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Basic aspects of the background of gravitational waves and its mathematical characterization
are reviewed. The spectral energy density parameter Ω(f), commonly used as a quantifier of the
background, is derived for an ensemble of many identical sources emitting at different times and
locations. For such an ensemble, Ω(f) is generalized to account for the duration of the signals and of
the observation, so that one can distinguish the resolvable and unresolvable parts of the background.
The unresolvable part, often called confusion noise or stochastic background, is made by signals that
cannot be either individually identified or subtracted out of the data. To account for the resolvability
of the background, the overlap function is introduced. This function is a generalization of the duty
cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The
spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented
over the frequencies of all existing and planned detectors. A semi-analytical formula for Ω(f) is
derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black
holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to
account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One
interesting result concerns all current and planned ground-based detectors (including the Einstein
Telescope). In their frequency range, the background of binaries is resolvable and only sporadically
present. In other words, there is no stochastic background of binaries for ground-based detectors.

I. INTRODUCTION

The gravitational wave background [1, 2] is formed by a
large number of independent gravitational wave sources.
This paper focuses on the background produced by coa-
lescing binary systems. These are isolated pairs of mas-
sive objects that inspiral towards each other by emitting
gravitational radiation until they coalesce.

We review the characterization of the background, for
which the spectral energy density parameter, or simply
spectral function, Ω(f), is often used. This function gives
the present fractional energy density (per logarithmic fre-
quency interval) of gravitational radiation at an observed
frequency f . A formula for Ω(f) is obtained in a clear,
self-consistent way, for an ensemble of many identical
sources emitting at different times and locations. This
formula is generalized to distinguish whether the signals
are resolvable or not, or whether they are observed con-
tinuously or sporadically.

The resolvability of the signals is an important topic
of this work. Roughly speaking, signals are unresolv-
able if their waveforms are observed simultaneously at
similar frequencies (differing less than the frequency res-
olution). Many unresolvable signals form an unresolvable
background. If such a background dominates in a certain
frequency interval, one cannot see the waveforms of its
components, but a pattern that rather looks like instru-
mental noise. For that reason it is often called confusion
noise. The other part of the background is resolvable.
The waveforms of the resolvable part can be distinguished
and in some circumstances subtracted out of the data of
a detector [3, 4].
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There are many studies in the literature about astro-
physical sources that contribute to the background at
present. A few examples of these sources are: core-
collapse supernovae [5], rotating neutron stars [6, 7], for-
mation of neutron stars [8, 9], inspiralling or coalescing
stellar binaries [10–14], inspiralling or coalescing massive
black hole binaries [15, 16] and magnetars [17]. But there
are inconsistencies in the literature; for example, accord-
ing to [18], the results of some of the previous papers [8, 9]
(and also [13, 19], as pointed out in [20]) are incorrect,
due to a wrong (1+z) factor in the calculations. Besides,
according to [21], the definition of the spectral function
used in many papers about the gravitational wave back-
ground, which corresponds to our equation (23), is mis-
leading. Finally, as we discuss further on, in some of
the mentioned papers, the continuous and unresolvable
backgrounds are not properly defined. To avoid possi-
ble misunderstandings or mistakes we tend to present all
calculations and definitions as clearly as possible.

We calculate the contributions to the background of
the strongest emitting binary systems. These are the
ones composed of white dwarfs, neutron stars, stellar-
mass black holes or massive black holes. The resulting
energy spectra are given as maximum, most likely, and
minimum expectations, taking into account the present
uncertainties in the quantities involved.

We show that ground-based detectors do not encounter
any unresolvable background in their frequency window
(the frequency range in which they reach their optimal
sensitivity). This applies to present detectors, such as
TAMA300 [22], GEO600 [23], Virgo [24], and LIGO [25],
but also to planned detectors, such as the advanced ver-
sions of LIGO and Virgo [25, 26], LCGT [27], and ET
[28]. At these frequencies, there is not even a resolv-
able continuous background, i.e., signals are not always
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present. Whether or not these signals can be subtracted
out of the data is an issue we do not deal with in this
paper.

This paper considers a frequency range wider than the
frequency windows of ground-based detectors. It includes
the windows of all existing and future detectors, such as
LISA [29] or BBO [30], and also reaches the frequency
range of interest for the PTA [31].

The obtained unresolvable background turns out to be
dominated by white dwarf binaries (at frequencies below
∼ 0.1 Hz) and by massive black hole binaries (below ∼
10−4 Hz). This confusion noise could enter the band of
LISA and would certainly enter the band of BBO and
the complete Parkes PTA [32].

The outline of the paper is as follows:

In Section II we first explain our notation and give
some relevant terminology. We then give a simple heuris-
tic proof of the fact that there is neither an unresolvable
nor a continuous background in the frequency window
of ground-based detectors. The formula of the spectral
function is derived for an ensemble of many identical
sources emitting at different times and locations. The
obtained formula agrees with that of [33]. The concept
of resolvability is studied, and the spectral function is
generalized to account for it. To get to that point, we
introduce the overlap function N (f,∆f, z). This func-
tion gives the average number of signals observed with
redshifts smaller than z and frequencies between f and
f + ∆f , where ∆f is the frequency resolution. We then
use the overlap function to distinguish the continuous
and discontinuous parts of the background.

In Section III we present the models used to quantify
the background of stellar binaries and massive black hole
binaries. The main physical quantities involved in the
calculations (such as mass ranges and coalescence rates)
are presented in this section. A semi-analytical formula
for the spectral function is derived in the case of stellar
binaries.

Section IV contains the main results of the paper. The
spectral function is shown in the different regimes of re-
solvability and continuity. The curves in the plots are
given as maximum, most likely, and minimum expected.

In Section V we justify some of the approximations
and assumptions of the previous sections. We compare
our results with others from the literature. Our notions
of continuous background and unresolvable background
are compared with the ones of previous work. We also
show that the overlap function, which turns out to be a
generalization of the duty cycle, is a proper quantifier of
the resolvability and continuity of the background.

The main conclusions and results are summarized in
Section VI. Those readers who are short of time, or pri-
marily interested in the main results, are suggested to go
directly to this section.

II. CHARACTERIZATION OF THE
BACKGROUND

A. Notation

All magnitudes are measured in the frame of the cos-
mological fluid, since massive objects that are not subject
to external forces come quickly to rest with respect to this
frame.

We use the index ‘e’ (for emission) for quantities mea-
sured close to the system at the time of the emission of
the radiation. For example, fe (emitted frequency) is
the frequency of a wave, measured soon after its emis-
sion, before the expansion of the universe stretches its
wavelength. Quantities measured here and now (which
are called observed quantities) have no index. The fre-
quency of the wave of the previous example, measured
today, is thus denoted by f .

We use the indices ‘low’, ‘upp’, ‘min’ and ‘max’ to refer
to lower, upper, minimum and maximum, respectively.

B. Terminology

We now introduce some terminology to avoid confusion
or ambiguity throughout the paper.

By system we mean a certain configuration of physi-
cal objects that is a source of gravitational waves. An
example of system is a pair of neutron stars inspiralling
towards each other.

We use the term ensemble for the collection of systems,
all having similar properties and behaviour, formed from
the Big Bang until now. An example is the population
of coalescing neutron star binaries in the universe.

By signal we refer to the total gravitational radiation
emitted by a system. One system emits only one sig-
nal, that can range over a large frequency interval and
exist over a long interval of time. Despite the interval
of time it lasts, a signal is assumed to be characterized
by a certain redshift, which remains the same from the
beginning until the end of the signal (in Section V C we
discuss the validity of this assumption). A signal is com-
posed of signal elements, each characterized by a certain
infinitesimal frequency interval.

The total (gravitational wave) background is the col-
lection of all gravitational waves in the present universe.
It can be divided into different parts, according to dif-
ferent criteria. For example, primordial and contempo-
rary parts, resolvable and unresolvable parts or contin-
uous and discontinuous parts. One can also divide the
total background into many different parts, each con-
formed by the contribution of a certain ensemble. By
extension, we use the word background when referring
to both the total background and to its different parts.
Hence, we can talk about the background of neutron star
binaries, which is the collection of signals of the ensem-
ble of neutron star binaries. The part of this background
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that fulfills the condition of unresolvability would be the
unresolvable background of neutron star binaries.

1. Primordial versus contemporary background

The primordial background [2, 34] is composed of grav-
itational radiation emitted in the early universe, at very
large redshifts. It is analogous to the background formed
by the cosmic electromagnetic radiation [35]. In the
case of the latter, the radiation was released (when pho-
tons decoupled from matter) roughly a hundred thou-
sand years after the Big Bang. On the other hand, the
primordial gravitational radiation was produced in a tiny
fraction of the first second of the universe [36]. In this
background might be hidden waves from inflation and
cosmic strings [37, 38].

The other part of the total background is still being
produced at present and thus we refer to it as the contem-
porary background. It is made by many different systems
that formed in the past (at redshifts less than∼ 20, which
is the largest redshift assumed for the systems we study)
and can also form today. Examples of such systems are
coalescing binaries, rapidly-rotating compact objects or
core-collapse supernovae (some references were given in
Section I).

In certain frequency ranges one can get a clear view
of primordial signals, whereas in others the contempo-
rary signals dominate. The detection of the primordial
background would be the most direct way to observe pro-
cesses of the very early universe. But valuable informa-
tion would also be gained from the detection of the con-
temporary background, for example about binary forma-
tion and coalescence rates. Furthermore, predictions of
the contemporary background can set constraints on the
frequency ranges where the primordial one could be de-
tected. The contemporary background is the main topic
of this paper.

In the literature, primordial and contemporary back-
grounds are often called cosmological and astrophysical,
respectively. We do not use this words to avoid ambigu-
ity, since sometimes both terminologies are used together,
for example when talking about cosmological populations
of astrophysical sources [39], which might be confusing
for non-specialized readers.

2. Unresolvable versus resolvable part of the background

It is useful to classify the components of the back-
ground depending on their resolvability. We now briefly
comment on this concept; precise definitions of what we
mean by resolvable and unresolvable backgrounds can be
found in Section II F.

Signals spend different intervals of time at different
ranges of frequencies. In the case of binaries, they evolve
much more rapidly at higher than at lower frequencies.
At lower frequencies they will thus overlap (i.e., they

will be observed at the same time) more frequently than
at higher ones. A frequency bin of width ∆f , which is
the frequency resolution allowed by the detector and by
the data analysis method, will often be filled by one or
more signals at low frequencies. On the other hand, a
frequency bin at high frequencies will be filled by one
or more signals only sporadically, since signals are very
short.

An unresolvable part of the background exists as soon
as a frequency bin is constantly occupied by an average
of one or more signals. At frequencies where such a back-
ground dominates, the waveforms of the signals cannot be
distinguished from each other. When a waveform is not
resolvable, one cannot obtain information from it, such
as the characteristics of the system that emitted that ra-
diation. Moreover, such waveforms cannot be subtracted
out from the data.

The rest of the background is the resolvable part. The
waveforms of this part can be distinguished from each
other. One can thus obtain information about the system
by studying the waveform of the emitted radiation.

For some authors, what we call the unresolvable back-
ground is defined as the stochastic background, and the
remaining gravitational radiation is called the total gravi-
tational wave signal [16]. This is a reasonable definition,
but conflicts with what is often called stochastic back-
ground by many other authors (for example in [40] and
other papers cited in Section I).

3. Continuous versus discontinuous background

We now briefly comment on the concept of continuity
of the background. In Section II G we give precise defini-
tions of what we mean by continuous and discontinuous
backgrounds.

A continuous background exists in a frequency interval
[flow, fupp] (that can be, for example, the frequency win-
dow of a detector) as soon as this interval is constantly
occupied by one or more signals. If in that interval there
are gaps between signals, or the signals occur sporadi-
cally, the background is discontinuous.

The condition of continuity tends to that of unresolv-
ability when fupp − flow tends to ∆f . If a background
is not continuous in an interval of frequencies, it is not
continuous either in a smaller interval. Therefore, only a
continuous background can be unresolvable.

We point out that the continuity of the background is
not as relevant as the resolvability. However, we include
it in the paper for two reasons:

First, the continuity has been often used in the lit-
erature (for example in the already mentioned papers
[13, 14]) to define the different regimes of the background.
Once we know how to account for the continuity, we will
realize that it is not the right tool to be used. Instead,
the resolvability is the fundamental property of the back-
ground.

Second, the continuity can be used to determine how
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often the background is observed. Suppose we want to
detect a signal of some kind, but there is a background
covering the signal. If the background is discontinuous in
a frequency band, sometimes that signal can be clearly
seen, without any background. On the other hand, if the
background is continuous, we need to subtract it from
the data in order to see that other signal. As we show
in Figure 6, ET has no continuous background from bi-
naries in its frequency window; BBO, on the contrary,
has a continuous background of binaries crossing its fre-
quency window, so the subtraction of background signals
is necessary in order to detect other kinds of signals (this
problem has been treated in [4]).

C. Heuristic proof of the lack of confusion noise for
ground-based detectors

We now justify, in a simple heuristic way, that there is
no continuous background (and therefore no unresolvable
background either) from binary systems at frequencies
larger than 10 Hz.

A neutron star binary takes ∼ 103 s to evolve from
10 Hz to the coalescence (which can be proved by using
Equation (60)). The most realistic coalescence rate for
these binaries (see Table I) is of ∼ 105 yr−1, in the whole
observable universe. This implies ∼ 0.003 coalescences
per second. One could naively say that, on average, one
would see ∼ 103 × 0.003 = 3 signals. But that would
only be true if all binaries were close to us, at redshift
∼ 0. The farthest binaries (close to redshift ∼ 5) that we
observe today at frequency ∼ 10 Hz, emitted at ∼ 10 ×
(1+z) = 60 Hz (using Equation (3)) and needed just∼ 8 s
to coalesce. An interval of time of ∼ 8 s at redshift ∼ 5 is
now observed as an interval of ∼ 8× (1+z) = 48 s (using
Equation (5)). This implies that an average of ∼ 48 ×
0.003 ≈ 0.14 signals are observed. The number of signals
expected to be observed is thus a number between 3 and
0.14, which, after doing the proper calculation, turns out
to be smaller than 1. Hence, neutron star binaries do not
produce a continuous background at frequencies higher
than 10 Hz.

Other binaries whose signals could produce a continu-
ous background in the frequency window of ground-based
detectors are those containing a stellar-mass black hole.
But these binaries have a smaller coalescence rate and
need less time to coalesce, from an initial frequency of
10 Hz. The product coalescence rate×duration of signal
would thus be even smaller. Therefore they do not pro-
duce a continuous background either.

At frequencies larger than 10 Hz, hence, there is no
continuous background from binary systems. Between 1
and 10 Hz one could have a continuous background, but
it turns out to be well below the realistic sensitivity of a
ground-based detector (see Figure 6).

D. Cosmological model

1. Metric

We assume a spatially flat, homogeneous and isotropic
universe, described by a Friedmann-Robertson-Walker
metric,

ds2 = −c2dt2e +a2(te)
[
dr2 + r2[dθ2 + sin2(θ) dφ2]

]
, (1)

where c is the speed of light. The time coordinate te
is chosen to be, for convenience, the look-back time: it
is 0 at present and t0 ≈13.7 Gyr at the Big Bang. The
usual look-forward time would be just t′ = t0 − te, with
which the form of the metric would not change. The
dimensionless cosmological scale factor, a(te), is chosen
to be a(0) = 1 at present. The coordinates r, θ and φ are
called comoving coordinates, because they move with the
cosmological fluid. For example, two objects at rest with
respect to the fluid, at positions r1 and r2 (and equal
values of θ and φ), have a comoving distance r = r2− r1.
This comoving distance remains the same at every future
time. However, the physical (proper) distance between
them is rphys(te) = a(te)r, and changes with time as
the universe expands. Setting r = 0 at the Earth, the
coordinate r of a distant object is its comoving distance
from us.

2. Redshifting

The definition of the cosmological redshift z is given
by

1 + z =
a(0)

a(te)
, (2)

where, as already said, a(0) = 1. This equation gives
the value of the scale factor at the time of emission of
a graviton (or a photon) that is today observed with a
redshift z.

We see now how the expansion of the universe affects
frequencies and energies of gravitational waves, as well as
infinitesimal intervals of time (a derivation can be found
in Section 4.1.4 of [41]). A frequency fe of a wave emitted
by a system at a redshift z corresponds to

f =
fe

1 + z
(3)

at the present time. Since the energy of a graviton is
proportional to its frequency, a graviton emitted with an
energy Ee is today observed with

E =
Ee

1 + z
. (4)

An infinitesimal lapse of time dte (emitted interval of
time) measured at redshift z is today observed as

dt = dte[1 + z]. (5)



5

From (3), it follows that an infinitesimal frequency inter-
val dfe emitted at redshift z is today observed as

df =
dfe

1 + z
. (6)

Similarly, from (4), an infinitesimal energy interval dEe
corresponds to

dE =
dEe
1 + z

(7)

today.

3. Volumes

Some important quantities in this work are defined as
densities, i.e. per unit volume (by which we mean the
spatial volume). Because of the expansion, it is conve-
nient to speak of two different volumes: physical and
comoving volume.

The element of physical volume dV at fixed time te in
the metric (1) is given by a3(te) r

2 sin(θ) dr dθ dφ. We
consider only sources uniformly distributed in the sky, so
we can integrate for all angles θ and φ, obtaining

dV = 4πa3(te)r
2dr. (8)

The factor a3(te) accounts for the expansion in the three
space dimensions.

The element of comoving volume dVc is defined by
dVc = a−3(te)dV, which, using (8), gives

dVc = 4πr2dr. (9)

Suppose eight galaxies (that, at large scales, can be
thought as point-like) are placed at the vertices of a
cube. With the expansion, the galaxies separate from
each other and the physical volume of the cube increases,
but its comoving volume remains always the same. Since
we are assuming that all massive objects are at rest with
respect to the fluid, no system enters or leaves a certain
comoving volume. For this reason it is straightforward
to measure densities (for example, the number density of
systems) per unit comoving volume.

It is useful to write the element of comoving volume
in terms of redshifts, instead of distances. For that, we
have to find a way to transform infinitesimal intervals of
comoving distance dr into infinitesimal intervals of red-
shift dz. Suppose we observe today two gravitons, one
emitted at redshift z and the other at z+ dz. Since both
reach us at the same time, and both travel at the same
velocity c with respect to the cosmological fluid, the one
with larger redshift was emitted at a time dte before the
other, and thus at a comoving distance dr further away
from us than the other. The path of the gravitons, mov-
ing in a radial direction (dθ = dφ = 0), is obtained by
setting ds2 = 0 in (1), which gives

dr =
c

a(te)
dte. (10)

To write dte in terms of redshifts, we use the definition
of the redshift. One can differentiate equation (2) with
respect to te, obtaining dz/dte = −ȧ(te)/a

2(te). Using
(2) again and the definition of the Hubble expansion rate,
H(te) = −ȧ(te)/a(te) (where the minus sign appears be-
cause of the use of a look-back time), one obtains

dte =
1

[1 + z]H(z)
dz. (11)

Here, the Hubble expansion rate has been written as a
function of the redshift, instead of the time. The form
of H(z) is derived further on in this section. Introducing
(11) in (10), we obtain a relationship between dr and dz,

dr =
c

a(te)

1

[1 + z]H(z)
dz =

c

H(z)
dz, (12)

where the terms a(te) and [1+z] have canceled out, using
(2). Finally, inserting (12) in (9), the element of comov-
ing volume becomes

dVc = 4πr2(z)
c

H(z)
dz. (13)

Here, r(z) is obtained by integrating (12),

r(z) =

∫ z

0

c

H(z)
dz. (14)

Gravitons emitted between redshift z and z + dz define
a shell of comoving volume given by dVc.

The Hubble expansion rate can be written as a function
of the redshift. For that, we use the Friedmann Equation
(see Chapter 27 of [42]),

H2(te) =
8πG

3
ρ(te)−

kc2

a2(te)
+

Λ

3
, (15)

where G and Λ are the gravitational and cosmological
constants, respectively. This equation is obtained from
the Einstein Equation, imposing the metric (1) and the
stress-energy tensor of a perfect fluid (see Chapter 5 of
[42]). We assume a spatially flat universe, which means
with zero curvature, k = 0. The term ρ(te) is obtained
from the equation of a perfect fluid of density ρ and pres-
sure p (which is also obtained from the Einstein Equa-
tion),

ρ̇− 3H(te)

[
ρ(te) +

p(te)

c2

]
= 0. (16)

We can solve this equation considering a universe dom-
inated by non-relativistic matter (also called dust),
ρ(te) = ρm(te), with equation of state pm = 0. One
obtains ρm(te) ∝ a−3(te), which, using (2), becomes

ρm(z) = ρ0
m(1 + z)3, (17)

where ρ0
m is the current value of the density of matter.

One can also solve (16) using the equation of state of
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relativistic matter (radiation), pr = ρc2/3. But one can
prove that the resulting density, ρr(z) = ρ0

r(1+z)4, dom-
inates in the Friedmann Equation only at very large red-
shifts. The redshift at which both densities, ρm(z) and
ρr(z) equate is zeq ≈ 3×103 (from [43]). Considering the
redshifts involved in this work (z < 20) we neglect ρr(z)
compared to ρm(z). Inserting (17) in (15) and rewriting
the latter in terms of the present value of the Hubble
expansion rate, H0 = [74.2 ± 3.6] km s−1 Mpc−1 (from
[44]),

H(z) = H0E(z), (18)

where

E(z) =
√

Ωm[1 + z]3 + ΩΛ. (19)

Here,

Ωm =
8πGρ0

m

3H2
0

and ΩΛ =
Λ

3H2
0

(20)

are two dimensionless quantities called the density pa-
rameters of matter and dark energy, respectively. The
most recent values for the cosmological parameters ob-
tained by the Wilkinson Microwave Anisotropy Probe
(WMAP) after seven years of measurements are given in
[43]. We adopt a density parameter of matter Ωm = 0.27
and of dark energy ΩΛ = 0.73. For simplicity we do not
consider any uncertainty in these values.

For a better understanding of the relationship between
volumes and redshifts, we can see Figure 1, where a Pen-
rose diagram [45] for the metric (1) is shown. Each point
of the diagram represents a two-sphere at a certain con-
formal time. The (look-forward) conformal time is de-
fined by

dη = −[1 + z]dte. (21)

The coordinates of Figure 1 are defined by{
r′ = arctan(η + r)− arctan(η − r)
η′ = arctan(η + r) + arctan(η − r) . (22)

Introducing (21) in (1), the path of a graviton fulfills
dr = c dη. In the diagram we use c = 1, so that r = η and
thus r′ = η′ for all null paths. All gravitons that reach
us today have traveled along the null path shown (the
straight solid line connecting z = 0 and zmax). This path
cuts the horizontal axis at the moment of the Big Bang,
fixing the horizon of our observable universe. For each
infinitesimal interval of time dη (that describes the differ-
ence between the emission of two gravitons that reach us
today) there is a corresponding interval dz, along the null
path, which represents a shell of infinitesimal comoving
volume dVc.

E. Spectral function

Under the assumptions (discussed in [1]) that the back-
ground is Gaussian, stationary, isotropic and unpolar-

FIG. 1. Penrose diagram of a universe described by the metric
(1). The straight black line crossing z = 0 and z = zmax

contains all the gravitons that we observe today.

ized, all the information about it is contained in a di-
mensionless function called the spectral function, defined
by

Ω(f) =
1

ρc

dρ

d ln f
=

f

ρc

dρ

df
. (23)

Here, f is the observed gravitational wave frequency, and

dρ

df
=

1

c2
dε

df
, (24)

where c is the speed of light. The function dε/df is de-
fined in such a way that the total energy density of grav-
itational waves in the present universe is

εT =

∫
dε

df
df, (25)

where the integral includes all possible frequencies. This
means that dε is the energy per unit physical volume of
gravitational waves between f and f + df . The present
critical density of the universe is

ρc =
3H2

0

8πG
. (26)

This is the density that closes a universe with zero cosmo-
logical constant. This means that ρc is the density that,
inserted in Equation (15) (using ΩΛ = 0), gives a zero
curvature (k = 0) at present (te = 0). Thus, Ω(f) is the
fractional energy density of gravitational radiation, per
logarithmic frequency interval, in the present universe.
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In Section V A we discuss another possible definition of
Ω(f), as suggested in [21, 46], that turns out to be equiv-
alent to our definition.

We first describe a system as seen by an observer close
to it at the time of emission. The energy released in
gravitational radiation between frequencies fe and fe +
dfe is

dEe = Pe(fe)dfe. (27)

This defines Pe(fe): the energy spectrum of a system at
the time of emission. From (27) it follows that Pe(fe) =
dEe/dfe.

The energy spectrum at emission can be related to the
energy spectrum today. The present energy dE radiated
by that system, with an observed frequency between f
and f + df , is

dE = P (f)df, (28)

which defines P (f) = dE/df . Applying (6) and (7) to
Equation (28), one obtains

P (f) = Pe(fe) = Pe(f [1 + z]). (29)

The function Pe(f [1 + z]) is explicitly given for the case
of a binary system in Equation (58).

We now calculate the energy spectrum per unit comov-
ing volume of an ensemble. The number of systems per
unit comoving volume during a time dte is

dn = ṅ(z)dte. (30)

Here, ṅ(z) = dn/dte is the signal comoving density rate
(number of signals per unit emitted interval of time per
unit comoving volume). The comoving energy density
spectrum of an ensemble is

p(f) =

∫
P (f)dn =

∫
P (f)ṅ(z)dte. (31)

Recall that P (f) in general depends on z, according to
(29). The integrals in (31) contain all systems formed
from the Big Bang until today. Thus the limits of the
time integral are 0 (today) and t0 (the beginning of the
universe). We can now change variables to write the
previous integral in terms of redshifts, using the paths of
gravitons as explained in section II D,

p(f) =

∫ ∞
0

P (f)ṅ(z)
dte
dz
dz. (32)

Since we have chosen a(0) = 1, the comoving volume and
the physical volume are identical at present. Therefore,

p(f) =
dε

df
. (33)

This means, the comoving energy density spectrum p(f)
measured today is what in Equation (24) was called

dε/df : the present energy density of gravitational radia-
tion per frequency interval (of a certain ensemble). Using
(23) and (32),

Ω(f) =
f

ρcc2
dε

df
=

f

ρcc2

∫ ∞
0

P (f)ṅ(z)
dte
dz
dz. (34)

In this formula, only the term dte/dz depends on the
choice of cosmological model.

A similar derivation of (34) (using different notation)
can be found in [33]. In that paper, the formula for the
spectral function, called Ωgw(f), is given in Equation (5).
The terms N(z) and [1+z]−1[fr dEgw/dfr]|fr=f [1+z] cor-
responds, with our notation, to ṅ(z)dte/dz and f P (f),
respectively.

In Equation (32) one can clearly see the assumption of
a homogeneous universe, which is implicitly imposed by
the metric (1). At any position within a shell of width
dz there is the same number of systems. In other words,
ṅ(z) is the same at every point on a line of constant time,
in Figure 1.

The spectral function of an ensemble can be expressed
more conveniently. We write it in terms of the energy
spectrum at the time of emission, Pe(f [1 + z]), for our
particular cosmological model. Using (29) and (11),

Ω(f) =
f

ρcc2H0

∫ ∞
0

Pe(f [1 + z])ṅ(z)

[1 + z]E(z)
dz. (35)

The spectral function of the total contemporary back-
ground would be the sum of the spectral functions of all
different types of ensembles.

But Ω(f) does not include all redshifts and frequen-
cies, since ṅ(z) and Pe(fe) have support only for z ∈
[zmin, zmax] and fe ∈ [fmin, fmax], respectively. The max-
imum frequency fmax is the one above which no more
gravitational waves are emitted. The minimum frequency
fmin is the one below which the contribution in gravi-
tational waves is dismissed. For example, neutron star
binaries started to form at a redshift zmax ∼ 5 (∼12 Gyr
ago), are still forming at present, so zmin ∼ 0, and emit in
a range of frequencies from ∼0.01 mHz to ∼1 kHz (these
ranges are justified in Section III). These limits in red-
shift and frequency must be taken into account in the
integral of (35).

To understand how (35) changes with the introduction
of these limits, it is helpful to make a plot of redshifts
versus frequencies. Each horizontal line of such a plot
gives the range of possible frequencies of a signal at a
certain redshift. If we plotted on the horizontal axis the
emitted frequencies fe, the limits fmin, fmax, zmin, and
zmax would define a rectangle, containing all the points
(fe, z) where both ṅ(z) and Pe(fe) have support. But
representing redshifts versus observed frequencies f , one
obtains the plot of Figure 2 (which is no longer a rectan-
gle). The shaded area represents the support of Ω(f).

We insert two redshift functions zlow(f) and zupp(f)
in the integration limits of (35), in such a way that the
integral is non-zero only in the shaded area of Figure 2.
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FIG. 2. Redshift versus observed frequency. The spectral
function of the total background of a certain ensemble has
support only within the shaded area.

This is achieved with

zlow(f) =


zmax, f ≤ fmin

1+zmax
fmin

f − 1, fmin

1+zmax
< f < fmin

1+zmin

zmin,
fmin

1+zmin
≤ f

, (36)

and

zupp(f) =


zmax, f ≤ fmax

1+zmax
fmax

f − 1, fmax

1+zmax
< f < fmax

1+zmin

zmin,
fmax

1+zmin
≤ f

. (37)

With these limits, only signals emitted with frequencies
between fmin and fmax, at redshifts between zmin and
zmax, contribute to Ω(f).

Changing the integration limits in (35), the spectral
function becomes

Ω(f) =
f

ρcc2H0

∫ zupp(f)

zlow(f)

Pe(f [1 + z])ṅ(z)

[1 + z]E(z)
dz. (38)

This formula gives the spectral function of the total
background produced by an ensemble, measured at the
present time. In the next section we generalize this for-
mula to account for the resolvability of the signals.

Notice that the energy spectrum Pe(fe) does not de-
pend on time. We are thus adding the contribution of
each system as if it were instantaneous (this means, as if
it were a point in the Penrose diagram of Figure 1). This
is justified if the inspiral times are much smaller than the
cosmic timescales, so the time a system needs to evolve
from emitting at fmin to fmax is much less than the Hub-
ble time, H−1

0 ≈13 Gyr. In Section V C we comment that
this assumption is not always fulfilled, but it turns out
to be irrelevant in practice.

F. Resolvability of the background

In this section we introduce the overlap function,
N (f,∆f, z), that allows us to define and quantify the
resolvability of the background.

We first define some quantities that are necessary for
the definitions of the different parts of the background.
Let B(f, z1, z2) be the collection of signal elements with
observed frequencies between f and f +df and with red-
shifts between z1 and z2. Let τe(fe,∆fe) be the interval
of time (measured close to the system at the moment of
emission) that a system at z spends emitting between fe
and fe + ∆fe. Written in terms of observed frequencies,
this interval of time is τe(f,∆f, z). We define Ṅ(z) in

such a way that Ṅ(z)dz is the number of signals pro-
duced per unit emitted interval of time between z and
z+dz. Since ṅ(z) is the number of signals per unit emit-
ted interval of time per unit comoving volume at redshift
z, Ṅ(z) is given by

Ṅ(z) = ṅ(z)
dVc
dz

. (39)

The value of Ṅ(z) at a certain redshift z can be con-
sidered an average over an interval of time that is much
longer than a typical observation time, but much shorter
than the Hubble time. For the sake of simplicity let
us assume that we know precisely this function, and
that it gives the exact number of signals produced per
unit emitted interval of time. For instance, if we have∫ z

0
Ṅ(z)dz = 1 hour−1, one signal is assumed to be pro-

duced between redshift 0 and z exactly every hour.
Let us illustrate the resolvability with the following ex-

ample: One signal is produced every hour between z and
z + dz, i.e. Ṅ(z)dz = 1 hour−1. Each signal spends one
hour between f and f + ∆f , i.e. τe(f,∆f, z) = 1 hour.
Thus, whenever we see that frequency bin, it will be oc-
cupied by τe(f,∆f, z)× Ṅ(z)dz = 1 signal produced be-

tween z and z + dz. If, for the same Ṅ(z)dz, we con-
sider a different range of frequencies, where τe(f,∆f, z) =
2 hours, we will always see in that frequency bin 2 over-
lapping signals, which will not be distinguishable. We
can perform a similar calculation, considering all red-
shifts between z1 and z2:

∫ z2
z1
τe(f,∆f, z)× Ṅ(z)dz gives

the number of signals between redshift z1 and z2 that
overlap in a frequency bin. If that number is larger than
one, those signals cannot be resolved. This leads us to
the definition of the overlap function.

The overlap function is defined by

N (f,∆f, z) =

∫ z

zlow(f)

τe(f,∆f, z
′)Ṅ(z′)dz′. (40)

It thus gives the expected number of signals with red-
shifts smaller than z and frequencies between f and
f + ∆f . For example, N (f,∆f, z) = 1 implies that, as
soon as one signal leaves a frequency bin, another signal
enters it, so the bin is constantly occupied by one signal.
Hence, N (f,∆f, z) > 1 implies that signals overlap in
a frequency bin. We can impose N (f,∆f, z) = N0 and
invert this equation with respect to the redshift z. The
obtained function,

N−1 = N−1(f,∆f,N0) (41)
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is the redshift such that all signals between f and f+∆f
with redshifts smaller than N−1(f,∆f,N0) sum N0. To
obtain an overlap larger thanN0 at a certain frequency f ,
one has to consider only signals from redshifts larger than
N−1(f,∆f,N0). In Section III E 3 we give a formula for
N−1(f,∆f,N0) for an ensemble of binary systems.

We now give some relevant definitions:

The total background of an ensemble between fre-
quency f and f + df is B(f, zlow(f), zupp(f)). One can
assign a spectral function to it, Ωtotal(f).

The total background can be divided into two parts:
resolvable and unresolvable. If there exists a certain z∗
such that zlow(f) < z∗ < zupp(f) and N (f,∆f, z∗) = 1,
the unresolvable part is B(f, z∗, zupp(f)), and the resolv-
able part is B(f, zlow(f), z∗). If there is no z∗ such that
zlow(f) < z∗ < zupp(f) and N (f,∆f, z∗) = 1, the re-
solvable part coincides with the total background and
the unresolvable part is the empty set. One can as-
sign a spectral function to the resolvable part of the
background, Ωresolvable(f), and to the unresolvable part,
Ωunresolvable(f).

The resolvable part dominates at a frequency f when
Ωresolvable(f) > Ωunresolvable(f). When this happens,
even if there is an unresolvable background present, it is
weak compared to the background of the closer (stronger)
signals, and thus the latter can still be resolved. On the
other hand, the unresolvable part dominates at a fre-
quency f when Ωunresolvable(f) > Ωresolvable(f). In this
case, even if there are some close resolvable signals, they
cannot be resolved in practice, since they are obscured
by the superposition of many weak distant signals.

In Section V E other possible criteria for the resolvabil-
ity of the background are commented on.

In Figure 3 we give an illustrative example to under-
stand the definitions of the different parts of the back-
ground. There we plot the evolution in time of the ob-
served frequency of many similar signals, like the ones
produced by an ensemble of binaries. The horizontal
axis range is an interval of time of the order of a typ-
ical observation time. This axis is divided in small in-
tervals ∆t, which is the time resolution. The vertical
axis can be considered the frequency window of a hy-
pothetical detector, with such a low instrumental noise
that allows us to observe signals emitted at very large
redshifts. This axis is divided into small intervals ∆f ,
the frequency resolution. Darker pixels in the plot repre-
sent stronger backgrounds, i.e. with larger spectral func-
tion. The bin (∆f)1 is in a range of frequencies where
the total background is completely resolvable: all signals
can be clearly distinguished from each other. In (∆f)2,
an unresolvable part starts to contribute, but close bi-
naries can still be clearly distinguished from each other,
since the resolvable part dominates. Finally, in (∆f)3

the unresolvable part of the background dominates over
the resolvable one. One should keep in mind that this
example does not accurately follow the definition of un-
resolvability, since the spectral function does not account
for individual signals.

FIG. 3. Observed frequency versus time. Each line represents
the evolution of one signal (like the one produced by a binary).
Closer signals, as well as the superposition of many signals,
are plotted darker than distant individual signals. Three fre-
quency bins are distinguished: in (∆f)1 the total background
is completely resolvable, in (∆f)2 there is an unresolvable
part and a dominating resolvable part, and in (∆f)3 there is
a dominating unresolvable part and a resolvable part.

We now generalize the formula of the spectral function
to account for the resolvability of the background. We
solve the integral in (38) for the signals that fulfill the
condition N (f,∆f, z) ≥ N0. For that, we can retain the
same upper limit of the integral, zupp(f), and change the
lower one, replacing zlow(f) by

z(f,∆f,N0) =

 zupp(f), f < fp,min

N−1(f,∆f,N0), fp,min ≤ f ≤ fp,max

zupp(f), fp,max < f
.

(42)
We have introduced four limiting frequencies: fp,max

(fp,min) represents the maximum (minimum) frequency
at which the unresolvable part of the background is
present, and fd,max (fd,min) represents the maximum
(minimum) frequency at which the unresolvable part
dominates over the resolvable. Using (42) we obtain the
spectral function of an ensemble with more than N0 sig-
nals per frequency bin ∆f ,

Ω(f,∆f,N0) =
f

ρcc2H0

∫ zupp(f)

z(f,∆f,N0)

P (fe[1 + z])

× ṅ(z)

[1 + z]E(z)
dz. (43)

This is the main equation of the paper and a generaliza-
tion of Equation (38) with which we can distinguish the
different regimes of the background.

The unresolvable background is fully characterized by
the spectral function Ω(f,∆f,N0). It is not easy to de-
termine whether the assumptions mentioned at the be-
ginning of Section II E are always fulfilled for such a back-
ground. But it is clear that valuable information is lost
when using the spectral function to characterize a re-
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solvable background, where signals can be individually
distinguished.

The spectral function of the unresolvable part of the
background is, according to the definitions given at the
beginning of this section,

Ωunresolvable(f) = Ω(f,∆f, 1), (44)

where ∆f can be chosen as the inverse of the observation
time. On the other hand, the spectral function of the
resolvable part is

Ωresolvable(f) = Ωtotal(f)− Ωunresolvable(f), (45)

where

Ωtotal(f) = Ω(f,∆f, 0). (46)

Here, Ω(f,∆f, 0) coincides with the Ω(f) given in Equa-
tion (38), and the value of ∆f becomes irrelevant.

Another picture that illustrates the distinct parts of
the background is in Figure 4. This graph is the same as
that in Figure 2, but also represents the redshift function
z(f,∆f,N0) that defines the frontier between the resolv-
able (light-shaded area) and unresolvable (dark-shaded)
parts of the background.

The mathematical definitions of the limiting frequen-
cies can be understood by looking at the graph in Fig-
ure 4. The frequencies fd,min and fd,max are the ones
at which the resolvable and the unresolvable parts have
equal spectral function, so

Ωunresolvable(fd,min/max) = Ωresolvable(fd,min/max), (47)

The frequencies fp,min and fp,max are the ones at which
the function N−1(f,∆f,N0) intersects zupp(f), so

N−1(fp,min/max,∆f,N0) = zupp(fp,min/max). (48)

In Section III E 4 we calculate these limiting frequencies
for an ensemble of binary systems.

So far we have distinguished the regimes of resolvabil-
ity by using the frequency resolution ∆f , but not the
time resolution ∆t. In Section V F we show how to re-
define the overlap function to account for the time res-
olution. In practice, the effect of introducing a realistic
∆t in the calculations turns out to be irrelevant for our
work.

In Section V G 3 we show that the overlap function is
a generalization of what in the literature is often called
the duty cycle, D(z). The latter is proven to be a good
quantifier of the unresolvability of the background only
for very short signals (bursts). Furthermore, we use the
name overlap function and not duty cycle, because the
latter may be confusing: D(z) can be greater than unity,
unlike the typical duty cycles used in electronics or in
gravitational wave detectors.

G. Continuity of the background

The overlap function can be used to characterize not
only the resolvability but also the continuity of the back-
ground. We now give some definitions, similar to the
ones given in the previous section:

Given a frequency interval [flow, fupp] (that can be the
frequency window of a detector), the total background
B(f, zlow(f), zupp(f)) of an ensemble between frequency
f and f + df (where flow ≤ f ≤ fupp) can be divided
into two parts: discontinuous and continuous. If there
exists a certain z∗ such that zlow(f) < z∗ < zupp(f)
and N (f,min(fmax, fupp) − f, z∗) = 1, the continuous
part is B(f, z∗, zupp(f)), and the discontinuous part is
B(f, zlow(f), z∗). If there is no z∗ such that zlow(f) <
z∗ < zupp(f) and N (f,∆f, z∗) = 1, the discontinu-
ous part coincides with the total background and the
continuous part is the empty set. One can assign a
spectral function to the discontinuous part of the back-
ground, Ωdiscontinuous(f), and to the continuous part,
Ωcontinuous(f).

The definitions of resolvable and unresolvable back-
grounds are valid both for signals which frequency in-
creases in time, such as binaries, and for signals which
frequency decreases (for which one could change ∆f by
−∆f in the definitions). On the other hand, the given
definitions of discontinuous/continuous backgrounds as-
sume that the frequency increases in time. For signals
with decreasing frequency, the condition of continuity
would be N (f, f −max(flow, fmin), z∗) ≥ 1.

In the following, when talking about the continuous
background, we will assume flow = 0 and fupp = ∞.
This implies that any part of the background that is not
continuous in this circumstance is definitely discontinu-
ous, for any other choice of flow and fupp. Besides, the
unresolvable background is necessarily continuous.

So, the spectral function of the continuous background
is

Ωcontinuous(f) = Ω(f, fmax − f, 1). (49)

The spectral function of the discontinuous background is

Ωdiscontinuous(f) = Ωtotal(f)− Ωcontinuous(f), (50)

where Ωtotal(f) is the same of Equations (46) and (38).

III. MODELS FOR THE ENSEMBLES

Our work is focused on the contemporary background
produced by coalescing binary systems. These are sys-
tems composed by two objects that inspiral towards each
other, producing gravitational waves with an increasing
frequency until they coalesce. In order to emit gravita-
tional waves significantly, they must be sufficiently mas-
sive and/or compact. Each binary is assumed to be iso-
lated and describing an orbit of zero eccentricity. Its
components are assumed to be non-spinning.
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FIG. 4. Redshift versus observed frequency. Each horizontal line contains the possible observed frequencies of a signal. The
light-shaded (dark-shaded) area represents the resolvable (unresolvable) part of the background. The redshift functions zlow(f),
z(f,∆f,N0), and zupp(f) are shown with dashed, dotted, and solid lines, respectively. The frequencies fp,min and fp,max delimit
the interval where the unresolvable part is present. The frequencies fd,min and fd,max delimit the interval where the unresolvable
part dominates.

We sort the binary systems into two classes: stellar
binaries and massive black hole binaries.

By stellar binary we mean a system whose components
have masses of the order of a solar mass (or tens of it).
We consider those stellar binaries formed by two stellar-
mass black holes (from now on we call this type of binary
BH-BH), a stellar-mass black hole and a neutron star
(BH-NS), two neutron stars (NS-NS), a neutron star and
a white dwarf (NS-WD) or two white dwarfs (WD-WD).
The majority of the star formation rates in the literature
vanish at redshifts larger than 5 or 6 (see for example [47–
53]). If we expect no star formation at higher redshifts,
no coalescence from stellar binaries is expected either.
We choose then a maximum redshift for binary coales-
cences of zmax = 5. The minimum redshift is chosen
zmin = 0, since these binaries can also form at present.

Massive black hole binaries (from now on, MBH-MBH)
are systems believed to exist in the center of many galax-
ies [54, 55]. Their components have masses that range
from ∼ 102M� to ∼ 1010M�. We consider four differ-

ent models for massive black hole formation, presented in
[56]: two of them (called SE/SC, for small seeds and effi-
cient/chaotic accretion) with light-seed black holes pro-
duced as remnants of Population III stars, and two with
heavy-seed black holes formed from dynamical instabili-
ties in the nuclei of protogalaxies (called LE/LC, for large
seeds and efficient/chaotic accretion). These formation
models allow coalescences at redshifts reaching z ≈ 20.

A. Energy spectrum

We assume that the energy lost by a system when emit-
ting gravitational radiation between fe and fe + dfe is of
the form

dEe,sys = −κ[fe]
bdfe, (51)

for real constants κ and b. This formula is valid for all
systems considered in this work (binaries) and also other
systems (see for example the emission model of magne-
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tars in [17]). In particular, for a binary system,

κ =
1

3
[G2π2M5]1/3 and b = −1

3
. (52)

Here we have introduced the chirp massM of the binary,
defined by

M =
[m1m2]3/5

[m1 +m2]1/5
, (53)

where m1 and m2 are the masses of the two components
of the binary.

This energy spectrum is obtained by assuming that
the energy of the system, as well as the separation of
the bodies, varies slowly with time. This is valid as long
as the orbit is far wider than the last stable one (see
Equation (65)). In these circumstances, the system is
well described by the Newtonian equations of motion of
two point masses in a circular orbit.

We thus derive Equation (51) for binary systems us-
ing Newtonian mechanics. The energy of the system, in
terms of the separation s between the stars of masses m1

and m2 is

Ee,sys = −1

2

Gm1m2

s
. (54)

We reduce the two-body problem to one fictitious body,
of mass equal to the reduced mass of the system,
m1m2/[m1 +m2], suffering the same force as each of the
real bodies. Applying Newton’s second law,

Gm1m2

s2
=

m1m2

m1 +m2
[2πfe,orbit]

2s, (55)

where fe,orbit is the orbital frequency, that is related to
the frequency of the gravitational waves in the quadrupo-
lar approximation by

fe = 2fe,orbit. (56)

Introducing it in Equation (55) one obtains a formula
that relates the separation of the masses with the fre-
quency of the gravitational waves,

s =

[
G[m1 +m2]

π2f2
e

]1/3

. (57)

Replacing (57) in (54) and differentiating, one finally ob-
tains the energy spectrum (51) with the values of κ and
b given in (52). A more detailed derivation of Equation
(51) can be found in Chapter 4 of [41].

What we need is the energy spectrum of the gravi-
tational radiation at the time of emission, in terms of
observed frequencies, Pe(f [1 + z]) (recall the formula of
Ω(f,∆f,N0) in Equation (43)). The energy carried by
the waves is that lost by the system, dEe = −dEe,sys.
Using (3) and (51),

Pe(f [1 + z]) =
dEe
dfe

= −dEe,sys

dfe

= κ[fe]
− 1

3 = κf−
1
3 [1 + z]−

1
3 . (58)

This must be inserted in Equation (43) to obtain the
spectral function of an ensemble of binary systems.

B. Interval of time per frequency bin

To calculate the overlap function we need the interval
of time that a system spends emitting in a frequency
bin. The frequency of the radiation emitted by a binary
evolves in (look-forward) time following the relation

dfe
dte

=
96

5
π8/3

[
GM
c3

]5/3

f11/3
e , (59)

the derivation of which can be found in Chapter 4 of [41].
Integrating (59) between fe and fe+∆fe one obtains the
interval of time that the signal spends in that frequency
interval,

τe(fe,∆fe) = δ2

[
f−8/3
e − [fe + ∆fe]

−8/3
]
, (60)

where

δ2 =
5c5

256π8/3[GM]5/3
. (61)

The interval of time τe(fe,∆fe) can be written in terms
of observed frequencies,

τe(f,∆f, z) = δ2Q[f,∆f ][1 + z]−8/3, (62)

where we have defined

Q(f,∆f) = f−8/3 − [f + ∆f ]−8/3. (63)

The function τe(f,∆f, z) gives the interval of time that
a signal, produced at a redshift z, needs to change from
an observed frequency f to f + ∆f . We remark that
this is an absolute (positive) interval of time, and not a
look-back time.

In certain conditions Q(f,∆f) can be simplified, by
performing a Taylor expansion around ∆f = 0,

Q(f,∆f) ≈ 8

3
∆f f−11/3, (64)

for ∆f � f .

C. Maximum frequencies

The energy spectrum of binary systems (Equation
(51)) is assumed to be zero outside a certain frequency
range [fmin, fmax]. We now present our choices of fmax

for each type of system. We omit the index e to simplify
the notation, but one should keep in mind that fmax is
an emitted frequency.

For all binaries that do not contain a white dwarf, fmax

is reached when both stars are as close to each other as
slso. This is the separation at the last stable orbit (see
for example Box 25.6 in [42]),

slso =
6G[m1 +m2]

c2
, (65)
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which is three times the Schwarzschild radius of each star.
Using Equation (57), the frequency of the last stable orbit
is

f lso
max =

1

6
√

6π

c3

G[m1 +m2]
, (66)

where we have used the index ‘lso’ to distinguish this
maximum frequency from the following ones.

For WD-WD, since the radius of a white dwarf is much
bigger than its Schwarzschild radius, we assume that the
maximum frequency is reached when both stars touch
each other. This happens when the separation between
them is r1 + r2, the sum of their radii. This separation
corresponds to a frequency (using again Equation (57))

fWD-WD
max =

1

π

√
G[m1 +m2]

[r1 + r2]3
. (67)

For r1 and r2 one can use

ri = 0.0112R�

√[
mi

mCha

]−2/3

−
[
mi

mCha

]2/3

, (68)

where mCha ≈1.44M� is Chandrasekhar’s mass. This
formula gives the approximate radius ri of a white dwarf
as a function of its mass mi. It is obtained from Equa-
tions (27) and (28) (where there is an extra factor M�
on the right side) in [57].

For NS-WD, we use the same criterion as for WD-
WD, but considering that the radius of the neutron star
is negligible with respect to the radius of the white dwarf.
Hence, the maximum frequency is

fNS-WD
max =

1

π

√
G[m1 +m2]

r3
1

, (69)

where r1 is the radius of the white dwarf, that can be
calculated with (68).

D. Minimum frequencies

There is a certain minimum frequency, fmin, such that
the gravitational radiation emitted by a system below
this frequency is disregarded, because other mechanisms
of energy loss are more effective. It is difficult to find
a precise description of these mechanisms for each type
of system. We adopt a simple criterion, for all stellar
binaries, that fixes the value of fmin: the interval of
time between the beginning of the inspiral phase (when
the binary emits at frequency fmin) and the coalescence
(when it emits at fmax) cannot be higher than a certain
interval of time Tmax. This condition is equivalent to
τe(fmin, fmax − fmin) < Tmax. Using Equation (60), one
obtains

fmin =

[
Tmax

δ2
+ f−8/3

max

]−3/8

. (70)

For all systems considered in this work we can reasonably
perform the approximation

fmin ≈
[
Tmax

δ2

]−3/8

. (71)

As we did with the maximum frequencies, we omit the
index e to simplify the notation, but fmin is always an
emitted frequency. The assumption of a maximum inspi-
ral time is justified in Section V C. The maximum inspiral
times chosen are Tmax = 12 Gyr for stellar binaries and
75 Myr for massive black hole binaries. This choices are
justified now.

1. Maximum inspiral time for stellar binaries

For stellar binaries, Tmax = t5−0, where t5 is the look-
back time at which the first stellar binaries coalesced (at
z ≈ 5). Integrating (11),

t5 =

∫ t5

0

dt =

∫ 5

0

1

[1 + z]H(z)
dz ≈ 12 Gyr. (72)

This choice of Tmax is somewhat arbitrary and even leads
to an inconsistency: only binaries that coalesced at small
redshifts could have that much time to evolve from an
initial frequency fmin until the coalescence. Moreover,
at frequencies close to the minimum one, the approxi-
mation of short inspiral times compared to the Hubble
time, commented at the end of Section II E, is not valid
anymore. In Section V C we justify our choice of Tmax,
the exact value of which turns out to be unimportant in
practice.

2. Maximum inspiral time for massive black hole binaries

The process that leads to two massive black holes co-
alescing can be briefly summarized in three main phases
[58]: dynamical friction, gravitational slingshot and grav-
itational radiation. When two dark matter halos contain-
ing black holes merge, the black holes suffer dynamical
friction [59] with the environment and sink to the center,
forming a wide binary (with large orbital period). At a
certain distance the dynamical friction phase ceases to be
effective. Then [60] the binary can continue to shrink be-
cause of three-body interactions with surrounding stars.
These stars are ejected from the center and subtract some
energy from the binary in the process. This phase is
called gravitational slingshot because of the ejection of
stars. Eventually the dynamical friction plus the sling-
shot phases shrink the orbit enough, so that the binary
can continue inspiralling until a coalescence in a finite
interval of time by only emitting gravitational radiation,
which constitutes the third phase. Other possible evo-
lutions involving interaction with surrounding gas have
been investigated in the literature [61–63].
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We impose that the minimum frequency is the one
at which the gravitational slingshot phase ends and the
gravitational radiation starts to dominate (see the discus-
sion in Section V D). As we now show, this condition is
reasonably well fulfilled by imposing the same maximum
inspiral time Tmax = 75 Myr for all masses.

The frequency at which the slingshot and radiation
phases overlap is the one at which the energy spectra of
the two phases are equal,

dEe
dfe

∣∣∣∣
S

=
dEe
dfe

∣∣∣∣
R

. (73)

The variation of the energy of the gravitational waves
with their frequency, in any of the two phases, can be
written as

dEe
dfe

=
dEe
dte

dte
ds

ds

dfe
=
dEe
dte

[
ds

dte

]−1
ds

dfe
. (74)

Here, dte is an interval of time and s is the separation of
the two black holes, which is the semi-major axis of the
ellipse described. Since the orbit is assumed circular, s
corresponds to the radius of the orbit. The term dEe/dte
is the same in both phases. Also ds/dfe has the same form
in the two phases. Only the evolution of the semi-major
axis in time, ds/dte, is different. Thus, instead of finding
the frequency that fulfills Equation (73), we can obtain
the separation s at which

ds

dte

∣∣∣∣
S

=
ds

dte

∣∣∣∣
R

, (75)

and then calculate the corresponding frequency using
(57).

Following [58] (or similarly [59]), we write the evolu-
tion in time of the semi-major axis of a binary in the
two phases. In the gravitational radiation phase, this
evolution fulfills

ds

dte

∣∣∣∣
R

= −64G3m1m2[m1 +m2]

5c5s3
, (76)

whereas in the gravitational slingshot phase,

ds

dte

∣∣∣∣
S

= −Hσ∗s
2

2πr2
c

. (77)

In the latter, H is the hardening rate, σ∗ is the velocity
dispersion of the stars in the bulge of the galaxy, and rc
is the core radius (see [59] for more details). We use the
value of H reached in the limit of a very hard binary,
H ≈ 15. It is known that there is a correlation between
σ∗ and the mass of the massive black hole mBH hidden
in the bulge (see [64] and [65]). This relation (from the
most recent fits, by [66]) is

log10

(
mBH

M�

)
= c1 + c2 log10

(
σ∗

200 km s−1

)
, (78)

with (c1, c2) = (8.12±0.08, 4.24±0.41). From this equa-
tion we obtain σ∗(mBH) and use mBH = m1 + m2 to
account for the two components of the binary. The core
radius rc, in the limit of a very hard binary, grows during
the gravitational slingshot phase until it reaches

rc ≈
3G[m1 +m2]

4σ2
∗

ln

(
Gm2

4σ2
∗s

)
, (79)

where m2 is the mass of the lighter black hole.
We now calculate the separation s at which both

phases overlap. Replacing (76) and (77) in (75),

s5 ln−2

(
Gm2

4σ2
∗s

)
=

72πG5m1m2[m1 +m2]3

5Hc5σ5
∗

. (80)

This equation can be numerically solved for each pair
of equal masses m1 = m2 = m, obtaining the sepa-
ration (let us call it sR) at which the gravitational ra-
diation phase starts to dominate. Using (57) one can
calculate the frequency fR that corresponds to sR. It
turns out that the obtained dependence of fR with m
is very accurately fitted by fmin(m), defined in Equa-
tion (71), using Tmax ≈ 75 Myr. This is a numerical
coincidence that eases further calculations. The origin
of this coincidence is the following: omitting the log-
arithm on the left side of Equation (80), sR ∝ m/σ∗
while σ∗ ∝ m1/4.24. This leads to sR ∝ m0.764. Ac-
cording to Equation (57), f ∝ m1/2s−3/2 and therefore
fR ∝ m−0.646. On the other hand, according to Equa-
tion (71), fmin ∝ m−5/8 = m−0.64. Therefore, the depen-
dences of fR and fmin with m are almost the same. As
a conclusion, setting a maximum inspiral time of 75 Myr
is (almost) equivalent to considering only waves emitted
during the gravitational radiation phase.

E. Calculations for stellar binaries

1. Coalescence rate

The signal comoving density rate ṅ(z), that was de-
fined in Equation (30), represents, in the case we study
now, the number of binaries per unit emitted interval of
time per unit comoving volume that coalesce at a redshift
z. We can thus call it the coalescence rate or simply rate.

To obtain ṅ(z), one could choose a star formation rate
from the literature (which is usually a function of the red-
shift) and transform it into a coalescence rate, for which
a coalescence probability distribution is necessary. This
procedure is followed for example in [67]. In Section V B
we show that the use of a constant coalescence rate is
well justified, given the large uncertainties in the local
coalescence rate. Therefore, to simplify calculations, we
assume a rate of the form

ṅ(z) =

 0, 0 < z < zmin

R, zmin ≤ z ≤ zmax

0, zmax < z
, (81)
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for a real constant R. The values of R for each ensemble
are given in Table I.

Some of the coalescence rates in the literature are es-
timated only within our galaxy. We need to extrapolate
those coalescence rates, given per Milky Way equivalent
galaxy, MWEG−1, to the rest of the universe. One sim-
ple way to translate galactic rates into rates per cubic
megaparsec, Mpc−3, is explained in Section 3 of [68]. We
use the same conversion factor of [69], which is referred
to [70],

1 MWEG−1 = 0.0116 Mpc−3. (82)

A similar factor is given in Equation (4) of [71]. The
conversion (82) assumes that the blue-light luminosity of
the Milky Way is 1.7×1010 LB,�, where LB,� is the blue
luminosity of the Sun, while that of the close universe
is 0.0198 × 1010 LB,� per cubic megaparsec. All these
factors are very uncertain, as discussed for example in
[72]. We assume no uncertainty in (82) but then round
the coalescence rates to one significant figure.

2. Spectral function

We now rewrite Ω(f,∆f,N0) in a simple way. Intro-
ducing (58) and the constant rate R in (43),

Ω(f,∆f,N0) = δ1f
2
3 [g(zupp(f))− g(z(f,∆f,N0))] .

(83)
Here,

δ1 =
Rκ

ρcc2H0
(84)

and g(z) is the solution of the integral

g(z) =

∫
[1 + z]−

4
3 E−1(z)dz. (85)

We solve this integral semi-analytically in Section III E 5.

3. Overlap function

We obtain an explicit formula for the overlap function
of binary systems with a constant coalescence rate. In-
troducing (13) and (62) in (40),

N (f,∆f, z) =

∫ z

zlow(f)

[
δ2Q(f,∆f)[1 + z′]−8/3

]
R

×

4π

[
c

H0

∫ z′

0

E−1(z′′)dz′′

]2
c

H0
E−1(z′)

 dz′. (86)

This intricate equation can be rewritten to obtain a sim-
ple expression for the overlap function,

N (f,∆f, z) = δ2δ3Q(f,∆f)[g(z)− g(zlow(f))]. (87)

Here we have defined

δ3 = 4πR
c3

H3
0

(88)

and

g(z) =

∫
[1 + z]−8/3

[∫ z

0

E−1(z′)dz′
]2

E−1(z)dz. (89)

This integral cannot be analytically solved. One can in-
vert (87) with respect to the redshift, obtaining

N−1(f,∆f,N0) = g−1

(
N0

δ2δ3Q(f,∆f)
+ g(zlow(f))

)
.

(90)
In Section III E 5 we give a semi-analytical solution for
N (f,∆f, z) and N−1(f,∆f,N0).

4. Limiting frequencies

The limiting frequencies fp,min, fd,min, fd,max and
fp,max are defined in Section II F. For the systems we
study, fp,min and fd,min turn out to be close to fmin/[1 +
zmax], which is the minimum frequency at which the spec-
tral function has support. For simplicity, we assume

fp,min = fd,min =
fmin

[1 + zmax]
. (91)

On the other hand, the frequencies fd,max and fp,max

must be calculated using Equations (47) and (48), re-
spectively.

We now show how to calculate fp,max. Inserting Equa-
tion (90) in (48),

Q(fp,max,∆f) =
N0

δ2δ3[g(zupp(fp,max))− g(zlow(fp,max))]
.

(92)
One can obtain fp,max by solving this equation. However,
one can use a more convenient formula for fp,max, that we
present now. All stellar binaries satisfy fmin/[1+zmin] <
fp,max, so zlow(fp,max) = zmin. Adopting a frequency
resolution ∆f = 1 yr−1, the condition ∆f � fp,max is
fulfilled by all stellar binaries. We can thus use the ap-
proximation of Equation (64) in (92), obtaining

fp,max ≈


[

8∆fδ2δ3[g(zmax)−g(zmin)]
3N0

]3/11

, Ξ ≤ 1[
8∆fδ2δ3

[
g
(

fmax
fp,max

−1
)
−g(zmin)

]
3N0

]3/11

, Ξ > 1
,

(93)
where the dimensionless parameter Ξ is defined by

Ξ =
Q( fmax

1+zmax
,∆f)δ2δ3[g(zmax)− g(zmin)]

N0
. (94)

If Ξ ≤ 1, we have a simple formula for fp,max. The
condition Ξ ≤ 1 is fulfilled by all stellar binaries that do
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BH-BH BH-NS NS-NS NS-WD WD-WD

Minimum R/[Myr−1 Mpc−3] 1× 10−4 6× 10−4 1× 10−2 2× 10−2 2× 101

Most likely R/[Myr−1 Mpc−3] 5× 10−3 3× 10−2 1 4× 10−1 1× 102

Maximum R/[Myr−1 Mpc−3] 3× 10−1 1 9 9 5× 102

TABLE I. Minimum, most likely and maximum coalescence rates assumed for each type of ensemble. The coalescence rates
of BH-BH and BH-NS are taken from [73], where they refer to [74] and [75], respectively. For NS-NS, the values are taken
from [76] (our minimum and maximum values are the minimum and maximum ones allowed by the uncertainties). The rates
of NS-WD and WD-WD are taken from Table 1 in [77]. In Section IV we consider also the recent coalescence rates of BH-BH
predicted in [78], of R = 0.36+0.50

−0.26 Mpc−3 Myr−1. The values given in the literature per Milky Way equivalent galaxy are
converted using (82). All coalescence rates are rounded to one significant figure.

not contain a white dwarf. For NS-WD and WD-WD,
Ξ > 1, and one has to solve Equation (93) numerically.

Similarly, one can obtain a formula for the limiting
frequency fd,max, using Equations (47), (83) and (64).
We point out that fd,max is by definition smaller than
fp,max. In addition, one can show that fd,max/fp,max

cannot be smaller than a certain factor F , so

F ≤ fd,max

fp,max
< 1. (95)

The value of this factor is

F =

(
g
(
g−1

(
1
2 [g(zmax) + g(zmin)]

))
− g(zmin)

g(zmax)− g(zmin)

)3/11

.

(96)
For zmax = 5 and zmin = 0, one obtains F ≈ 0.6. All
stellar binaries except WD-WD fulfill that fd,max ≈ 0.6×
fp,max. For WD-WD, fd,max and fp,max are almost equal;
moreover, they are almost as large as fmax. This means
that the total background of WD-WD is almost entirely
dominated by its unresolvable part.

One should notice that Ω(f,∆f, 0) is equivalent to the
old definition of the spectral function, Ω(f), in Equation
(38). Setting N0 = 0, the function N−1(f,∆f, 0) be-
comes zlow(f) (using Equation (90)). Then, the limiting
frequencies fp,min and fp,max become fmin/[1+zmax] and
fmax/[1+zmin], respectively (see Figures 2 and 4). Using
Equation (42), z(f,∆f, 0) becomes identically zlow(f),
and thus Equations (38) and (43) become equivalent.

5. Semi-analytical solutions

In order to obtain a semi-analytical solution for
Ω(f,∆f,N0), we need two functions, g(z) and g(z), that
fit accurately the numerical solutions of the integrals in
Equations (85) and (89).

A possible choice of the functions g(z) and g(z) is

g(z) = a1 arctana4 (a2 z
a3) (97)

and

g(z) = a1 arctana4
(
a2 z

a3
)
, (98)

for certain parameters (a1, a2, a3, a4) and (a1, a2, a3, a4)
that must be numerically calculated. The optimal pa-
rameters between zmin = 0 and zmax = 5 are

(a1, a2, a3, a4) = (0.5604, 1.235, 1.0047, 0.8364) (99)

and

(a1, a2, a3, a4) = (0.07024, 0.8658, 1.3236, 1.511). (100)

These values can be used for all ensembles of stellar bina-
ries, since the integrals in Equations (85) and (89) depend
only on cosmological parameters.

The semi-analytical formula for the overlap function,
using (98), becomes

N (f,∆f, z) = δ2 δ3Q(f,∆f) a1 arctana4
(
a2 z

a3
)
.

(101)
We invert it with respect to the redshift, obtaining

N−1(f,∆f,N0) =

[
1

a2
tan

([
N0

a1δ2δ3Q(f,∆f)

] 1
a4

)] 1
a3

.

(102)
Introducing it in (42) we obtain a formula for
z(f,∆f,N0).

Finally, using (97), the semi-analytical formula for the
spectral function of binary systems is

Ω(f,∆f,N0) =δ1a1f
2/3
[
arctana4(a2z

a3
upp(f))

− arctana4(a2z
a3(f,∆f,N0))] . (103)

The redshift function zupp(f) is given in (37). The limit-
ing frequency fp,max can be calculated as explained in
Section III E 4, using the semi-analytical formula (98)
for g(z). Equation (103) can be used to calculate
Ωunresolvable(f), and Ωcontinuous(f).
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6. Mass ranges

We calculate the spectral function of an ensemble as-
suming that all similar objects have equal mass. For ex-
ample, in the ensemble of NS-WD, all neutron stars have
equal mass mNS and all white dwarfs have equal mass
mWD. For this reason, given a range of possible masses
for an object, we should not consider values of masses
too different from the mean one.

For a neutron star, we assume a mass in the range
1.3 ≤ mNS/M� ≤ 1.7. This interval is taken from [79],
where the lower limit predicted is (0.878 − 1.284)M�,
and the upper limit, (1.699 − 2.663)M�. We use the
highest mass of the lower limit and the lowest mass of
the upper limit and round all values to two significant
figures. The most likely value is the average of both
limits of the interval. So, our choice for the masses of
neutron stars is

(mmin
NS ,m

med
NS ,mmax

NS ) = (1.3, 1.5, 1.7)M�. (104)

The mass distribution of white dwarfs of spectral type
DA, according to [80], is described by a Gaussian dis-
tribution with mean µ =0.606M� and standard devia-
tion σ =0.135M�. The distribution of white dwarfs of
spectral type DB has µ =0.758M� and σ =0.192M�.
Since we do not make a distinction between DA and
DB white dwarfs, we calculate the Gaussian distribution
that best fits the average of both distributions, obtaining
µ =0.663M� and σ =0.177M�. Similar results can be
obtained using, for example, the distributions given in
[81]. We assume a minimum mass of µ − σ =0.49M�
and a maximum one of µ+ σ =0.84M�. Thus,

(mmin
WD,m

med
WD ,m

max
WD ) = (0.49, 0.66, 0.84)M�. (105)

For the BH-BH case, we calculate the mean µ and stan-
dard deviation σ of the list of masses given in Table 1 of
[82], obtaining µ = 7.8M� and σ = 3.7M�. We assume
for the minimum mass µ− σ =4.1M� and for the max-
imum one µ + σ =12M�. Again, the most likely value
is the average of both. Similar results can be achieved
with the masses of Table 1 of [83]. The masses we use
are, therefore,

(mmin
BH ,m

med
BH ,mmax

BH ) = (4.1, 7.8, 12)M�. (106)

F. Calculations for massive black hole binaries

The masses of MBH-MBH range several orders of mag-
nitude. It is reasonable to expect a very different number
of signals produced by binaries of chirp mass 102 M� than
by binaries of 1010 M�. To be consistent with the given
definition of ensemble (a population of many systems
with similar properties and behaviour), MBH-MBH form
a superensemble composed of many ensembles, each one
characterized by an infinitesimal range of chirp masses.

The coalescence rate now depends on the chirp mass
and the redshift. Instead of ṅ(z) one now has a signal
comoving density rate of the form ṅ(M, z). This gives
the number of signals per unit emitted interval of time
per unit comoving volume per unit chirp mass. We do
not have an analytical formula for ṅ(M, z). The numer-
ical values of the functions ṅ(M, z) (for each of the four
models mentioned at the beginning of Section III) were
kindly provided by A. Sesana and Marta Volonteri in a
private communication.

The spectral function of the total background of the
superensemble is

Ωtotal(f) = f2/3

∫ zmax

zmin

∫ Mupp(z′,f)

Mlow(z′,f)

I1(M′, z′)dM′dz′,

(107)
where

I1(M, z) =
8[GπM]5/3

9c2H3
0

ṅ(M, z)[1+z]−4/3E−1(z). (108)

One can notice that (107) is the same as (43), just chang-
ing ṅ(z) by ṅ(M, z)dM and integrating over chirp mass.
The functions Mlow(z, f) and Mupp(z, f) give, at ev-
ery frequency and redshift, the minimum and maximum
chirp masses that can contribute, respectively. In other
words, the interval [Mlow(z, f),Mupp(z, f)] contains the
chirp masses of those binaries which, at redshift z, have
minimum frequency fmin ≤ f and maximum frequency
fmax ≥ f . They are obtained by inverting fmin (Equa-
tion (71)) and fmax (Equation (66)), respectively, with
respect to M. Hence,

Mlow(z, f) =

[
5c5

256π8/3G5/3Tmax

]3/5

[f [1 + z]]
−8/5

,

(109)
and

Mupp(z, f) =
c3

6
√

6 26/5 πG
[f [1 + z]]−1. (110)

In the last equation we have used that, if the two masses
of the binary are equal, then m1 = m2 = m = 21/5M.

The overlap function of the total background of the
superensemble is

N (f,∆f, z) =

∫ z

zmin

∫ Mupp(z′,f)

Mlow(z′,f)

Q(f,∆f)

× I2(M′, z′)dM′dz′, (111)

where

I2(M, z) =

[
5c5

256π8/3[GM]5/3
[1 + z]−8/3

]
ṅ(M, z)

×

[
4π

[
c

H0

∫ z

0

E−1(z′)dz′
]2

c

H0
E−1(z)

]
. (112)

Equation (111) is the same as (86), just changing ṅ(z)
by ṅ(M, z)dM and integrating over chirp mass.
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Section 4 of [16] describes a discrepancy between
a semi-analytical calculation of the unresolvable back-
ground of MBH-MBH and a Monte Carlo simulation.
The discrepancy occurs because the semi-analytical ap-
proach does not take into account the discrete nature of
the systems. To account for it, they change the range of
masses considered in the semi-analytical calculation. We
now proceed in a similar way, to calculate the unresolv-
able part of the background.

The average number of signals with frequency equal or
larger than f and chirp mass equal or larger than M is

N (f,M) =

∫ Mmax

M

∫ zupp(M′,f)

zlow(M′,f)

Q(f, fmax(M′)− f)

× I2(M′, z′)dz′dM′. (113)

We impose that a signal, emitted at frequency f by a bi-
nary with chirp mass M, can contribute to the continu-
ous or the unresolvable background only if N (f,M) ≥ 1.
The largest chirp mass M(f) that contributes at fre-
quency f is obtained by solving N (f,M(f)) = 1. We
calculate M(f) numerically, use it as the upper limit
of the integral over chirp mass in Equation (111), and
equate N (f,∆f, z) to one:

N (f,∆f, z) =

∫ z

zmin

∫ M(f)

Mlow(z′,f)

Q(f,∆f)

× I2(M′, z′)dM′dz′ = 1. (114)

Inverting the result of this equation with respect to the
redshift, one obtains N−1(f,∆f, 1). Signals with fre-
quency f emitted by binaries with chirp masses in the
range [Mlow(z, f),M] form an unresolvable background
if their redshifts are larger than N−1(f,∆f, 1).

The spectral function of the unresolvable background
is, therefore,

Ωunresolvable =f2/3

∫ zmax

N−1(f,∆f,1)

∫ M(f)

Mlow(z′,f)

I1(M′, z′)

× dM′dz′. (115)

Similarly, one can solve

N (f, fmax − f, z) =

∫ z

zmin

∫ M(f)

Mlow(z′,f)

Q(f, fmax − f)

× I2(M′, z′)dM′dz′ = 1 (116)

and invert it with respect to the redshift, obtaining a
function N−1(f, fmax − f, 1). Replacing N−1(f,∆f, 1)
by N−1(f, fmax − f, 1) in Equation (115), one gets

Ωcontinuous =f2/3

∫ zmax

N−1(f,fmax−f,1)

∫ M(f)

Mlow(z′,f)

I1(M′, z′)

× dM′dz′, (117)

which is the spectral function of the continuous back-
ground.

IV. RESULTS

The main results of this paper are presented in Figures
5, 6, 7, and 8. In Figure 5 we show the spectral func-
tion of the total background of each ensemble. In Figure
6, the spectral function is plotted only in those regions
where the background is continuous. Finally, Figure 7,
which is the most relevant plot of the three, shows the
unresolvable background produced by the different en-
sembles, assuming N0 = 1 and ∆f = 1 yr−1. In these
three figures, the values of masses and coalescence rates
are the most likely ones.

One can clearly conclude, from Figure 7, that ground-
based detectors operate (and will operate) in a fre-
quency range clean of confusion noise from binary sys-
tems. Without taking into account other possible sources
of unresolvable background, this frequency range could
be a good scenario for the detection of primordial back-
grounds.

In Figure 8 we have plotted the contribution of each
ensemble separately. For each ensemble, there are three
different curves of Ω(f,∆f,N0): one maximum, one min-
imum and one most likely, depending on the values of
masses and rates.

For stellar binaries, the most likely expectation of
Ω(f,∆f,N0) is obtained by using the most likely
chirp mass and coalescence rate. The upper curve of
Ω(f,∆f,N0) is the upper envelope of all curves that are
obtained using the maximum rate and sweeping over all
possible values of chirp mass. Similarly, the lower curve
is the lower envelope of all curves obtained with the min-
imum rate and sweeping over all chirp masses.

For massive black hole binaries, the most likely curve
is the average of the spectral functions calculated, as ex-
plained in Section III F, for each of the four models con-
sidered. The upper and lower curves are 10 and 1/10
times the most likely, respectively. These uncertainties
have not been precisely calculated. Given the lack of
observational information about many of the parameters
involved, any accurate calculation of the uncertainties
would be arbitrary. More precise errors are calculated in
[16], based on the results of different theoretical models.
The ranges of uncertainty given in [16] are similar to the
ones we propose.

One sees in Figure 7 that the unresolvable background
is clearly dominated by the contribution of WD-WD, be-
low ∼ 10−1 Hz, and of MBH-MBH, below ∼ 10−4 Hz.

The contribution of galactic binaries, which is believed
to produce confusion noise in the frequency window of
LISA, has not been included in the plots, since it can-
not be calculated using Ω(f). The spectral function is
calculated assuming signals that are distributed homo-
geneously and isotropically in the universe. This means,
Ω(f) is related to the average density of gravitational
waves in the universe. But within the galaxy the density
is larger than the average. Moreover, galactic binaries
are distributed anisotropically along the galactic disc. If
one uses the spectral function to plot the contribution
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FIG. 5. Spectral function of the total background versus observed frequency. The contributions of the different ensembles
are calculated with the most likely values of masses and coalescence rates. No restrictions in the duration of the signals are
assumed in this plot, which means that also very short and sporadic signals are taken into account. As discussed in the text,
the spectral function in such circumstances should not be compared to the sensitivity curves of a detector.

of galactic binaries, one is claiming that the density of
gravitational waves in the universe is as large as the one
inside the galaxy. Some papers in the literature which
deal with the confusion noise produced by galactic bi-
naries are [85, 86]. The most important contribution to
this background is the one by WD-WD. According to
[87], galactic WD-WD produce a background about an
order of magnitude larger than that of extragalactic ones.

One has to be careful when interpreting Figure 5. That
plot gives us information about the averaged total energy
density of gravitational waves produced by each ensem-
ble. The curve of the total background of NS-NS, for
instance, enters the window of ET, but that does not
mean that ET will see a constant noise curve like that.
The signals of NS-NS are, in that frequency range, short
signals, that will often (but not constantly) be detected
with ET. The effective sensitivity curve of ET is thus
not affected by NS-NS. On the other hand, an unresolv-
able background of WD-WD with a rate larger than the
most likely one would certainly affect the sensitivity of
LISA. To avoid misunderstandings we have not plotted

the sensitivity curves of any detectors together with the
total background. In Figure 6 we have plotted sensitivity
curves just to show that the background is discontinuous
in the frequency band of ground-based detectors.

At frequencies close to the last stable orbit, the Newto-
nian spectrum that we have calculated may differ consid-
erably from the real one, since the assumption of slow or-
bits made in Section III A is no longer fulfilled. Thus, the
exact shape of the spectral function at such frequencies is
not accurate. However, the continuous and unresolvable
parts of the background lie safely at lower frequencies.

A new prediction on the coalescence rate of BH-BH
was published [78] during the writing of this paper. The
rate given in that paper, of R = 0.36+0.50

−0.26 Mpc−3 Myr−1,
is much larger than the one in Table I. This high estimate
is based on the observation of two binaries, both contain-
ing a stellar-mass black hole and a Wolf-Rayet star. Such
rates have also been predicted by simulations [88], con-
sidering low-metallicity galaxies. We show in Figure 9
the total, continuous and unresolvable backgrounds, re-
spectively, that such a rate would produce, assuming the
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FIG. 6. Spectral function of the continuous background versus observed frequency. The contributions of the different ensembles
are calculated with the most likely values of masses and coalescence rates. The sensitivity curves of LISAa, ET (from [84]),
BBO (from [4]) and the complete Parkes PTA (from [16]) are plotted for comparison.

a Obtained using http://www.srl.caltech.edu/~shane/sensitivity/MakeCurve.html with the standard parameters.

same mass ranges for black holes given in Section III E 6.
In Figure 9 we also show the upper and lower limits al-
lowed by the new rate.

V. DISCUSSION

A. On the definition of the spectral function

In Section 6.3 of [21], and other papers by its first au-
thor, it is said that the definition of the spectral function,
in Equation (23), is incorrect. We now show that (23)
is not incorrect, but one has to be careful when defining
the energy density per frequency interval p(f).

With our definition (23), we say that the energy den-
sity per frequency interval is p(f) = dε(f)/df . One could
also define

Ω(f) = ρ(f)/ρc, (118)

as suggested in [46]. Then the energy density per fre-
quency interval would be p(f) = ε(f). The total en-

ergy density of gravitational waves in the present universe
would be

εT =

∫
ε(f)df, (119)

instead of (25). Taking into account these changes, all the
derivations performed in Section II E would be equivalent
and lead again to the formula (35). But one cannot say
that p(f) = ε(f) and then take derivatives of it with re-
spect to f , in order to obtain the spectral function. That
would definitely be a misleading use of the definition (23).

Both definitions of the spectral function, (23) and
(118), can thus be used, as long as the energy density
per frequency interval is properly defined. We choose
(23) just because it is the one most used in the litera-
ture.

http://www.srl.caltech.edu/~shane/sensitivity/MakeCurve.html
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FIG. 7. Spectral function of the unresolvable background versus observed frequency, using N0 = 1 and ∆f = 1 yr−1. The
contributions of the different ensembles are calculated with the most likely values of masses and coalescence rates.

B. On the coalescence rate of stellar binaries

In Section III E 1 we have assumed a coalescence rate
that has the same value during all cosmological epochs
(see Equation (81)). We now justify that this assumption
is reasonable, considering the uncertainties in the local
coalescence rate.

In [14] the coalescence rates of BH-NS and NS-NS are
calculated as a function of the redshift (see Figure 2 of
that paper). The rates peak at around z ≈ 1 and then
decrease, becoming zero between redshift 5 and 6. The
difference between the rate at the peak and the local rate
(at z = 0) is a factor of ≈ 2.1, for NS-NS, and ≈ 1.7, for
BH-NS. One can calculate g(z) (using our Equation (85))
and g(z) (Equation (89)) introducing in the integrals a
normalized non-constant rate like the ones of Figure 2 of
[14]. The obtained functions g(z) and g(z) differ from the
ones calculated with a constant rate by less than a factor
of ∼ 2. The value of this factor would not change signifi-
cantly if one used other rate functions (as pointed out in
[33] regarding the value of 〈(1+z)−1/3〉). Since the spec-
tral function and the overlap function are proportional to
g(z) and g(z), respectively, the overall difference between

using a constant and a non-constant rate would also be
less than a factor of 2. On the other hand, the value
of the local rate has an uncertainty of several orders of
magnitude (see Table I). We thus consider that a factor
of 2 is negligible compared to a factor of (at least) 100.
In addition, we can see in Figure 16 that our estimate of
the total background agrees with that of [13], which was
calculated using a non-constant coalescence rate.

Assuming that the rates of other type of stellar binaries
have a similar behaviour than those shown in [14], we
can conclude that the use of a constant rate is a good
approximation for stellar binaries.

C. On the minimum frequency of stellar binaries

In Section III D we have defined fmin as the gravita-
tional wave frequency such that a binary, emitting at this
frequency, needs an interval of time equal to Tmax, the
maximum inspiral time, to reach coalescence. But one
could in principle find, for each type of binary, a more
precise criterion to define fmin.

One could define fmin, for example, as a function of
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FIG. 8. Spectral function of the total, continuous and unresolvable backgrounds of the different ensembles, versus observed
frequency. In each plot there are nine curves: three of them are calculated with the highest values of coalescence rates, three
with the most likely, and three with the lowest values possible. Three of the curves represent the total background, three
the continuous part, and three the unresolvable part. In the case of NS-WD, the total and continuous curves are almost
indistinguishable. The same occurs for WD-WD with the total, continuous and unresolvable curves.

the velocity kick that the components of the binary ex-
perience at formation. This velocity kick, which can be
provoked by a non-symmetrical supernova explosion, can
push one component of the binary with enough energy in
a direction opposite to that of the other component and

disrupt the binary. So fmin could be the frequency at
which the orbital velocity equals the velocity kick. With
such a criterion, using realistic values of these kicks [89–
91], one obtains too long inspiral times, in some cases
orders of magnitude longer than the age of the universe.
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FIG. 9. Spectral function of the total (top), continuous (middle) and unresolvable (bottom) background versus observed fre-
quency. The contributions of the different ensembles are calculated with the most likely values of masses and coalescence rates of
Table I, except for the case of BH-BH. The high rate of BH-BH, taken from the recent paper [78], is R = 0.36+0.50

−0.26 Mpc−3 Myr−1.
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FIG. 10. Spectral function of the total, continuous, and un-
resolvable backgrounds of the ensemble of BH-BH, versus ob-
served frequency. This plot is analogous to that in Figure 8,
but using the rate from [78] of R = 0.36+0.50

−0.26 Mpc−3 Myr−1,
instead of the one in Table I.

Our choice of Tmax is in fact almost as long as the age of
the universe. Therefore, only binaries that coalesced re-
cently could have had that much time to evolve from their
formation, as commented on in Section III D 1. However,
when considering long inspiral periods, one takes into
account part of the contribution from binaries that have
not yet coalesced.

In Section II E we point out that the formula of the
spectral function assumes short inspiral times, so that
each signal starts and finishes at approximately the same
redshift. But each system needs ≈12 Gyr to complete
the process, and the expansion of the universe is indeed
relevant during that interval of time. We now investigate
the effect of this apparent inconsistency.

Our rate R accounts for coalescences (and not for
births) of binary systems. This means that we are count-
ing systems that are emitting at frequencies close to fmax,
the frequency of the coalescence. What we may be count-
ing wrong are systems emitting at low frequencies.

Suppose a binary, very close to us, that started inspi-
ralling ≈12 Gyr ago and coalesces right now. We only
see the high frequency part of the spectrum, which is not
redshifted. The waves emitted at the beginning of the
inspiral (at low frequencies, ≈12 Gyr ago) are now far
from us. But an observer located that far away would
observe those waves today highly redshifted. Our mis-
take, assuming short inspiral times, is to claim that the
distant observer measures that low frequency radiation
without any redshift. So the spectral function should be
more redshifted (and thus have lower amplitude) at low
frequencies.

We now estimate below which frequency this effects
starts to be important. For that, we assume the follow-
ing: we assign wrong redshifts as soon as the difference in
redshift between birth and coalescence of a signal is larger
than 1. In units of time (using Equation (11)), a differ-

ence in redshift of 1 implies timescales larger than ≈7 Gyr
at redshifts close to zero and larger than ≈0.4 Gyr at red-
shifts close to 5. To be conservative, we assume that these
effects are important when inspiral times are larger than
0.4 Gyr. The lifetime of a binary is larger than 0.4 Gyr if
its minimum frequency is lower than ≈ 4 × 10−5 Hz for
BH-BH, ≈ 7×10−5 Hz for BH-NS, ≈ 1×10−4 Hz for NS-
NS, and ≈ 2 × 10−4 Hz for NS-WD or WD-WD. These
frequencies are in a range where the spectra of all stellar
binaries are covered under an unresolvable background
of MBH-MBH.

We thus conclude that the exact values of the minimum
frequencies are not relevant in practice. Furthermore,
the assumption of short inspiral times is not fulfilled for
stellar binaries at frequencies close to the minimum, but
this does not affect the results.

D. On the minimum frequency of massive black
hole binaries

The minimum frequency of each massive black hole
binary, as explained in Section III F, is assumed to be the
frequency fR at which the slingshot and radiation phases
overlap. This means that we dismiss the gravitational
waves radiated during the slingshot phase.

It turns out that the introduction of the slingshot phase
in the calculations has a very small effect (well within
the uncertainty ranges) in the spectral function of the
superensemble, at frequencies below ∼ 10−9 Hz. The
reason is the following: for each ensemble of masses be-
tween M and M + dM, the effect of introducing the
slingshot phase is noticeable only at frequencies below
fmin(M) (the one calculated using Equation (71) with
Tmax = 75 Myr). But the main contribution of each en-
semble to the superensemble is at high frequencies, where
they have larger spectral functions (because of the f2/3

factor). In the superensemble, the only appreciable low-
frequency contributions are those from ensembles with
the largest masses and with non-zero coalescence rates.
Therefore, the effect of introducing the slingshot phase in
the superensemble is noticeable only at frequencies close
to fmin(M), when M is in the range of large masses (of
∼ 108 − 109M�). These frequencies are smaller than
∼ 10−9 Hz.

E. On the condition of resolvability

In Section II F we state that signals between f and
f + df with redshifts larger than z∗ such that zlow(f) <
z∗ < zupp(f) and N (f,∆f, z∗) = 1 are unresolvable. We
are hence imposing a one-bin-rule: we are not able to dis-
tinguish signals if there are more than one per frequency
bin. Other authors suggest other possible criteria, such
as the three-bin-rule or the eight-bin-rule [92]. Accord-
ing to these criteria, the condition of unresolvability is
reached when each three (or eight) frequency bins are
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FIG. 11. Spectral function of the resolvable and unresolvable
parts of the background of NS-NS, versus observed frequency.
The values of masses and coalescence rates adopted are the
most likely ones. The resolvable and unresolvable parts calcu-
lated with the one- and with the eight-bin rule are compared.

occupied by at least one signal. We now comment on
how using one of these criteria would change our results.

Imposing an eight-bin-rule makes the condition of un-
resolvability less restrictive: signals become unresolvable
at higher frequencies than for the one-bin-rule. The re-
sults would be almost unaffected in the case of WD-
WD, since the curve of the unresolvable background is
almost as large as that of the total background. The
spectral function of the unresolvable background for the
remaining stellar binaries would be slightly extended to
higher frequencies. We can calculate the spectral func-
tion with the eight-bin rule, just by changing ∆f by
8 × ∆f , so Ωunresolvable(f) = Ω(f, 8∆f,N0). In Figure
11 we compare the spectral functions of the unresolvable
background calculated with the one- and the eight-bin-
rule, for the case of NS-NS with the most likely values of
masses and coalescence rates.

One can note that imposing an eight-bin-rule, instead
of a one-bin-rule, has the same effect of assuming an ob-
servation time of eight years, instead of one. The ex-
pected observation time of LISA is indeed three years; for
the PTA, longer observation times are feasible. So, for
MBH-MBH, redoing the calculations with the eight-bin-
rule is compensated with the use of longer observation
times. As pointed out in [16], the unresolvable back-
ground changes by less than a factor of 2 for observation
times between one and ten years.

We now discuss another possible definition of unre-
solvable background. In Section II F we say that, when
the unresolvable part of the background dominates, there
still exists a resolvable part. We could consider this re-
solvable part as also unresolvable. For that, we could just

change the definition of z(f,∆f,N0) in Equation (42) to

z(f,∆f,N0) =



zupp(f), f < fp,min

N−1(f,∆f,N0), fp,min ≤ f ≤ fd,min

zlow(f), fd,min < f < fd,max

N−1(f,∆f,N0), fd,max ≤ f ≤ fp,max

zupp(f), fp,max < f

.

(120)
On the left side of Figure 12, a plot of redshifts versus
observed frequencies (analogous to that in Figure 4) is
shown, using the new definition of z(f,∆f,N0). There
we see that, between fd,min and fd,max, there is no re-
solvable background. On the right side of Figure 12 we
show the spectral function obtained by inserting (120) in
(43), for the case of NS-NS with the most likely values of
masses and coalescence rates. The difference between the
spectral functions with the old and the new definitions
of z(f,∆f,N0) is just a small peak at frequency fd,max.

Since the results are almost unchanged, we prefer the
definition of unresolvable background given in Section
II F, because the definition of z(f,∆f,N0) given in Equa-
tion (42) is simpler than that in (120).

F. On the definition of the overlap function

In Section II F we mention that the time resolution, ∆t,
should be taken into account to define the resolvability,
but in practice it is not important. We now explain how
∆t should be introduced in the overlap function and why
it is not necessary, in the circumstances considered in this
work.

Signals of binaries evolve more rapidly at higher fre-
quencies, and spend therefore less time in a frequency
bin. Eventually, at frequencies and redshifts larger than
certain f and z, the interval of time τe(f,∆f, z) can be-
come smaller than the time resolution ∆t. When this
happens, all signals spend effectively an interval of time
∆t in each frequency bin, and no less than that (since
smaller intervals of time cannot be distinguished). Thus,
if the signals are unresolvable at f and z, they stay unre-
solvable for any larger values of frequency and redshift.
Equation (40) could be generalized to take into account
this effect,

N (f,∆f,∆t, z) =

∫ z

zlow(f)

max(τe(f,∆f, z
′),∆t[1 + z]−1)

× ṅ(z′)
dVc
dz′

dz′. (121)

The factor [1 + z]−1 is necessary to compare our time
resolution (which is an observed interval of time) with
the interval of time at emission τe(f,∆f, z).

The effect of introducing ∆t affects our calculations
only if τe(f,∆f, z) ≤ ∆t[1 + z]−1 when N ≥ 1, i.e., if
there is more than one coalescence every ∆t[1 + z]−1.
Taking the highest rate of Table I (which is the maximum
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FIG. 12. Redshift versus observed frequency (left plot, analogous to that in Figure 4) and spectral function versus observed
frequency (right plot, analogous to that in Figure 8, corresponding to NS-NS with the most likely values of masses and
coalescence rates). The difference between these plots and the ones in Figures 4 and 8 is that here, as soon as the unresolvable
part of the background dominates, all signals become unresolvable.

rate of WD-WD), we see that∫ 5

0

∆t[1 + z′]−1R
dVc
dz′

dz′

is greater than one for ∆t greater than ∼ 1/9 s. A rea-
sonable choice for the time resolution is the inverse of
the sampling rate of a detector, which, in the case of cur-
rent ground-based detectors, is much smaller than 1/9 s.
Therefore, the generalization (121) is not necessary; the
overlap function is well defined by (40).

By artificially increasing the time resolution by several
orders of magnitude, we see the effect that the overlap
function of Equation (121) produces in z(f,∆f,∆t,N0)
(which is obtained by inserting Equation (121) in (42))
and in Ω(f,∆f,∆t,N0) (inserting (121) in (43)). This
effect is plotted in Figure 13. There we see that, above a
certain redshift and a certain frequency, all signals con-
tribute to the unresolvable background. With this exam-
ple we see that a large time resolution would lead to the
existence of an unresolvable background in the frequency
band of ground-based detectors.

G. Comparison with previous work

1. Unresolvable backgrounds

In Figure 14 we show the unresolvable background pro-
duced by the superensemble of MBH-MBH, and the sum
of the unresolvable backgrounds of all stellar binaries
(which is almost equal to the background made by only
WD-WD). These curves are compared with other pre-
dictions from the literature. The curve (a) is obtained
from [16], using its Equation (14) with the mean values
of the parameters in (45), (46) and (47). That formula is
given in terms of the characteristic amplitude, hc, which

is related to the spectral function by

Ω(f) =
πf2

4ρcG
h2
c(f). (122)

In terms of the strain amplitude Sh(f), the characteristic
amplitude is

hc(f) =
√
fSh(f). (123)

The curve (b) is taken from Figure 4 of [15], where hrms

also represents a characteristic amplitude. Finally, the
curve (c) is taken from Figure 16 of [11]. In all cases we
find a good agreement of our predictions with those from
the mentioned papers.

In Figure 15 the unresolvable background of MBH-
MBH is shown, calculated with the four different models
(see Section III). The unresolvable backgrounds calcu-
lated in [16] and [15] are also plotted for comparison.

2. Background of neutron star binaries

In Figure 16 we see that our estimate of the total back-
ground of NS-NS is in good agreement with the one in
[13]. The curve (a) in Figure 16 represents what in [13]
is called shot noise (see Figure 2 of that paper). In that
work, the existence of a continuous (and Gaussian) back-
ground is also asserted; this corresponds to the curve (b)
in Figure 16. If we compare (b) with either our continu-
ous or our unresolvable curves, we find a big discrepancy.

We now explain the origin of this discrepancy. In Sec-
tion II C we pointed out that signals of equal observed
frequency but different redshifts need different intervals
of time to coalesce. However, in Section 3 of [13], all
binaries are assumed to spend the same amount of time
in a certain frequency interval, leading to the conclusion
that the background is continuous at high frequencies.
The same has been claimed in similar papers, for exam-
ple [93, 94].
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FIG. 13. Redshift versus observed frequency (left plot, analogous to that in Figure 4) and spectral function versus observed
frequency (right plot, analogous to that in Figure 8, corresponding to NS-NS with the most likely values of masses and
coalescence rates). These plots (unlike those in Figures 4 and 8) are calculated assuming an unrealistic time resolution of
∆t = 600 s. With such a large time resolution, an unresolvable background would be present in the frequency band of ground-
based detectors.

FIG. 14. Spectral function of the unresolvable background of MBH-MBH (dotted line) and of all stellar binaries (dashed line),
versus observed frequency. These curves are compared with previous predictions from the literature, which correspond to the
unresolvable backgrounds of: (a) MBH-MBH from [16], (b) MBH-MBH from [15] and (c) extragalactic stellar binaries from
[11].
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FIG. 15. Spectral function of the unresolvable background
of MBH-MBH, calculated with the four different models (LE,
LC, SE and SC), versus observed frequency. For comparison
we include the curves of the unresolvable backgrounds of [15]
and [16].

FIG. 16. Spectral function of the total, continuous and un-
resolvable backgrounds of the ensemble of NS-NS (with the
most likely values of masses and coalescence rates), versus ob-
served frequency. We compare these curves with those given
in [13]. Curves (a) and (b) correspond to what in that paper
is called shot noise and Gaussian background, respectively. In
the text we explain the origin of the discrepancy between (b)
and our continuous or unresolvable backgrounds.

In a later work, [14], the continuity of the background
is calculated in a similar manner as we do; the redshift of
the signals is properly taken into account to measure the
interval of time that they spend in the frequency window
of the detector. But in this paper, the continuous back-
ground is treated as unresolvable, which is incorrect, as
we justify now. Suppose there is continuous background
of NS-NS in the frequency band of ET, such that there
is an average of a few signals present in the band. Even
if these few signals are observed at the same time, they
do not overlap in the frequency domain; the signals can
still be distinguished in frequency, so they are resolvable.

3. Overlap function versus duty cycle

In the literature, the so-called duty cycle is often used.
It is defined by

D(z) =

∫ z

0

τeṅ(z′)
dVc
dz′

dz′, (124)

where τe is the duration of a signal in the detector win-
dow. If one assumes that τe is constant, as for example
in [13, 93, 94], D(z) does not give any valuable informa-
tion (this has just been commented on in the previous
section). If τe = τe(f1, f2 − f1, z), i.e., if τe is the time
that each signal of redshift z spends in the frequency
window [f1, f2] of a certain detector, D(z) characterizes
the continuity of the background. But the property of
the background that is indeed relevant is the resolvabil-
ity, which is measured by the overlap function, defined in
Equation (40).

An overlap function like the one in Equation (40) is
useful for quantifying the resolvability of long signals.
Now suppose that there is an ensemble of systems that
do not emit gravitational waves during a long period of
time, but rather in a burst. For such systems one cannot
obtain an accurate function τe(f,∆f, z). In this case, the
resolvability can be quantified using the overlap function,
by changing τe(f,∆f, z) to τe, the typical duration of a
burst. This overlap function would then coincide with the
duty cycle. In the case that τe could be smaller than the
time resolution ∆t, one should rather use the generalized
overlap function of (121).

The overlap function is therefore a generalization of
the duty cycle, that can be used for short or long signals.

VI. SUMMARY AND CONCLUSIONS

We have reviewed basic aspects of the gravitational
wave background. We have derived a formula (Equation
(38)) for the spectral function, Ω(f), for an ensemble
of many similar systems emitting gravitational radiation
at different times and locations. This formula has been
generalized to account for the duration of the signals and
the observation time. With the generalized spectral func-
tion, Ω(f,∆f,N0) (in Equation (43)), one can distinguish
between unresolvable and resolvable backgrounds (Equa-
tions (44) and (45), respectively), and between continu-
ous and discontinuous backgrounds (Equations (49) and
(50), respectively).

The resolvability is a fundamental property of the
background. An unresolvable background (often called
confusion noise or stochastic background) is fully charac-
terized by Ω(f,∆f,N0). A resolvable background is com-
posed of signals whose waveforms can be distinguished
and in some circumstances subtracted out of the data.
Precise definitions of resolvable and unresolvable back-
grounds can be found in Section II F. Figure 4 illustrates
the different regimes of the background.
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The resolvability is characterized by the overlap func-
tion, N (f,∆f, z), which gives the average number of sig-
nals, with frequency f and redshifts smaller than z, per
frequency bin ∆f (the frequency resolution). A formula
for the overlap function is given in Equation (40). In
Section V G we have shown that the overlap function is
a generalization of the duty cycle. The latter has been
often used in the literature to quantify the continuity and
even the resolvability of the background, leading in some
cases to incorrect results.

The continuity is a secondary property of the back-
ground, which just gives an idea of how often the signals
are present in the frequency window of a detector. The
overlap function can also be used to characterize the con-
tinuity of the background, as explained in Section II G.

We have calculated the spectral functions of the back-
grounds of stellar binaries (those containing white dwarfs,
neutron stars or stellar-mass black holes) and of massive
black hole binaries. In Table I we have summarized the
values, taken from the literature, of the coalescence rates
of each ensemble. The ranges of masses assumed for neu-
tron stars, white dwarfs and stellar-mass black holes are
in Equations (104), (105) and (106), respectively. A semi-
analytical solution of the generalized spectral function
has been derived for stellar binaries (Equation (103)).
The calculations involving massive black hole binaries
have been performed numerically, using the coalescence
rates obtained with the four models of [56].

The spectral functions of the backgrounds produced
by the different ensembles are plotted in Section IV, over
the frequencies of all present and planned detectors. The
total, continuous and unresolvable backgrounds are plot-
ted in Figures 5, 6 and 7, respectively, with the most
likely values of masses and coalescence rates. In Figure 8
the same curves are plotted separately for each ensemble,

with their uncertainties. The total, continuous and unre-
solvable backgrounds, using the rate of BH-BH recently
predicted in [78], are plotted in Figures 9 and 10.

The unresolvable background is dominated by white
dwarf binaries, below ∼ 10−1 Hz, and by massive black
hole binaries, below ∼ 10−4 Hz. These backgrounds
could enter the frequency window of LISA, PTA and
BBO. The continuous background of BH-BH, using the
recent coalescence rate predicted in [78], becomes more
important than the one made by NS-NS, especially in the
band of BBO. The confusion noise produced by galactic
binaries has not been shown in the figures, since it cannot
be calculated using the spectral function. Some papers
in the literature which cover this issue are [85–87].

Finally, with Figures 6 and 7, we conclude that present
and planned ground-based detectors are in a frequency
range where no continuous or unresolvable backgrounds
from binary systems are present. Therefore, without con-
sidering other possible sources of confusion noise, this
band could be suitable for searching for primordial back-
grounds.
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