − |x|2α)1/(2α) . (3.30)

Then, we integrate in x from −R to R:

V(2)(R) = Iα−R,R

{

Iα−r(x),r(x){1}
}

= Iα−R,R

{

[2r(x)]α

Γ(1 + α)

}

=
2αf2,α

Γ(1 + α)
R2α , (3.31)

where

f2,α =
1

Γ(α)

ˆ 1

−1

dx (1− x)α−1
√

1− |x|2α

=
1

Γ(α)

ˆ 1

0

dx
√
1− x2α[(1− x)α−1 + (1 + x)α−1] . (3.32)

We will reconsider this prefactor later for general D. Other examples of double

integrals can be found in [47]. Working in geometric notation, the two fractional

coordinates are

q1 =
(x+R)α

Γ(1 + α)
∈ [0,R] , R :=

(2R)α

Γ(1 + α)
, (3.33)

q2 =
[y + r(x)]α

Γ(1 + α)
∈ [0, r̃] , r̃ :=

[2r(x)]α

Γ(1 + α)
. (3.34)

5Clearly, the final result will not depend on the location of the disk in the coordinate plane.
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Therefore,

V(2)(R) =

 R

0

dq1  r̃(q1)

0

dq2 =  R

0

dq1 r̃(q1) = 2−αΓ(1 + α)f2,αR2 ,

coinciding with Eq. (3.31).

As we said, different presentations of the fractional operators lead to inequivalent

fractional spaces, where areas and volumes are weighed according to the measure in

the integral. For example, the measure weight of the α = 1/2 unit disk is v(x, y) =

[(1 − x)(1 − |x| − y)]−1/2, which is heavier for points (x, y) ∼ (1, y) and (x, y) ∼
(x, 1−|x|), corresponding to the right vertex and to the upper edges of the diamond.

This is depicted in the left panel of figure 6. Using right integration Īα[x]Īα[y], the

measure is v̄(x, y) = [(1 + x)(1 − |x| + y)]−1/2. However, due to the symmetry of

the object (eq. (3.32) is invariant under x→ −x), the value of the area is the same;

this is not true in general. On the other hand, for mixed integration Ĩα[x]Ĩα[y] with

(x∗, y∗) = (0, 0), we have

V(2)(R) = Ĩα−R,0,R

{

Ĩα−r(x),0,r(x){1}
}

= Ĩα−R,0,R

{

2Īα0,r(x){1}
}

= Ĩα−R,0,R

{

2[r(x)]α

Γ(1 + α)

}

=
4

Γ(1 + α)
Īα0,R

{

√

R2α − |x|2α
}

=
2f̃α,2

Γ(1 + α)
R2α , (3.35)

where we used the fact that the integrand is even and

f̃2,α =
2

Γ(α)

ˆ 1

0

dx xα−1
√
1− x2α . (3.36)

Therefore, in this case the measure weight for α = 1/2 is ṽ(x, y) = |xy|−1/2, which

diverges along the axes x = 0 and y = 0; see the right panel of figure 6.

The angle factors fα,2 and f̃2,α represent the ratio of the area of the disk and a

certain power of its radius. Measurements of both would then determine the angle

factor and, in principle, provide an experimental discrimination between left/right

and mixed theories. In general, one can envisage local measurements of geometry in

vacuum, made at scales and in conditions where gravitational effects (such as tidal

forces) are negligible, to check if geometry in a local inertial frame is Euclidean.

For instance, one could take experiments on the equivalence principle and Lorentz

violation and, by reverse engineering, place experimental bounds on the angle factor.

In standard theories, at human scales (say, below 1 km) Euclidean geometry holds

and the theoretical value of the angle factor is π. However, if a fractional theory with
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Figure 6: Density plots of the area measure of a 1-norm disk. The integration measure

weight is represented in light to dark shade, darkest shade being points where it diverges.

From left to right: left integration, right integration, mixed integration.

dimensional flow was a correct description of Nature, we would expect the parameter

α not to be exactly equal to 1 at sufficiently large scales. In other words, an expansion

in α = 1 − ǫ/D, 0 < ǫ ≪ 1, would yield a correction to the Euclidean angle factor,

which can be constrained from above by experiments [41].

We can find the form of this correction in arbitrary dimension. To begin, we

prove by induction that the volume of a closed D-ball

BD =

{

xµ :

D
∑

µ=1

|xµ|2α ≤ R2α

}

(3.37)

is

V(D)(R) = ΩD,αR
Dα , (3.38)

where ΩD,α is the volume of a unit ball. We first work with fractional calculus and

then in geometric notation, to show how the latter is more transparent. Suppose

eq. (3.38) true in D − 1 dimensions for a ball of radius r(x) = (R2α − |x|2α)1/(2α).
Then, integrating also in the direction x,

V(D)(R) = Iα−R,R

{

V(D−1)[r(x′)]
}

= ΩD−1,α I
α
−R,R

{

r(D−1)α(x′)
}

x=x′/R
= ΩD−1,αfD,αR

Dα , (3.39)

where

fD,α =
1

Γ(α)

ˆ 1

−1

dx (1− x)α−1(1− |x|2α)D−1
2

=
1

Γ(α)

ˆ 1

0

dx (1− x2α)
D−1
2 [(1− x)α−1 + (1 + x)α−1] . (3.40)
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In geometric notation, the fractional coordinate over which one integrates is given

by eq. (3.33). In terms of the fractional radius R, the the volume (3.38) scales as

V(D)(R) = ωD,αRD , ωD,α = ΩD,α

[

Γ(1 + α)

2α

]D

. (3.41)

Then, given a (D − 1)-ball of radius r̃ = (2r)α/Γ(1 + α), one has

V(D)(R) =

 R

0

dq V(D−1)[r̃(q)]

= ωD−1,α

 R

0

dq r̃D−1(q)

= 2−αΓ(1 + α)ωD−1,αfD,αRD , (3.42)

in agreement with eq. (3.39). Formally, this is the same calculation as for (one orthant

of) a D-ball in Euclidean space, the difference being in the angular factor. Thus,

from the point of view of the observer in the fractional manifold, the ball scales as it

should. However, fractional coordinates/distances have anomalous scaling (x → λx

implies q → λαq), so the embedding volume of the ball scales as RDα. When D = 2,

one recovers the explicit result for the superellipse.

The angular factor ΩD,α is obtained by solving the recursive equation ΩD,α =

ΩD−1,αfD,α with initial condition Ω1,α = f1,α = 2α/Γ(1 + α):

ΩD,α =
D
∏

n=1

fn,α . (3.43)

We were unable to compute ΩD,α explicitly in finite form for general α, but one

can do so for several special cases. For instance, when α = 1/2, one obtains [52,

eq. 3.197.3]

ΩD, 1
2
=

√
2

(

4

π

)
D
2

D
∏

n=2

[

1

n
+

1

n+ 1
2F1

(

1
2
, 1; 3+n

2
;−1

)

]

. (3.44)

When a = 1− ǫ/D, 0 < ǫ≪ 1, we get the standard result plus corrections. In fact,

fD,1− ǫ
D
= 2

ˆ 1

0

dx (1− x2)
D−1

2

− ǫ

D

ˆ 1

0

dx (1− x2)
D−1

2

[

2γ + ln(1− x2)− (D − 1)
x2 ln x2

1− x2

]

+O(ǫ2) ,

where γ = −ψ(1) ≈ 0.577 is Euler constant and ψ is the digamma function. Using

formulæ 3.251.1 and 4.253.1 of [52],

fD,1− ǫ
D
=

√
πΓ
(

D+1
2

)

Γ
(

D
2
+ 1
)

{

1− ǫ

2D

[

2γ + ψ

(

D + 1

2

)

− ψ

(

3

2

)]}

+O(ǫ2) . (3.45)
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Then,

ΩD,1− ǫ
D
=

D
∏

n=1

fn,1− ǫ
D

= ΩD,1

{

1− ǫ

2

[

2γ − ψ

(

3

2

)

+
1

D

D
∑

n=1

ψ

(

n+ 1

2

)

]}

+O(ǫ2) , (3.46)

where

ΩD,1 =
D
∏

n=1

√
πΓ
(

D+1
2

)

Γ
(

D
2
+ 1
) =

πD/2

Γ
(

D
2
+ 1
) (3.47)

is the standard unit volume.

In tables 2 and 3 we compare these unit volumes with the standard ones, and with

the result which would come from a traditional dimensional regularization procedure,

where the topological dimension is formally expanded as D − ǫ:

ΩD−ǫ,1 = ΩD,1

{

1− ǫ

2

[

lnπ − ψ

(

D

2
+ 1

)]}

+O(ǫ2) . (3.48)

D ΩD,1/2 Ω̃D,1/2

2
√
2 4

π
π = 4

3 (
√
2− 1)8

3

√

2
π
≈ 0.88 8

π3/2
4π
3
≈ 6

4 2
√
2(
√
2− 1)

(

1− 2
π

)

≈ 0.43 16
π2

π2

2
= 8

Table 2: Volume of unit D-balls in various dimensions for α = 1/2, in left/right and

mixed theories (with xµ∗ = 0).

Left fractional expressions are not as neatly symmetric as those of integer calculus

because fractional integral operators are not even in the embedding coordinates. In

the mixed theory, the volume of a D-ball scales as in eq. (3.38), but with angle factor

given by

Ω̃D,α =

D
∏

n=1

f̃n,α , (3.49)

where

f̃D,α =
2

Γ(α)

ˆ 1

0

dx xα−1(1− x2α)
D−1
2 , (3.50)

and Ω̃1,α = f̃1,α = 2/Γ(1+α). This integral can be expressed in terms of Γ functions

and one has

Ω̃D,α =
ΩD,1

[Γ(1 + α)]D
. (3.51)
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In particular, for α = 1/2 the volume is enhanced by a factor (2/
√
π)D, and in

general it is considerably greater than in the left theory (table 2). Expanding in

α = 1− ǫ/D, one has

Ω̃D,1− ǫ
D
= ΩD,1[1 + ǫ(1− γ)] +O(ǫ2) . (3.52)

The coefficients in the ǫ corrections have opposite sign with respect to the left/right

and dimensional-regularization cases (table 3), and are one and the same for any D.

As a consequence of eq. (3.51), which define the effective constant π̃ := π[1 + ǫ(1 −
γ)/n], these corrections can be written relative to π and are the same for D = 2n and

D = 2n+1 dimensions in the mixed theory. Anyway, ǫ is expected to be constrained

to extremely small values by experiments, so the actual coefficients in front of it

are not important except for highlighting this concrete comparison of inequivalent

theories.

D ΩD,1−ǫ/D Ω̃D,1−ǫ/D ΩD−ǫ,1

2 π(1− 0.42ǫ) π(1 + 0.42ǫ) π(1− 0.36ǫ)

3 4π
3
(1− 0.54ǫ) 4π

3
(1 + 0.42ǫ) 4π

3
(1− 0.22ǫ)

4 π2

2
(1− 0.63ǫ) π2

2
(1 + 0.42ǫ) π2

2
(1− 0.11ǫ)

Table 3: Volume of unit D-balls in various dimensions, for α ∼ 1, in left/right and mixed

theories (with xµ∗ = 0). The corrections in traditional dimensional regularization are shown

in the last column.

3.6 Hausdorff dimension of space

When dealing with exotic sets, it is important to define a sensible notion of dimension.

Sometimes, the imprecise name “fractal dimension” is used to indicate one or more

among the many possible (and inequivalent) definitions of dimension, which may

create much confusion. Here we specialize to one such definition, the Hausdorff

dimension. Before doing so, we make general remarks on dimension counting [96].

Let F be an object living in a D-dimensional space. To measure its volume, one

can take the minimum number N(δ) of n-balls, n ≤ D with radius δ centered at

points in F and such that they cover F (i.e., each point in F lie in at least one ball).

The number N(δ) increases as δ decreases, approaching the behaviour N(δ) ∼ δ−dB

as δ → 0. Then, the number

dB := − lim
δ→0

lnN(δ)

ln δ
(3.53)

is called the box-counting dimension of F . (Strictly speaking, there exist a lower

and an upper box-counting dimension, given by the lim inf and lim sup, respectively;

when they coincide, they reduce to eq. (3.53).) For instance, if F is a square or a

disk, the covering of 2-balls will show that dB = 2, if it is a cube or a 3-ball, a 3-ball
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covering will give dB = 3, and so on. Very irregular or fractal sets will not be smooth

and their dimension will be, in general, non-integer (although there exist also fractals

with integer dimension). Intuitively, a set with many irregularities will require more

balls for being covered, and their number will increase faster than expected; a typical

example is an irregular porous surface, for which dB > 2 [97]. On the other hand, a

surface with “too many holes” may require less balls than a smooth one. For a given

n, the shape of the covering sets is not important, and one could use, for instance,

n-cubes of edge length δ instead of n-balls; what matters is how the volume of the

probe scales with its size.

The box-counting dimension above is only a particular definition of dimension,

and it often proves to have a number of inconvenient properties. It is desirable to

have a different (not just more general) notion of dimension as follows. The idea is

similar, namely, to define a “minimal” covering for F ⊂ RD, but now taking covering

sets of different size. Let |U | = sup{∆(x, y) : x, y ∈ U} be the diameter of a set

U ⊂ RD, i.e., the greatest distance ∆(x, y) between two points in U . A δ-cover of

F is a countable or finite collection of sets {Ui} of diameter at most δ that cover F :

F ⊂ ⋃i Ui, with 0 ≤ |Ui| ≤ δ for all i. If s ≥ 0 is a real non-negative parameter, one

can define

̺sH(F) := lim
δ→0

inf

{

∑

i

|Ui|s : {Ui} is a δ-cover of F
}

. (3.54)

This limit exists (it can be also 0 and +∞) and is a measure, the s-dimensional

Hausdorff measure of F . One can check that it is proportional to the n-dimensional

Lebesgue measure for integer s = n ≤ D (length, area, volume, and so on). The

Hausdorff measure obeys the scaling property (in coordinate notation)

̺sH(λx) = λs̺sH(x) , (3.55)

where λ > 0 is the scale factor of a dilation x → λx. One can show that ̺sH is

non-increasing with s and there exists a critical value of s at which the measure

jumps from +∞ to 0. This is the Hausdorff dimension (or Hausdorff–Besicovitch

dimension) of F [98]:

dH(F) := inf{s : ̺s(F) = 0} = sup{s : ̺s(F) = +∞} . (3.56)

This definition allows one to calculate dH via the behaviour of the Hausdorff measure.

The latter diverges for s < dH, is zero for s > dH, and may be 0, +∞ or finite at

s = dH. In general, dB 6= dH.

Taking balls as the covering sets Ui, one defines a measure which jumps at

the same critical value dH of the Hausdorff measure [96]. This determines a local,

operational definition of the Hausdorff dimension dH of a smooth set such as an
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integer or a fractional manifold of topological dimension D: dH is given by the

scaling law for the volume V(D) of a D-ball of radius R:

V(D)(R) ∝ RdH . (3.57)

Therefore,

dH = lim
δ→0

lnV(D)(δ)

ln δ
= lim

δ→0

ln ̺[BD(δ)]

ln δ
, (3.58)

where in the last step we formally expressed the volume as the measure of a D-ball.

Thus, in section 3.5 we implicitly proved that the Hausdorff dimension of isotropic

fractional Euclidean space is

dH = Dα . (3.59)

Also, we calculated volume corrections for a nearly integer dimension, when α ∼ 1

and

dH = D − ǫ . (3.60)

The scaling of V(D) reproduces the estimates of fractal distributions in the fractional

continuum approximation [63, 64, 68, 69, 99]–[102] as well as the heuristic scaling of

general Lebesgue–Stieltjes measures in certain regimes [23, 38, 39].

Since fractional space is smooth, one expects most of the inequivalent definitions

of fractal dimension to collapse one into the other. For instance, the Hausdorff

dimension of the product F1 × F2 of two fractals is greater than or equal to the

sum of the Hausdorff dimensions of the two sets, but it is strictly equal if the upper

box-counting dimension coincides with the Hausdorff dimension for either F1 or F2

[96, corollary 7.4]. The box-counting dimension of a fractional ball is the same as its

Hausdorff dimension,

dB = dH , (3.61)

hence the result (3.59). In section 4.2, we will reobtain eq. (3.59) two more times by

symmetry arguments of fractal geometry.

The class of fractional spaces ED
α is bounded by two limiting cases. When α = 1

in all directions, one recovers D-dimensional Euclidean space, where the measure

weight is uniform and all points are on an equal footing. A particle has full memory

of its past history and the dynamics is determined by certain initial conditions. On

the opposite side, when α = 0 the measure weight is peaked at the boundary of

space, but integration reduces to the identity operator. The action is defined at a

point and the space is zero-dimensional. This “Pointland” universe has no memory

whatsoever of its history and, because it has no extension, it has no dynamics at all.
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4. Fractional versus fractal

As soon as fractals made their appearance in the literature [103], the anomalous

scaling of fractional measures induced the perception that certain phenomena with

fractal properties might be described by fractional calculus [104]. Later, it was argued

that the fractional charge α is related with the Hausdorff dimension of certain fractal

objects [80, 105]. Fractional equations can approximate, in some sense to be made

precise, self-similar deterministic (also known as nested) fractals such as the Cantor

set [106] and von Koch curves [105], and random fractals such as (the trail and graph

of) Brownian and fractional Brownian motion [105]. Criticism on the results of [106]

and on the connections between fractional calculus and fractals [107, 108] led to

their clarification for the Cantor set [109, 110] and their progressive generalization to

self-similar sets (finite or infinite) generated by linear mappings (random self-similar

[109, 110], self-similar deterministic [75, 109, 110], and generalized self-similar sets

[75]), generalized cookie-cutter sets where only the first similarity is linear [111, 112],

generalized net fractals (defined by contractions) where only the first mapping is

linear [113] and, finally, generalized net fractals generated by non-linear mappings

[114]–[116].

By now, it is established that fractional systems are not indiscriminately equiva-

lent to fractal systems. On one hand, there are features of deterministic fractals which

are not reproduced by the simplest fractional systems. On the other hand, random

fractals are indeed describable by fractional tools (section 4.4). Dynamical systems

with fractal properties in certain static regimes have been successfully modeled by

chaotic and fractional systems [43, 49]. Fractional differential equations (such as

the generalization of the Fokker–Planck–Kolmogorov equation) well describe, for in-

stance, self-similar dynamics, Lévy flights, and anomalous diffusion in chaotic Hamil-

tonian systems and systems close to thermal equilibrium [61, 63, 68, 69, 117]–[128]

(see [129, 130] for reviews). Fractional Brownian motion [96] is also related to frac-

tional calculus. Fractal domains characterized by a mass distribution or correlation

functions with anomalous scaling are, in general, very irregular at small scales; this

is the case in many physical systems such as porous materials, colloidal aggregates

and branched polymers [97, 131]–[134]. These media, however, can be considered as

continuous at scales much larger than the characteristic size of the irregularities, such

the pores in porous media [99]. Fractional systems, therefore, can be regarded as con-

tinuum approximations where the detailed microscopic structure of these materials

is smoothened without loosing anomalous scaling [99, 101, 102]. This picture holds

not only for mass distributions but, for instance, also in the description of the prop-

agation of electromagnetic waves in dielectric media [135], and in other applications

(e.g., [102] and references therein).

To understand in what sense fractional models describe fractals, and whether

fractional Euclidean space ED
α is a fractal, we first fix the rules of the game, analyze
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what properties a fractal should have, and compare these properties with those of ED
α .

This is a natural starting point where to draw a more precise comparison. Perhaps

the most universal qualities of fractals are [96]

1. a fine structure;

2. an irregular structure;

3. self-similarity.

Despite the fact that there are counterexamples of fractals not possessing one or

more of these features, one must rely on them rather than on a sharp mathematical

definition. As a matter of fact, there does not exist a unique definition of “fractal,”

other than “I know one when I see one” [136].

4.1 Fine and irregular structure

A fractal F has a fine structure if it has detail at every scale. Intuitively this means,

first of all, that one can zoom indefinitely into a fractal and always meet points

belonging to F , and, secondly, that in doing so one will always see non-trivial details.

A smooth manifold M as well as fractional space ED
α can be zoomed in indefinitely

(they are continuum structures) but they lack details at all scales.

Typically, fractals are also too irregular to be described with traditional geo-

metric tools. This means that ordinary calculus does not apply to very discontin-

uous sets, and one must resort to rather advanced techniques to define measures,

Laplacians, spectral theory, and so on. A smooth manifold M does not satisfy this

property. Fractional space ED
α does by definition, although this is associated with

an asymmetry of measure weights rather than manifest irregularity. At this point

it becomes clear why fractional models are regarded as approximations of certain

fractals: they do possess properties 1. and 2., but in a rather “dull” way. So ED
α is

a fractal, technically, albeit of a rather uninteresting type as far as these properties

are concerned.

This is true only for fractional Euclidean space, where α is real and fixed. When

lifting both these assumptions, and allowing α to be complex-valued and vary with

the scale, it turns out that the structure becomes extremely rich, and much closer to

that of genuine multi-fractal sets [41].

4.2 Self-similarity and self-affinity

Many fractals are self-similar, either exactly, approximately, or statistically. Roughly

speaking, a set F is exactly self-similar if it is made of N(λ) copies of itself of scale

λ. Then, the similarity dimension or capacity of the set is [137, 138]

dC := − lnN(λ)

lnλ
. (4.1)
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For instance, a hypercube in D dimensions can be thought of as the union of N = 2D

copies of itself, each of size λ = 1/2 with respect to the original. Then, dC = D.

One can take finer subdivisions in N(λ) = (1/λ)D copies of size λ, and obtain the

same result. In this sense, ordinary Euclidean space is trivially self-similar: λ can

be chosen arbitrarily. Genuine fractals have a more interesting self-similarity: for

instance, the von Koch curve is the composition of 4 copies, each 1/3 of the original,

hence dC = ln 4/ ln 3; the Cantor set is made of 2 copies of the original, each scaled

λ = 1/3, hence dC = ln 2/ ln 3; and so on. In most cases, like those just mentioned,

the similarity dimension coincides with the box-counting dimension (3.53) and the

Hausdorff dimension [96, section 9.2]. It is instructive to see this via the rigorous

definition of self-similar sets. The ensuing calculations, employing the technique

of contractions so often used in fractal analysis, will be more lengthy than those

stemming from (4.1), but they will also allow us to obtain very precise informations

about the structure of fractional space and its Hausdorff dimension.

We begin with sets in RD. Consider a set of N maps Si : RD → RD, i =

1, . . . , N ≥ 2, such that

∆[Si(x),Si(y)] ≤ λi∆(x, y) , x, y ∈ R
D , 0 < λi < 1 , (4.2)

where the distance ∆ between two points is ∆(x, y) = |x − y| in ordinary integer

geometry. Any such map is called contraction and the number λi is its ratio. If

equality holds, Si is a contracting similarity or simply a similarity; if, moreover,

λi = 1, it is an isometry. Thus, a similarity transforms a subset of RD into another

set with similar geometry. Many fractals are invariant under contraction maps and

can be expressed as the union

F =
N
⋃

i=1

Si(F) . (4.3)

Given N contraction maps Si, F exists, is unique, non-empty and compact. The

writing (4.3) is an “embedding” definition of a fractal, which is thought of as a

subset of Euclidean space. There is also a topological presentation which requires no

embedding. For any non-empty compact set U one can define the transformation

S(U) :=
N
⋃

i=1

Si(U) (4.4)

and its k-th iterate Sk := S ◦ · · · ◦ S. If Si(U) ⊂ U for all i, then one can show that

F =
∞
⋂

k=1

Sk(F) . (4.5)

In practice, this means that a fractal can be constructed by iterations of contractions.

The k-th iteration may be regarded as a pre-fractal, an approximation of F . The
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Hausdorff dimension of these fractals is bounded from above [96]:

dH(F) ≤ s , where
N
∑

i=1

λsi = 1 . (4.6)

When the Si in eq. (4.3) are similarities, the attractor F is called an exactly (or

strictly) self-similar set, and it is a union of smaller copies of itself [139]. In general,

one further requires that the similarities obey the open set condition: namely, there

exists a non-empty open bounded set U ⊃ F containing a disjoint union of its copies,

U ⊃
N
⋃

i=1

Si(U) . (4.7)

If this condition holds, then one can prove that

N
∑

i=1

λ
dH(F)
i = 1 . (4.8)

A heuristic quick proof of this formula makes use of the scaling property (3.55) of

the Hausdorff dimension. For a self-similar set (4.3),

̺sH(F) =

N
∑

i=1

̺sH[Si(F)] =

N
∑

i=1

λsi̺
s
H(F) , (4.9)

and assuming that ̺sH(F) is finite at the critical value s = dH(F), one can divide by

̺sH(F) to obtain (4.8).

Thus, if one can define a set F via similarities, eq. (4.8) gives the Hausdorff

dimension of F . Let us reconsider some of the examples mentioned at the beginning

of the section. The middle-third Cantor set is defined by

S1(x) =
1
3
x , S2(x) =

1
3
x+ 2

3
; (4.10)

then, 1 = 2(1/3)dH implies dH = ln 2/ ln 3. Another self-similar fractal is the

Sierpiński triangle or gasket, the attractor of three similarities of ratio 1/2; there,

1 = 3(1/2)dH implies dH = ln 3/ ln 2. Other fractals, such as the non-linear Cantor

set, can be defined by non-linear contractions or similarities. A more trivial but, for

our purpose, instructive case is F = R
D. In fact, one can work instead with a com-

pact subset, the unit hypercube F̃ = [0, 1]D = [0, 1]× · · · × [0, 1], where the extrema

are chosen without loss of generality; then, the natural unbounded extension of the

set will have the same Hausdorff dimension. Take first the caseD = 1 and the interval

F = [0, 1]. This can be expressed as the union [0, 1] = [0, λ]∪[λ, 1], where 0 < λ < 1.6

6The argument can be carried out verbatim for the semi-open interval [0, 1), where S1(F̃) ∩
S2(F̃) = ∅.
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But this is equivalent to define two similarities such that F̃ = S1(F̃)∪S2(F̃), where

S1(x) = λx , λ1 = λ , (4.11a)

S2(x) = (1− λ)x+ λ , λ2 = 1− λ . (4.11b)

These maps satisfy the open set condition, as one can verify simply by taking open

intervals. Therefore,

1 = λdH + (1− λ)dH ⇒ dH = 1 .

In more than one dimension, it is convenient to set λ = 1/2. In two dimensions, one

has a square given by four smaller copies, and 4(1/2)dH = 1 yields dH = 2. In general,

a hypercube can be expressed by N = 2D similarities (as many as the number of

orthants) with equal ratios λi = 1/2, so that

1 = 2D
(

1

2

)dH

⇒ dH = D . (4.12)

R
D is not a genuine self-similar fractal because it is not defined by similarities with

a fixed 0 < λ < 1: the similarity ratio λ is arbitrary. Also, a finite number of

iterations Sk (actually, just one, k = 1) is sufficient to obtain the set, which coincides

with its pre-fractal approximation. In this last sense, Euclidean space is not a non-

trivial self-similar fractal. Furthermore, RD is not completely characterized by the

similarities (4.11). In the above construction for a unit hypercube, the similarity

S1(x
µ) = λxµ + a is just a contraction and translation equal along all directions,

but RD enjoys many more symmetries, including inequivalent contractions/dilations

along different directions, rotations (∆[S(x), x0] = ∆(x, x0)), translations (S(xµ) =
xµ + aµ, where also a now is a vector) and reflections (S(xµ) = aµ − xµ). These are

examples of affine transformations, linear mappings of the form

x′
µ
= S(xµ) = Aµ

νx
ν + aµ, (4.13)

where A is a D ×D matrix. Linear similarities are a particular case of affine trans-

formations. The attractor of a sequence of affine transformations is a self-affine

set:

F =

N
⋃

i=1

[Ai(F) + ai] . (4.14)

Typical examples of self-affine fractals are “fern-like” and “tree-like” sets. It is rather

difficult to find general results on the dimension of self-affine sets, and formulæ such

as (4.6) or (4.8) are no longer valid [96]. From our perspective, it is sufficient to

note that if one can show that a set F is self-similar under a certain sequence of

similarities, then eq. (4.8) allows one to find its Hausdorff dimension, while if one
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only knows that a set F is self-affine, the calculation of the dimension may become

less clear.

In the trivial example of F = RD, one knows dH(F) from a direct calculation

of volumes. Then, one notices that F is self-affine, but in particular it is invariant

under certain similarities Si. Using this last property, we have recalculated the

Hausdorff dimension. This exercise would be pointless were it not for the insight it

can give us for the fractional Euclidean space ED
α . In fact, while the symmetries of

fractals are used to calculate or estimate their dimension, here we can reverse the

logic and ask what are the symmetries characterizing fractional space. We know its

Hausdorff dimension from the operational definition (scaling law of D-ball volumes).

Therefore, because of eqs. (3.55) and (3.2), if ED
α is self-similar, then eq. (4.8) holds

with dH = dC. Sometimes, the scaling property of the measure is erroneously taken as

the definition of self-similarity, but we have seen that scaling alone is not sufficient to

guarantee self-similarity. Thus, we would like to go into some detail in the symmetry

structure of fractional spaces.

Already in one dimension, however, we see a difference with respect to the or-

dinary Euclidean case. Take, as before, the unit interval [0, 1]. If we took two

similarities

Sα,1(x) := λ
1
αx , Sα,2(x) := (1− λ)

1
αx+ a , (4.15)

for some λ and a, by eq. (4.8) we would obtain the expected dimension dH = α, but

the resulting set would be a Cantor dust. In its first iteration, it would be the union

of the intervals [0, λ1/α] and [a, a + (1− λ)1/α], with gap a− λ1/α in between. In its

second iteration, the intervals would be further split, and so on until one obtains a

totally disconnected set. However, this is not what we expected, i.e., a continuous

space. What went amiss is the requirement, here ignored, of endowing sets of R with

a fractional measure. In other words, the correct procedure is to define similarities on

the “fractional interval” [0, 1]α spanned, by definition, by the geometric coordinate

q:

S1(q) := λq , S2(q) := (1− λ)q + λ . (4.16)

These similarities would guarantee that [0, 1]α = [0, λ]α∪[λ, 1]α and that dH([0, 1]
α) =

1, consistently with eq. (3.42) in one dimension. From this, one infers that dH(Eα) = α

and, extending to D embedding dimensions, dH(ED
α ) = Dα. Calculations where

dH = D− ǫ correspond, in the fractal picture, to regimes with “low lacunarity,” i.e.,

where fractal space is almost translation invariant [140].

As a mapping on x, and assuming without loss of generality that x0 = 0 [41],

{S1[q(x)]}1/α ∝ Sα,1(x) is a linear similarity, but

{S2[q(x)]}
1
α ∝ S̃α,2(x) = [(1− λ)xα + λΓ(1 + α)]

1
α 6= Sα,2(x)
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is neither linear nor a similarity.7 Therefore, an estimate of dH(ED
α ) via symmetry

arguments seems unpractical in x coordinates, while it is straightforward in geometric

coordinates. The reason why we dwelt so long on the topic of self-similarity and self-

affinity is that it constitutes the starting point wherefrom to attack the important

problem of the isometry group of fractional time. The integer case strongly suggests,

in fact, that this group be given by the affine transformations

q′
µ
= S(qµ) := Aµ

νq
ν + aµ , (4.17)

for some D ×D matrix Aµ
ν and some vector aµ. We shall continue the discussion in

[41], where it will be extended to spacetimes with Lorentzian signature.

We wish to insist upon the characterization of fractional spaces as self-similar

sets, and rederive the result dH = α under yet another perspective. The concept of

self-similar measure is fundamental not only to this purpose, but also for determining

the spectral dimension of spacetime and for generalizing the fixed-α case to multi-

fractional scenarios.

Let Si be N similarities defining a self-similar set F . Suppose the strong sepa-

ration condition holds, i.e., there exists a closed set U such that Si(U) ⊂ U for all

i = 1, . . . , N and Si(U) ∩ Sj 6=i(U) = ∅. F ⊂ U is constructed taking sequences of

similarities and the intersection of set Uk = Si1 ◦ · · · ◦ Sik(U). If |U | = 1, then the

diameter of the k-th iteration set is the product of similarity ratios, |Uk| = λi1 . . . λik .

Let 0 < gi < 1 be N probabilities (or mass ratios, or weights), such that
∑

i gi = 1.

One can imagine to distribute a mass on sets Uk by dividing it repeatedly in N

subsets of Uk, in the ratios g1 : · · · : gN . This defines a self-similar measure ̺ with

support F , such that ̺(Uk) = gi1 . . . gik and, for all sets A ⊆ F [139],

̺(A) =
N
∑

i=1

gi ̺[S−1
i (A)] . (4.18)

For Cantor sets where N = 2, eq. (4.18) is said to be a binomial measure (e.g.,

[141]). The case N = +∞ corresponds to infinite self-similar measures, describing

fractals with an infinite number of similarities [142, 143]. Given a real number u, we

define the singularity (or correlation) exponent θ(u) as the real number such that

[141]–[146]
N
∑

i=1

gui λ
θ(u)
i = 1 . (4.19)

The correlation exponent exists and is unique, since 0 < λi, gi < 1. As a function of

u, θ is decreasing and limu→±∞ θ(u) = ∓∞. The generalized dimensions are defined

7By using the mean value theorem, one can show that S̃α,2 is a contraction on any compact

interval [xa, xb] for xa > x0 (compare [96, example 9.8]). However, this fact does not add much to

the discussion in the text.
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as

d(u) :=
θ(u)

1− u
, u 6= 1 , (4.20)

and a non-singular definition, which we do not report here, is employed for u = 1.

Self-similar measures are associated with multi-fractal sets, where the mass is not

equally distributed among the smaller subsets of F . Fractals characterized by just

one dimension at all scales are special cases of multi-fractals. For nested fractals, the

probabilities are all equal to gi = 1/N . In all fractals with equal contracting ratios

λi = λ, the generalized dimensions all coincide with the capacity (4.1) of the set,

which is also the Hausdorff dimension. In fact, from eq. (4.19),

N
λθ(u)

Nu
= 1 ⇒ d(u) = − lnN

lnλ
= dC = dH . (4.21)

Trivially, for the unit interval [0, 1] the scaling is λ = 1/N = gi, and dH = 1.

Let us apply eq. (4.19) to a fractional line of fixed order α. As for the ordinary

real line, the mass is equidistributed on all subsets, and the probabilities are still

gi = 1/N . N is arbitrary but can be fixed to N = 2, in which case ̺α is a binomial

measure. In geometric coordinates, the scaling is λ = 1/N = 1/2 and equals the gi,

so 1 = 21−dH implies dH = 1 and dH = α for embedding coordinates. From the point

of view of the fractional interval spanned by the x, the scaling is

λ = g
1
α
i =

(

1

N

)
1
α

=

(

1

2

)
1
α

, (4.22)

which is smaller than in the integer case. Then, eq. (4.21) yields 1 = 21−dH/α,

consistently: the fractional charge α is the Hausdorff dimension.

4.3 Other properties

After 1.-3., one could mention other properties, which are more model-dependent

and hence fail in a number of cases. For instance, one of the early definitions of

fractals was that their dimension (defined in some of the above ways: dB, dH, dC,

and so on) is non-integer and greater than its topological dimension dtop. There

are many counterexamples where the Hausdorff dimension is integer, in some cases

smaller than or equal to the topological dimension of the set (or of the graph or

the trail of the map it is defined by). In all cases, dH and dtop are smaller than the

topological dimension D of the ambient space. Fractals with dH = 2 are: for dtop = 1

and D = 2, the dragon curve, the Sierpiński curve, some plane-filling curves (Moore

curve, Peano curve), and the boundary of the Mandelbrot set; for D ≥ 2, Brownian

trails (almost surely, i.e., with probability 1, and dB = dH; however, the graph of

Brownian motion has dB = dH = 3/2 almost surely [96]); for dtop = 2 and D = 2, the

Mandelbrot set, some Julia sets, some diamond fractals, and Pythagoras tree; for
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dtop = 3 and D = 3, the Sierpiński tetrahedron. Fractals with dH = 3 and dtop = 1

in D = 3 are box-filling curves such as the Moore, Hilbert, and Lebesgue curves.

The fractional space ED
α can have non-integer dimension, but its Hausdorff di-

mension is never greater than its topological dimension, dH ≤ D. Therefore, we can

regard fractional space as a space-filling fractal or, more suggestively, as a fractal

associated with a diffusion process.

Because of the empirical nature of the definition of fractals, one can conclude

that fractional space ED
α can be correctly characterized as “fractal” but, since it is a

special case of fractal with a continuous structure, it may be better to use the less

catchy but more specific adjective “fractional.”

4.4 Fractional measures as approximations of fractals

A conceptually independent point of view was briefly mentioned at the beginning of

this section, where traditional fractals were found to be approximated by fractional

measures. We can now look into greater detail at the reason why fractional calculus,

under certain assumptions, approximates some classes of fractals.

A rough understanding of these approximations is actually contained in eq. (4.15).

Depending on the value of a in Sα,2, we can either make a connected construction

(a = λ1/α) or a Cantor-type one (a = 1− (1− λ)1/α). In the first case, the first iter-

ation yields the interval [0, λ1/α + (1 − λ)1/α], smaller than the desired set by a gap

(λ1/α+(1−λ)1/α, 1]. This remainder is zero only if α = 1. Therefore, we could add at

least another similarity S3 to fill the gap, but it does not take long to convince oneself

that the task is impossible unless one takes an infinite number of similarities as in

fractals with infinite-type measure. This is equivalent to a continuum approximation,

where λ can be taken arbitrarily small and λ1/α+(1−λ)1/α → 1. Conversely, the first

iteration of a Cantor-like construction gives [0, λ1/α]∪[1−(1−λ)1/α, 1], with a central

gap (λ1/α, 1 − (1 − λ)1/α). Sending λ to zero would give the same limiting set as in

the connected construction. In a qualitative sense, we begin to recognize that real-

order fractional measures can be regarded as approximations of self-similar fractals

in the limit of the similarity ratio approaching zero. While deterministic self-similar

fractals pick a countable number of ratios λi, infinite and random fractals accept any.

So, this limit is associated with random fractal structures.

This intuition is confirmed by precise arguments; we review them from the liter-

ature, but add new comments linking independent results. Consider a function f(x)

in D = 1 and the convolution

IF(x) = vF ∗ f :=

ˆ 1

0

dx′ vF(1− x′)f(x′) , (4.23)

over a set F ⊆ [0, 1]. The kernel vF depends on the set. For an interval, vF is

simply a step function, but on a fractal it can be very complicated; for example, in
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self-similar fractals vF can be determined recursively at any given order of iteration.

In general, it is convenient to Laplace transform the convolution (4.23),

ÎF(p) :=

ˆ +∞

0

dx e−pxIF (x) = v̂F (p)f̂(p) . (4.24)

If F is a self-similar set, ÎF(p) can be expressed iteratively as an infinite intersection

of pre-fractals, eq. (4.5). The k-th iteration has Laplace-transformed kernel v̂kF (p) =
∏k−1

n=0 gn(p), for some functions gn. Typically, for self-similar and generalized self-

similar sets these functions are equal and with argument gn(p) = g(pλn), where λ

is the self-similarity ratio of F . The asymptotics of g is g(z) ∼ 1 + O(z) for small

z and g(z) ∼ g1 + O(z−1) for large z, where the constant g1 is the first probability

weight in the self-similar measure (4.18) [75]. Then [109, 110],

lim
k→+∞

v̂kF (p) = v̂F(p) = p−αFα(ln p) , (4.25)

where

α =
ln g1
lnλ

, (4.26)

and Fα is a log-periodic function [147] of period lnλ:

Fα(ln p+ n lnλ) = Fα(ln p) =
+∞
∑

l=−∞

cl exp

(

2πli
ln p

lnλ

)

, (4.27)

for some coefficients cl. The period in p is decreasing according to a geometric series.

Combining (4.25) with (4.27),

v̂F(p) =

+∞
∑

l=−∞

cl exp [(iωl − α) ln p] , ωl :=
2πl

lnλ
. (4.28)

Logarithmic oscillations are a curious feature of the spectral theory on fractals. In

fact, it is known that the heat kernel trace for a Laplacian on fractals displays

log-oscillations in the scale ln σ [148, 149]. Oscillatory behaviour has been found

analytically and numerically for various fractals [150]–[153], and eq. (4.28) illustrates

a rather universal phenomenon. This is one of the most crucial points of the physical

scenario that will emerge in [41], where it shall be given adequate space.

Here, we are focussed only on the relation between (4.28) and real-order fractional

integrals. The parameter α defined in eq. (4.25) coincides, indeed, with the fractional

order α determining the capacity (4.1) of fractional space (remember that g1 = 1/N).

Recognizing p−α as the Laplace transform of the fractional weight vα(x) = xα−1/Γ(α)

and comparing eq. (4.23) with (4.25) and eq. (4.22) with (4.26), one sees that IF is

quite similar to Iα, were it not for the non-constant contribution (4.27). The main

idea, now, is that a fractional integral of real order represents either the averaging
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of a smooth function on a deterministic fractal, or a random fractal support. The

average of a log-periodic function Fα over the period lnλ is defined by

bα := 〈Fα(ln p)〉 :=
ˆ 1/2

−1/2

dz Fα(ln p+ z lnλ) , (4.29)

and depends on the details of g(pλn). Then,

〈vF(x)〉 = bα
xα−1

Γ(α)
, (4.30)

and [109, 110]

〈IFf〉 =
ˆ 1

0

dx′ 〈vF(1− x′)〉f(x′) = Iαf . (4.31)

Taking the average in λ is tantamount to dropping all the oscillatory modes in

eq. (4.27) except l = 0. The ωl → 0 limit in eq. (4.27) can be regarded as a large-

Laplace-momentum limit, so that

IF
Re(p)→+∞∼ bαI

α . (4.32)

This is in complete agreement with [75, 111]–[116], where integrals on more general

net fractals are shown to be approximated by the left fractional integral, with the

order α being the Hausdorff dimension of the set. The approximation (4.32) is valid

for large Laplace momenta and drops all the contributions of probability weights gi
for i ≥ 2 out of the Laplace transform of the measure weight. These weights can

be included to better describe the full structure of the Borel self-similar measure ̺

characterizing the fractal set F [41]. References [75, 111]–[116] make this result clear

by a detailed Laplace analysis, but [109, 110] give a sharper physical interpretation

of what it means to take the large p limit. p is not a Fourier momentum and |p| ≫ 1

does not correspond to cutting off large scales. Yet, it is equivalent to randomize

the fractal structure: the oscillatory structure disappears, the average of the kernel

corresponds to the kernel itself, and the only approximation entailed in the derivation

above is in the evaluation of the kernel (4.25) (in fact, it is not obvious that vkF ∗f is a

Cauchy sequence, i.e., that the limit k → +∞ commutes with the integration). Thus,

fractional integrals of real order represent (or, more conservatively, are intimately

related to) random fractals.

Picking up again the example (4.15), eq. (4.25) states that g1 = λα. In the double

limit λ, g1 → 0+, the frequencies ωl all vanish (the period of Fα becomes infinitely

long), α remains finite, and v̂F(p) ∼ bαp
−α. The limit is only formal because bα(g1)

vanishes at arbitrarily small g1, but the main point is that the oscillatory structure is

suppressed in the limit of arbitrarily small ratio λ. In this sense, fractional integrals

of real order are continuum approximations of net fractals. This should not be

confused with the low-lacunarity limit α → 1. Here α is fixed and defines the

quantity ln g1/ lnλ in the double limit λ, g1 → 0.
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It is quite the rule that fractals are nowhere-differentiable objects. In particular,

a truly fractal spacetime is not expected to be represented by a differentiable man-

ifold. Fractional calculus strikes quite a rich compromise between standard fractal

geometry, where differentiability at large is given up, and a framework where only or-

dinary differentiability is forfeited. An example from function theory is Weierstrass’

function: it is nowhere differentiable in the ordinary sense, yet it is differentiable

under fractional calculus [80]. Because of the operator ∂n in eq. (2.6), the functional

space on which Caputo derivatives act is the space of integer-differentiable functions,

which seems at odds with fractal geometry. If concerned by that, one could take

another definition of fractional derivative, differing from Caputo in the absence of

integer differentiation inside the definition, but such that ∂α1 = 0 [79]. Not much

would change in our conceptual framework, though.

5. Spectral dimension of space

Spectral theory is a tool to answer the famous “Can one hear the shape of a drum?”

question [154]: the asymptotic spectrum of eigenvalues of Laplacian operators de-

fined on a set provides information on the boundary of the set. This information

is incomplete, inasmuch as “drums” with different shapes can vibrate in the same

way, but it is nevertheless valuable. While the Hausdorff dimension depends on the

local structure of a fractal, the spectral dimension dS is a local probe of its topology

[148, 155]–[159]. A rigorous and fairly general definition of dS stems from the spectral

theory on fractals [160]–[162]. We only sketch some aspects of this theory in section

5.1; details can be found in the references.

5.1 Harmonic structure

Consider the topological presentation (4.5) where, now, the maps Sk are obtained

from N continuous injections fi which are not necessarily the similarities of the set.

The subsets fi(F) are weighted in two ways: by the probabilities gi of the self-similar

measure (4.18) of the fractal, now constructed with the fi, and by resistance scaling

ratios ri appearing in the definition of the Laplacian. A Laplacian K on a self-similar

fractal is part of the so-called harmonic structure of the set, which is characterized

by gi and ri. Together, these quantities are assembled into N parameters8

γi :=
√
rigi . (5.1)

We can give an intuitive coordinate meaning of the γi. Let K(x) be a Laplacian on a

given set defined via the injections fi(x) = rix+const. In any subcopy i, the scaling

8In [148] and other papers, a “renormalization constant” is introduced explicitly in the definition

of the Laplacian and of the γi. It renders finite the discrete definition of K in the limit of infinite

iteration. This constant can be reabsorbed, as explained in [162].
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of the Laplacian is determined by K[fi(x)] = r−1
i K(x); summing over all the copies

with the appropriate weight, one gets

K(x) =
∑

i

giriK[fi(x)] =
∑

i

γ2i K[fi(x)] .

Thus, γ2i is the scaling of the Laplacian on the subsets.

The harmonic structure is said to be regular if 0 < ri < 1 for all i. When N = 2,

this happens if, and only if, γn1
1 = γn2

2 , where n1,2 are integer numbers. Given what

one would call the standard Laplacian on a fractal, the spectral dimension dS(F) is

the unique number satisfying the relation

N
∑

i=1

γ
dS(F)
i = 1 , (5.2)

similar to eq. (4.8) [148]. For simplicity, we can identify fi with the similarities

of the embedding picture, and the resistance ratios with the contracting ratios λi.

Deterministic fractals have a regular harmonic structure with ri = λi = λ for all i,

hence from (5.2)

1 = N

(

λ

N

)

dS
2

⇒ dS =
2 lnN

ln(N/λ)
=

2dH
dH + 1

. (5.3)

When λ = 1/N , dS = dH = 1. The unit interval is a trivial example where the

spectral and Hausdorff dimension coincide.

5.2 Diffusion

The spectral and Hausdorff dimensions of a fractal F are related to each other by the

dimension of a Brownian motion taking place on F [158, 163]–[167]. The anomalous

diffusion law on fractals is characterized by the walk dimension [158, 159]

dW := 2
dH
dS

. (5.4)

Since dS ≤ dH for a fractal, dW ≥ 2. The mean-square displacement of a random

walker is a power law in diffusion time, 〈r2(σ)〉 ∼ σ2/dW . Processes with dW > 2 are

of sub-diffusion, since the diffusion speed is lower than for normal diffusion (Gaussian

process, dW = 2). Intuitively, on a fractal sub-diffusion is due to lacunarity (i.e., the

presence of “many holes”) and/or to the very high multiplicities of certain available

states [168]. Systems with dW < 2 are caller of super-diffusion or jump processes

[167, 169, 170], and do not correspond to fractals.

Thus, we realize that the information obtained from the Hausdorff dimension

was, at best, incomplete, and we cannot decide about the “fractal” nature of frac-

tional spaces before looking at their harmonic structure or, in other words, at their
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topology, or, in yet other terms, at the way diffusion processes take place in them.

Conversely, and contrary to popular belief in part of the physicists community, quan-

tum gravity models with a non-integer spectral dimension do not necessarily entail

a “fractal” spacetime. To establish whether the latter is “fractal” or not, it is im-

portant to compare dH with dS. To this purpose, we review the operative definition

of spectral dimension employed in quantum gravity. The main steps are well known

(e.g., [171]), but a closer and perhaps pedantic contact with the fractal-geometry

perspective will be crucial to avoid confusion in the interpretation and construction

of the fractional case.

Since we want to probe the local structure of space,9 we can imagine to place

a test particle in it and let it diffuse in a random walk starting at point x (index µ

omitted) and ending at point x′. For a metric space of topological dimension D and

Riemannian metric gµν , this process is governed by a diffusion equation for the heat

kernel P (x, x′, σ),

(∂σ −∇2
x)P (x, x

′, σ) = 0 , P (x, x′, 0) =
δ(x, x′)√

g
, (5.5)

where σ is diffusion time (a parameter not to be confused with physical or coordinate

time), ∇2 = g−1/2∂µ(g
1/2∂µ) is the Laplacian defined on the ambient space (and

acting on the x coordinate), g is the determinant of the metric, and δ is the D-

dimensional Dirac distribution. The relative sign between σ derivative and Laplacian

guarantees causal diffusion, where the particle flows away from x as diffusion time

increases. The initial condition reflects the pointwise nature of the probe; probes of

other shapes are in principle possible, but they would not lead to a sensible definition

of spectral dimension in the present context (in fact, we want to investigate the

local manifold structure of a smooth space). In general, given the initial condition

φ(x, 0) at σ = 0, the solution of the diffusion equation is φ(x, σ) = eσ∇
2
φ(x, 0).

In particular, the effect of the non-local operator eσ
′∇2

is a shift of the auxiliary

variable σ: eσ
′∇2
φ(x, σ) = e−σ′ ∂σφ(x, σ) = φ(x, σ − σ′). Such general solutions can

be constructed by convolution starting from the heat kernel P .

For a smooth space with D dimensions, the solution of eq. (5.5) can be found

via the Fourier transform method. Consider first flat Euclidean space. The direct

and inverse Fourier transforms of a function f(x) are

f̃(k) =

ˆ +∞

−∞

dDx f(x) e−ik·x =: F1[f(x)] , (5.6a)

f(x) =
1

(2π)D

ˆ +∞

−∞

dDk f̃(k) eik·x . (5.6b)

9Dimension of spacetimes is always computed in Euclidean signature, i.e., after coordinate time

has been Wick rotated. Thus, here we refer to spaces rather than spacetimes.
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In particular, this definition is compatible with the definition of the Dirac distribu-

tion:

δ(x) =
1

(2π)D

ˆ

dDk eik·x , F1[δ(x)] =

ˆ

dDx δ(x) e−ik·x = 1 . (5.7)

Phases are eigenfunctions of the ordinary Laplacian ∇2 = ∂µ∂
µ = ∂21 + · · ·+ ∂2D,

∇2eik·x = −k2eik·x , (5.8)

which allows us to write the solution of the diffusion equation as

P (x, x′, σ) =
1

(2π)D

ˆ

dDk P̃ (k, σ) eik·(x−x′) , (5.9)

where P̃ (k, σ) must obey

(∂σ + k2)P̃ (k, σ) = 0 , lim
σ→0

P̃ (k, σ) = 1 .

This yields

P̃ (k, σ) = e−σk2 , (5.10)

and eq. (5.9) is simply a Gaussian in D dimensions,

P (x, x′, σ) =
e−

(x−x′)2

4σ

(4πσ)
D
2

. (5.11)

For a metric space of topological dimension D, the solution at small σ is Weyl’s

expansion

P (x, x′, σ) =
e−

∆(x,x′)2

4σ

(4πσ)
D
2

[

1 +

+∞
∑

n=1

Anσ
n

]

, (5.12)

where the O(σ) remainder and the distance ∆(x, x′) between the two points depend

on the metric. The precise form of the coefficients An in the expansion (sometimes

called Hadamard–Minakshisundaram–DeWitt–Seeley coefficients) can be obtain via

the theory of Green’s functions in Riemannian manifolds [172]–[184] (for reviews, see

[185]–[187]).

The spatial average of the heat kernel P (x, x, σ) at coincident points x = x′ is

the return probability

P(σ) :=
1

V(D)

ˆ

dD
√
g P (x, x, σ) , V(D) :=

ˆ

dD
√
g , (5.13)

which is the trace per unit volume of the operator eσ∇
2
. Since the heat kernel

P (x, x, σ) = (4πσ)−D/2[1 + O(σ)] associated with (5.12) is constant in x due to

translation invariance, to leading order in σ one has P(σ) ∼ σD/2 and the topological

dimension of space is given by D = −2 limσ→0 d lnP(σ)/d lnσ. This formula suggests
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an operational definition, for any metric space allowing a random walk process, of

the spectral dimension:

dS := −2
d lnP(σ)

d ln σ
, (5.14)

which can be shown to coincide with the more abstract prescription (5.2). Due to

curvature effects, the spectral dimension changes with the diffusion parameter σ,

and one can find the phenomenon of dimensional flow at different scales already

in classical gravity [21]. In practice, however, the solution to eq. (5.5) is difficult

to compute for arbitrary σ, and one confines her/his interest to the heat kernel

expansion (5.12). This expansion is valid also for spaces with boundaries or non-

trivial topologies, in which case σ must not be taken “too large” (lest global boundary

or topology effects vitiate the estimate of dS, which must be local). On the other

hand, random walks and Laplacians can be defined even on very non-trivial sets

such as fractals. The exponent of the first term in Weyl’s expansion is the spectral

dimension of the fractal and it can be non-integer [148]. Information on the various

dimensions can be obtained directly from the scaling property of the heat kernel. In

fact, under a coordinate and external-time dilation,

P (λ2/dWx, λ2/dWx′, λ2σ) = λ−dSP (x, x′, σ) . (5.15)

Comparison with eq. (5.11) shows that the walk and spectral dimensions of flat space

are, respectively, dW = 2 and dS = D.

To summarize, the spectral dimension (5.14) is obtained with the following in-

gredients:

1. A Laplacian K. In flat Euclidean space, the Laplacian is the second-order

operator ∇2 = ∂µ∂
µ.

2. An invertible transform between configuration and momentum space, such that

the expansion basis is made of eigenfunctions of K. In flat Euclidean space,

the Fourier transform (5.6) is a superposition of phases.

3. A diffusion equation (Dσ − Kx)P (x, x
′, σ) = 0, which is defined by K (acting

on x) and by the choice of diffusion process (i.e., of the derivative operator Dσ,

unrelated from eq. (2.71), and of the relative coefficient between this and K).

These two independent ingredients correspond to the definition of a harmonic

structure. In flat Euclidean space, diffusion is normal (Dσ = ∂σ, eq. (5.5)).

5.3 The case of fractional space

The determination of the spectral dimension of fractional spaces highlights once again

the main difference between fractal geometry and ordinary space constructions in field

theory. In the first case, geometry and topology are defined by the symmetry and
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harmonic structures of the fractal, which are given at the outset. On the other hand,

in field theory the harmonic structure stems from physical considerations. More

specifically, we can say that the symmetry structure is first dictated by the action

measure ̺ and then imposed on the Lagrangian density L, but the harmonic structure

is determined both by the symmetries and by the form of the kinetic operator. For

instance, in ordinary field theory the natural Lorentz-invariant Beltrami–Laplace

operator is K1 = � = ∂µ∂
µ. However, any other operator of the form (K1)

n = �
n

respects the same symmetry group, but its harmonic structure is different. Physical

requirements (in particular, the absence of ghosts) eventually single out K1 as the

kinetic operator, but this extra input is not always readily available.

In the case of fractional spaces, the possibility to choose a different symmetry

for L is the first source of ambiguity. A second source is the non-unique way the

diffusion equation is defined with fractional calculus. After this preamble, let us

examine the three ingredients of the previous section.

5.3.1 Laplacian

As we shall see in [41], symmetry arguments select two inequivalent classes of frac-

tional field theories:

• Fractional symmetry scenario. In ordinary integer models, the symmetries

symα and symL of, respectively, the measure and the Lagrangian density are

the same. If we impose symα = symL also in fractional theories, we obtain an

action invariant under what will turn out to be the fractional generalization

of rotation/Lorentz transformations. In this case, the invariant Laplacians we

shall consider are

Kα := ηµν∂αµ∂
α
ν , K̄α := ηµν∞∂̄

α
µ ∞∂̄

α
ν . (5.16)

Under a scaling transformation x→ λx, Kα → λ−2αKα and K̄α → λ−2αK̄α.

• Fractional/integer symmetry scenario. While the symmetry of the measure

guarantees protection against proliferation of arbitrary measure operators in

the renormalization group flow, one can prescribe a constant symmetry for L
along the flow. Since the Lagrangian should be Lorentz invariant in the in-

frared, we assume symL = symα=1, the integer Lorentz group in D dimensions.

Then,

K1 := ηµν∂µ∂ν . (5.17)

Under a scaling transformation, K1 → λ−2K1.

5.3.2 Fourier–Stieltjes transform

The construction of a field theory on a fractal is subordinate to the possibility to de-

fine a Fourier transform thereon and to move at will from configuration to momentum
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space and vice versa. Shifting point of view on the same issue, the aim is to define a

Laplacian operator on a fractal and study its spectrum. Indeed, the spectral theory

of Laplacians on fractals is a hot and evolving topic in the mathematical literature.

Currently, the state of the art is that no consistent measure-theoretic definition of a

Fourier transform on fractals has been found, although some authors have gone so

far as to obtain a Plancherel formula [188]. Yet, the spectral theory has been formu-

lated in a number of special cases, and general results exist for post-critically finite

fractals, i.e., fractals which would become totally disconnected after the removal of

a finite set of points (an example is the Sierpiński gasket; textbook introductions are

[161, 162]). These fractals admit an actual Fourier transform [189, 190]. A natural

conjecture is to identify the dimension of momentum space with the spectral dimen-

sion dS, calculated by looking at the spectral properties of the Laplacian. This can

be motivated, for instance, in thermodynamical systems, where the spectral dimen-

sion comes from the momentum space trace needed to implement thermodynamical

equations of state [191]. In general, dS differs from the Hausdorff dimension dH of

configuration space.

On a more phenomenological ground, there are some results also in particular

models of spaces with fractal-like features. In [192], an invertible Fourier transform

was defined on a metric space with non-integer dimension, only for the class of func-

tion generated by the Gaussian and used in perturbative field theory. On the same

class of functions, an invertible transform exists on spaces with Lebesgue–Stieltjes

measure [95]. Then, the measure in momentum space has the same dimension as in

configuration space. This agrees with [38], where we defined a Fourier transform with

Stieltjes measure. Then, after defining the Dirac distribution, one is forced to admit

that the engineering dimension of the measure is the same in both momentum and

configuration space, dS = dH. This seems in disagreement with what is known about

the spectral properties of the Laplace operator on fractals, but it is explained by the

approximate nature of fractional models from the perspective of hard-core fractal

geometry. We corroborate the same conclusion in this paper, via symmetry consid-

erations from fractal geometry and by the diffusion equation method. However, we

shall also find that dS 6= dH in fractional spaces where transport is anomalous with

respect to the natural differential structure. In these spaces, the spectral dimension

is not the dimension of momentum space.

The derivation of the Fourier–Stieltjes transform in fractional spaces differs from

that of [38] in the choice of boundary. The first step is to limit configuration space

to positive semi-axes. Then, the correct Fourier transform in R
D
+ is expanded in

cosines or sines rather than phases. We start with the cosine transform because the

transform of the Dirac distribution is a constant. Actually, from eq. (5.7),

1 =

ˆ +∞

−∞

dDx δ(x) e−ik·x = 2D
ˆ +∞

0

dDx δ(x) c(k, x) , (5.18)
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where

c(k, x) :=
∏

µ

cos(kµxµ) . (5.19)

Similarly,

δ(x) =
1

πD

ˆ +∞

0

dDk c(k, x) . (5.20)

Also the inverse transform runs over positive values of the integration variable. Equa-

tions (5.18)–(5.20) completely define the transformation properties of the unilateral

delta distribution. Then, for a function f ,

f̃(k) = 2D
ˆ +∞

0

dDx f(x) c(k, x) =: Fc,1[f(x)] ,

f(x) =
1

πD

ˆ +∞

0

dDk f̃(k) c(k, x) .

To show that the second equation is the inverse of Fc,1, one plugs it into the first

equation, notices that (for each direction) cos(kx) cos(kx′) = [cos k(x−x′)+cos k(x+

x′)]/2, and performs the integration via eq. (5.20). In D dimensions, this gives

f(x) =

ˆ +∞

0

dDx′ [δ(x− x′) + δ(x+ x′)]f(x′) .

The support of the second delta is outside the integration range for any x′ > 0, and

that contribution vanishes.

The sine transform

f̃(k) = 2D
ˆ +∞

0

dDx f(x) s(k, x) =: Fs,1[f(x)] , (5.21)

f(x) =
1

πD

ˆ +∞

0

dDk f̃(k) s(k, x) , (5.22)

where

s(k, x) :=
∏

µ

sin(kµxµ) , (5.23)

is invertible, but it is not closed: the Dirac distribution is not the sine transform of

any distribution. In fact, upon repeating the above inversion argument, one ends up

with sin(kx) sin(kx′) = [cos k(x− x′)− cos k(x+ x′)]/2, and one has to resort again

to eq. (5.20). This is not a problem.

The choice between cosine and sine transform typically depends on the behaviour

of the functions f(x) at the origin. If f(0) = 0, the sine expansion is chosen for the

sole purpose of taking eq. (5.22) at face value, i.e., as a pointwise equality (then,

expanding around x ∼ 0 one does not meet with contradictions). However, this is

not strictly necessary. Equation (5.22) really means

‖f‖2 =
1

πD

∥

∥

∥

∥

ˆ +∞

0

dDk f̃(k) s(k, x)

∥

∥

∥

∥

2

,
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where ‖·‖2 is the L2 norm. This equality may differ from (5.22) on sets of zero

measure. The L2-norm interpretation avoids contradictions when expanding with

cosines a function f such that f(0) 6= 0, and allows one to expand discontinuous

functions with infinite continuous series.10

Next, we generalize to a Lebesgue–Stieltjes measure of the form dDx vα(x),

eventually having in mind the particular case where vα is the fractional weight

vα(x) =
∏

µ[(x
µ)α−1/Γ(α)]. If sines/cosines are eigenfunctions of the Laplacians,

it is relatively painless to find an invertible transform. What follows is then tailored

for the operators K1 and K̄α, but not for Kα in eq. (5.16). In that case, one should

find a transform expanded in a basis of Mittag-Leffler functions.

Multiplying and dividing the right-most integrand in eq. (5.18) by vα(x), we

obtain the fractional delta distribution δα(x) := v−1
α (x)δ(x) and

1 = 2D
ˆ +∞

0

d̺α(x) δα(x) c(k, x) . (5.24)

A similar form for the Dirac distribution was found in [38], but it was not discussed

much. As a distribution in integer space, δα seems trivial: for any f(x) such that

f(0) = 0, f(x)δ(x) = 0. However, in fractional spaces δα is meaningful and corre-

sponds to the ordinary multi-dimensional Dirac distribution in geometric coordinates.

For instance, in one dimension, δ(q) = |∂xq|−1δ(x) = Γ(α)x1−αδ(x) = δα(x), and the

general case

δα(x) = v−1
α (x)δ(x) = δ[̺α(x)] = δ(q) (5.25)

follows through.

Equation (5.20) is less obvious to generalize in a fractal setting: a priori, we

do not know the measure τα(k) of momentum space, which might differ from ̺α.

However, in order for the antitransform to be the inverse of the direct transform, the

delta distribution in momentum space must be the same as in configuration space.

This implies τα = ̺α and

δα(x) =
1

πD

ˆ +∞

0

d̺α(k) c(k, x) . (5.26)

Let f be a function in ED
α . The Lebesgue–Stieltjes transform of f is defined as

f̃(k) := 2D
ˆ +∞

0

d̺α(x) f(x) c(k, x) =: Fc,α[f(x)] . (5.27)

10Another note of caution is the following. Sometimes, the cosine and sine transforms are pre-

sented as the “natural” transform for, respectively, even and odd functions. We have just seen that

they work perfectly well for general functions, not only those with definite parity. More precisely,

in an unilateral world there is no notion of parity, and the correct statement is that cosine/sine

transforms are well-defined also for functions with definite parity when analytically continued to

the negative semi-axis.
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This expression is compatible with the fractional structure of spacetime: we took

into account the non-trivial measure and the fact that its support is the first orthant

of Euclidean space. We expect f(0) = 0 on the boundary, but we have already stated

that the cosine expansion does not lead to inconsistencies. The inverse of eq. (5.27)

is of the form

f(x) =
1

πD

ˆ +∞

0

d̺α(k) f̃(k) c(k, x) . (5.28)

Plugging eq. (5.27) into (5.28),

f(x) =

(

2

π

)D ˆ

d̺α(k)

ˆ +∞

0

d̺α(x
′) f(x′) c(k, x)c(k, x′)

=
1

πD

ˆ +∞

0

d̺α(x
′) f(x′)

ˆ +∞

0

d̺α(k) [c(k, x− x′) + c(k, x+ x′)]

(5.26)
=

ˆ +∞

0

d̺α(x
′) f(x′) δα(x− x′)

= f(x) .

The reader can convince her/himself (for instance, by testing Gaussian generating

functions [95]) that the antitransform defined via a measure τα(k) 6= ̺α(k) is not an

inverse of Fs,α.

5.3.3 Diffusion equation

Depending on the choice of Laplacian and of the operator Dσ, the diffusion equation

will describe different diffusion processes, characterized by different values of the

walk dimension. When anomalous dimensions are involved, there is no unique way

to determine the diffusion equation, except on heuristic or phenomenological grounds.

Anomalous diffusion can be realized also without fractional derivatives (e.g., [121]),

but here we pick the form (often called fractional wave equation)

(Dσ − K̄γ)P (x, x
′, σ) = 0 , P (x, x′, 0) = δα(x− x′) , 0 < β, γ ≤ 1 , (5.29)

where

Dσ ∈ {∂σ, ∂β0,σ, ∞∂̄
β
σ} . (5.30)

When β = 1 = γ, this is ordinary diffusion (Brownian motion). When β 6= 1 and

γ = 1, it corresponds to fractional Brownian motion. Finally, when β = 1 and γ 6= 1

the process is a Lévy flight [130].

5.3.4 Spectral and walk dimensions

We have all the ingredients to determine the spectral dimension of fractional space

with the heat-kernel method. Before that, one can do a bit of guesswork about the

final result. A first estimate comes from the discussion of section 4.2 and 5.1. If
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the diffusion process is non-anomalous in fractional space (meaning that, in the heat

equation, “for each derivative in σ there are two derivatives in space”), then the

self-similar and harmonic structures of ED
α in geometric coordinates are the same of

Euclidean space. Therefore, dS = dH = D in geometric coordinates, which becomes

dS = dH = Dα in embedding coordinates. This seems to confirm the conjecture that

the spectral dimension of a fractal is the dimension of momentum space, because

we have seen that the measure in configuration and momentum spaces is the same

(so the Hausdorff dimension of momentum space is dH and dS = dH, in agreement

with [38]). However, in fact, the conjecture is not verified. For dS to be equal to dH,

the diffusion process must be Gaussian, even in a fractional sense: β = γ. If not,

dS 6= dH.

Thus, the geometry of a set affects the spectral dimension in two different ways:

through the fractal structure and the metric structure. In a fractional theory, what we

call fractal structure is actually the calculus associated with the fractional manifold,

and the metric structure is given by the fractional metric. Drawing inspiration from

the ordinary manifold result, we can ignore curvature effects to obtain the spectral

dimension of fractional spaces for small diffusion parameter.

Solutions of the diffusion equation (5.29) are known for phenomenological models

of statistical mechanics, where an anomalous diffusion process takes place in ordinary

space [42, 43, 68, 127]–[130]. Here, the very geometry of space is modified, and we

need to start from scratch. Write the heat kernel P in its Fourier–Stieltjes expansion,

P (x, x′, σ) =
1

πD

ˆ +∞

0

d̺α(k) P̃ (k, σ) c(k, x− x′) . (5.31)

The cosines are eigenfunctions of K̄γ (eqs. (5.16) and (2.35)),

K̄γc(k, x) = −k2γc(k, x) , k2γ := k2γ1 + · · ·+ k2γD , (5.32)

and so also of K1 with eigenvalues −k2 = kµk
µ. The diffusion equation (5.29) is thus

reduced to the fractional differential equation

(Dσ + k2γ)P̃ (k, σ) = 0 , P̃ (k, 0) = 1 . (5.33)

For different choices of Dσ, the solution is

P̃ (k, σ) = e−σk2γ , Dσ = ∂σ , (5.34)

P̃ (k, σ) = e−σ(−k2γ )1/β , Dσ = ∞∂̄
β
σ , (5.35)

P̃ (k, σ) = Eβ(−k2γσβ) , Dσ = ∂βσ , (5.36)

all in agreement with eq. (5.10) when β, γ → 1. The return probability is then

P(σ) =
1

πD

ˆ +∞

0

d̺α(k) P̃ (k, σ) , (5.37)
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which can be calculated exactly (we omit unimportant normalization constants):

P(σ) ∝ σ−D
2

α
γ , Dσ = ∂σ , (5.38)

P(σ) ∝ σ−D
2

αβ
γ , Dσ = ∞∂̄

β
σ , ∂

β
σ . (5.39)

The integral (5.37) with (5.34) or (5.35) is standard [52, eq. 3.326.2]. To calculate

(5.37) with (5.36), we need some little extra work. The Laplace transform of the

Mittag-Leffler function is [42, eq. (1.80)]

ˆ +∞

0

dσe−pσEβ(−k2γσβ) =
pβ−1

pβ + k2γ
. (5.40)

Then,

P̂(p) =
1

πD

ˆ +∞

0

d̺α(k)
pβ−1

pβ + k2γ
∝ p

D
2

αβ
γ
−1 ,

where we have simply rescaled k → p−β/(2γ)k and the omitted coefficient is finite [52,

eq. 3.241.2]. Taking the inverse Laplace transform, we recover eq. (5.39).

Combining eqs. (5.38) and (5.39) with (5.14), we finally obtain the spectral

dimension: dS = Dα/γ for Dσ = ∂σ, and dS = Dαβ/γ for Dσ = ∞∂̄
β
σ , ∂

β
σ . In general

form,

dS =
β

γ
dH . (5.41)

Some remarks are in order:

• For normal diffusion (β = γ),

dS = dH = Dα , (5.42)

whether it be realized by integer or fractional differential operators Dσ and K.

The important point is that the order of the diffusion operator be the natural

one, i.e., half that of the Laplacian.

• When β < γ, diffusion is anomalous but fractional space can be regarded as a

fractal. This happens, in particular, for integer-order Laplacian and fractional

diffusion (β < 1 is assumed) and for natural fractional Laplacian (γ = α) and

fractional diffusion, provided β < α.

• The case β > γ does not correspond to a fractal, since dS > dH; the operator Dσ

is higher order from the point of view of the differential structure of fractional

space, and it is responsible for super-diffusion. In particular, for the natu-

ral fractional Laplacian (γ = α) and integer diffusion, the spectral dimension

coincides with the topological dimension of space.
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Dσ K
∂2 (∞∂̄

α)2

∂σ dS = dH dW = 2 dS = D ≥ dH dW = α < 2

∞∂̄
β
σ , ∂

β
σ dS = βdH ≤ dH dW = 2/β > 2 dS = (β/α)dH dW = 2α/β

Table 4: Spectral dimension dS and walk dimension dW of fractional space ED
α for different

harmonic structures (Laplacians and diffusion equations). Fractional space is fractal only

if dW ≥ 2.

In all these cases, the spectral dimension is constant and non-vanishing. There

is no contradiction with the findings of [193], where the spectral dimension does

not converge to the embedding dimension when the lacunarity of fractals becomes

asymptotically zero. Here, fractional spaces are not low-lacunarity approximations

of fractals and we do not take the limit λ→ 0.

The results are summarized in table 4 for dS and the walk dimension dW.

6. Discussion

The results presented in this paper are the first step towards a field theory on frac-

tional spacetimes. We have detailed the geometric properties of the fractional equiva-

lent of Euclidean space, with no time, no matter, no gravity, and fixed real dimension.

The goal, of course, will be to include the physics in a controlled way. Bits of it, such

as the generalization to spacetimes with Lorentzian signature, only require minor

modifications of the fractional construction. Others, such as the formulation of a

multi-fractal scenario, the recovery of four dimensions at large scales, and inclusion

of the log-oscillations of fractal geometry, are not difficult but entail a major change

of perspective. We endeavor to complete this programme in [41], still in the absence

of gravity.

We would like to conclude with a remark at the interface between quantum

gravity and mathematics. It has been recognized that effective spacetime emerging

from quantum gravity scenarios has a scale-dependent spectral dimension, a feature

on which part of the community has grown the belief that quantum spacetime is,

somehow, “fractal.” However, aside from the spectral dimension, fractal geometry

is an arsenal of tools which has been scantly exploited in quantum gravity. As a

consequence, a deeper understanding of fractal properties of spacetime has seldom

gone beyond qualitative remarks based on quantitative determinations of dS. Taking

advantage of this arsenal in a less frugal way would open up a wealth of possibilities,

as we shall argue in the companion paper. On the other hand, progress in pure fractal

geometry is very much ongoing and the effective insights in the physics literature can

suggests mathematicians some interesting directions of research. For instance, to the

best of our knowledge there is no systematic formulation of a Fourier transform on
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fractals. To a physicist, transforming to momentum space is important both for

doing field theory and for computing the spectral dimension. Related to that, we are

unaware of any good physical transport model where jump processes naturally occur.

These are non-local diffusing processes characterized by discrete jumps, rather than

continuous movements. While for local diffusion the walk dimension is bounded by

2 ≤ dW ≤ dH + 1, in non-local diffusion 0 < dW ≤ dH + 1 [167]. The cases where

fractional spaces have dW = 2dH/dS < 2 might correspond to continuum models of

jump processes, but the physical meaning of this is presently unclear. Yet, transient

regimes where dS > dH do arise in other approaches to quantum gravity, as in causal

dynamical triangulations [16] or in non-commutative spaces [194]. Further study of

the subject promises to be stimulating.
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C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 931.

[57] F. Ben Adda, The differentiability in the fractional calculus, Nonlinear Anal. 47 (2001) 5423.

[58] K. Cottrill-Shepherd and M. Naber, Fractional differential forms, J. Math. Phys. 42 (2001) 2203

[math-ph/0301013].

– 71 –

http://dx.doi.org/10.1103/PhysRevLett.102.111303
http://arxiv.org/abs/0811.1396
http://dx.doi.org/10.1088/0264-9381/26/24/242002
http://arxiv.org/abs/0812.2214
http://arxiv.org/abs/0905.2170
http://arxiv.org/abs/0911.0437
http://dx.doi.org/10.1007/JHEP03(2010)120
http://arxiv.org/abs/1001.0571
http://dx.doi.org/10.1016/j.physletb.2011.01.063
http://arxiv.org/abs/1012.1244
http://arxiv.org/abs/1106.0295
http://dx.doi.org/10.1007/BFb0067095
http://dx.doi.org/10.1016/j.aop.2008.04.005
http://arxiv.org/abs/0907.2363
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/10.1155/2011/298628
http://dx.doi.org/10.1016/S0764-4442(98)80013-X
http://dx.doi.org/10.1016/S0764-4442(98)80116-X
http://dx.doi.org/10.1016/S0362-546X(01)00646-0
http://dx.doi.org/10.1063/1.1364688
http://arxiv.org/abs/math-ph/0301013


[59] K. Cottrill-Shepherd and M. Naber, Fractional differential forms II, math-ph/0301016.

[60] Y. Chen, Z.-y. Yan and H.-q. Zhang, Applications of fractional exterior differential in three-dimensional

space, Appl. Math. Mechanics 24 (2003) 256.

[61] V.E. Tarasov, Fractional statistical mechanics, Chaos 16 (2006) 033108 [arXiv:0710.1807].

[62] V.E. Tarasov, Liouville and Bogoliubov equations with fractional derivatives,

Mod. Phys. Lett. B 21 (2007) 237 [arXiv:0711.0859].

[63] V.E. Tarasov, Fractional generalization of Liouville equations, Chaos 14 (2004) 123 [nlin/0312044].

[64] V.E. Tarasov, Fractional systems and fractional Bogoliubov hierarchy equations,

Phys. Rev. E 71 (2005) 011102 [cond-mat/0505720].

[65] V.E. Tarasov, Fractional generalization of gradient and Hamiltonian systems, J. Phys. A 38 (2005) 5929

[math.DS/0602208].

[66] V.E. Tarasov, Fractional generalization of gradient systems, Lett. Math. Phys. 73 (2005) 49

[nlin.CD/0604007].

[67] J. Cresson, Fractional embedding of differential operators and Lagrangian systems,

J. Math. Phys. 48 (2007) 033504 [math/0605752].

[68] V.E. Tarasov, Fractional Fokker–Planck equation for fractal media, Chaos 15 (2005) 023102 [nlin/0602029].

[69] V.E. Tarasov, Fractional Liouville and BBGKI equations, J. Phys. Conf. Ser. 7 (2005) 17 [nlin/0602062].

[70] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover, New York U.S.A. (1990).

[71] M. Carter and B. van Brunt, The Lebesgue–Stieltjes integral: a practical introduction, Springer, New York

U.S.A. (2000).

[72] G. de Barra, Measure Theory And Integration, Horwood Publishing, Chichester U.K. (2003).

[73] G.L. Bullock, A geometric interpretation of the Riemann–Stieltjes integral, Am. Math. Mon. 95 (1988) 448.

[74] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation,

Fract. Calc. Appl. Anal. 5 (2002) 367 [math.CA/0110241].

[75] F.-Y. Ren, Z.-G. Yu and F. Su, Fractional integral associated to the self-similar set or the generalized

self-similar set and its physical interpretation, Phys. Lett. A 219 (1996) 59.

[76] M. Moshrefi-Torbati and J.K. Hammond, Physical and geometrical interpretation of fractional operators,

J. Franklin Inst. B 335 (1998) 1077.

[77] F.E. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E 53 (1996) 1890.

[78] F.E. Riewe, Mechanics with fractional derivatives, Phys. Rev. E 55 (1997) 3581.

[79] G. Jumarie, Modified Riemann–Liouville derivative and fractional Taylor series of non-differentiable

functions Further results, Comput. Math. Appl. 51 (2006) 1367.

[80] K.M. Kolwankar and A.D. Gangal, Fractional differentiability of nowhere differentiable functions and

dimensions, Chaos 6 (1996) 505 [chao-dyn/9609016].

[81] G. Jumarie, On the representation of fractional Brownian motion as an integral with respect to (dt)a,

Appl. Math. Lett. 18 (2005) 739.

[82] S.I. Vacaru, Fractional nonholonomic Ricci flows, arXiv:1004.0625.

[83] S.I. Vacaru, Fractional dynamics from Einstein gravity, general solutions, and black holes, arXiv:1004.0628.

– 72 –

http://arxiv.org/abs/math-ph/0301016
http://dx.doi.org/10.1007/BF02438263
http://dx.doi.org/10.1063/1.2219701
http://arxiv.org/abs/0710.1807
http://dx.doi.org/10.1142/S0217984907012700
http://arxiv.org/abs/0711.0859
http://dx.doi.org/10.1063/1.1633491
http://arxiv.org/abs/nlin/0312044
http://dx.doi.org/10.1103/PhysRevE.71.011102
http://arxiv.org/abs/cond-mat/0505720
http://dx.doi.org/10.1088/0305-4470/38/26/007
http://arxiv.org/abs/math.DS/0602208
http://dx.doi.org/10.1007/s11005-005-8444-z
http://arxiv.org/abs/nlin.CD/0604007
http://dx.doi.org/10.1063/1.2483292
http://arxiv.org/abs/math/0605752
http://dx.doi.org/10.1063/1.1886325
http://arxiv.org/abs/nlin/0602029
http://dx.doi.org/10.1088/1742-6596/7/1/002
http://arxiv.org/abs/nlin/0602062
http://www.jstor.org/stable/2322483
http://www.diogenes.bg/fcaa/
http://arxiv.org/abs/math.CA/0110241
http://dx.doi.org/10.1016/0375-9601(96)00418-5
http://dx.doi.org/10.1016/S0016-0032(97)00048-3
http://dx.doi.org/10.1103/PhysRevE.53.1890
http://dx.doi.org/10.1103/PhysRevE.55.3581
http://dx.doi.org/10.1016/j.camwa.2006.02.001
http://dx.doi.org/10.1063/1.166197
http://arxiv.org/abs/chao-dyn/9609016
http://dx.doi.org/10.1016/j.aml.2004.05.014
http://arxiv.org/abs/1004.0625
http://arxiv.org/abs/1004.0628


[84] D. Baleanu and S.I. Vacaru, Fedosov quantization of fractional Lagrange spaces,

Int. J. Theor. Phys. 50 (2011) 233 [arXiv:1006.5538].

[85] D. Baleanu and S.I. Vacaru, Fractional almost Kähler–Lagrange geometry, Nonlinear Dyn. in press

[arXiv:1006.5535].

[86] S. Vacaru, P. Stavrinos, E. Gaburov and D. Gonta, Clifford and Riemann-Finsler structures in geometric

mechanics and gravity, Geometry Balkan Press, Bucharest Romania (2006) [gr-qc/0508023].

[87] S.I. Vacaru, On general solutions for field equations in Einstein and higher dimension gravity,

Int. J. Theor. Phys. 49 (2010) 884 [arXiv:0909.3949].

[88] N. Moeller and B. Zwiebach, Dynamics with infinitely many time derivatives and rolling tachyons,

JHEP 10 (2002) 034 [hep-th/0207107].

[89] G. Calcagni and G. Nardelli, String theory as a diffusing system, JHEP 02 (2010) 093 [arXiv:0910.2160].

[90] C.F. Lorenzo and T.T. Hartley, Initialized fractional calculus, Int. J. Appl. Math. Comput. Sci. 3 (2000) 249

[online source].

[91] B.N. Narahari Achar, C.F. Lorenzo and T.T. Hartley, Initialization issues of the Caputo fractional

derivative, ASME Conf. Proc. 2005-47438 (2005) 1449.

[92] C.F. Lorenzo and T.T. Hartley, Initialization of fractional-order operators and fractional differential

equations, J. Comput. Nonlinear Dynam. 3 (2008) 021101.

[93] T.T. Hartley and C.F. Lorenzo, Application of incomplete gamma functions to the initialization of

fractional-order systems, J. Comput. Nonlinear Dynam. 3 (2008) 021103.

[94] T.T. Hartley and C.F. Lorenzo, The error incurred in using the Caputo-derivative Laplace-transform,

ASME Conf. Proc. 2009-87648 (2009) 271.

[95] K. Svozil, Quantum field theory on fractal space-time, J. Phys. A 20 (1987) 3861.

[96] K. Falconer, Fractal geometry, Wiley, New York U.S.A. (2003).

[97] P. Pfeifer and D. Avnir, Chemistry in noninteger dimensions between two and three. I. Fractal theory of

heterogeneous surfaces, J. Chem. Phys. 79 (1983) 3558; J. Chem. Phys. 80 (1984) 4573.
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