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Abstract: Based on the positional data of other inland vessels which is available through
the fusion of radar object tracking and AIS (Automatic Identification System) a model-based
prediction of their kinematic states is presented. Information about the river shape is fed into
the prediction model according to the type of vessel and its navigational situation. Together with
the future states of our own vessel, which are known because it is automatically steared along a
guiding line, ranges of encounter are calculated. Furthermore, a path planning algorithm based
on nonlinear dynamic optimization is presented that is capable of calculating collision-free paths
in real-time that account for the vessel’s constrained dynamics. Practical results of the discussed
automatic collision detection and avoidance module as part of an integrated navigation system
for inland vessels are shown concluding the contribution.
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1. INTRODUCTION

At the Institute for System Dynamics (ISYS), the former
Institute for System Dynamics and Control (ISR), at the
University of Stuttgart an integrated navigation system
for inland vessels has been developed over the last three
decades. It is capable of displaying electronic navigational
charts (ENC), standardized according to InlandECDIS
(Electronic Chart Display and Information System) (see
Zentralkommission fiir die Rheinschifffahrt (2006)) com-
bined with overlayed radar. A map-matching algorithm
rotates the ENC such that it matches the overlayed radar
image. For that reason, characteristic features such as
shore lines are extracted from both, the ENC and the radar
image, and brought into accordance using a least-squares
method as shown by Sandler (2004). The radar image is
also used to estimate the dynamic states of other objects
on the river using radar object tracking. By extracting
specific points such as the center of area from areas re-
sembling radar echoes on the river, conclusions about the
movement of the tracked objects can be drawn if several
radar images are compared. Plocher and Gilles (1992) and
Gern (2000) explain the radar object tracking algorithms
in detail. Section 2.1 introduces the kinematic model that
is used in the Kalman filter which is responsible for radar
object tracking and data fusion with GNSS (Global Nav-
igation Satellite System) data transmitted through AIS.
An asynchronous Kalman filter algorithm is employed to
combine data from various sensors such as the turning rate
of the vessel from a gyroscope, the velocity, course and
heading from a GPS (Global Positioning System) compass
and the rudder angle from a rudder angle indicator in order
to estimate the dynamic state of the vessel.

A peculiar feature of this integrated navigation system is
the automatic track-keeping capability. The vessel’s rudder
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angle is controlled in order to stear the vessel along a
given guiding line. A feedforward rudder angle is computed
from the twice continuously differentiable guiding line by
inverting the dynamic model of the ship. A Riccati-based
feedback rudder angle compensates for disturbances and
model uncertainties. This control system is able to keep the
cross-track control error of arbitrary inland vessels below
3m std.

Section 2 describes the collision detection functionality by
first introducing the dynamic model that is used to fuse
the radar object information with AIS data. A simplified
version of this kinematic model is used in section 2.2 in
order to predict the other vessels’ states in the future
by utilizing information about the shape of the river.
Time-independent ranges of encounter are calculated in
section 2.3 based on these predictions together with the
information about our vessel’s future position.

Section 3 presents the collision avoidance algorithm. It
shows how to utilize nonlinear programming to compute
collision-free paths. Section 3.1 introduces a simplified ship
model, the so-called setpoint filter model, to account for
the vessel’s dynamics. The black-box optimization package
NOMAD (see Abramson et al. (2009)) is used to calculate the
solutions that are shown in section 3.1.4.

Section 4 concludes this contribution by comparing the dif-
ferent avoidance approaches and discussing issues arising
in practice.

2. COLLISION DETECTION

In order to compute collision-free paths the navigational
environment has to be known. Besides stationary objects
like bridge pillars, radar buouys and fairway boundaries
information about moving obstacles like other vessels is
required. While most stationary data can be retrieved from
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the electronic charts information about moving objects has
to be generated from measurements using the radar image
and AIS data if available. Means to predict the moving
objects’ dynamic states are necessary in order to compute
their future positions at times when our vessel is next to
them. These ranges of encounter must be avoided by the
path planning algorithm in order to compute collision-free
paths.

2.1 Radar Object Tracking and AIS Data Fusion

Every inland vessel is required to have a radar antenna
with the corresponding radar equipment. The radar serves
as the main sensor to collect data about the navigational
environment including the shore line and especially other
vessels. The integrated navigation system is able to track
other vessels by analyzing several consecutive radar im-
ages. In order to do that, geometric features of radar
echoes that lie within the river are extracted and fed into
a Kalman filter corresponding to the tracked object. The
position of the center of area of the radar echo can be used
as such a geometric feature. A way to also gain heading
information besides pure positional information is to map
every radar echo onto a suitable ellipse. The two points
from the intersection of the major axis with the ellipse
serve as the positions of bow B = (B, B,)T and stern
S = (S.,8,)T. These positions are fed into a Kalman
filter that uses the following purely kinematic model from
Gern (2000):

By = Uy (2)
Sy = Uy (4)
Up = —T 0y (5)
Uy =TV (6)

r=0. (7)

B, By, Sz, S, denote positions in an earth-fixed coordi-
nate system with the x-axis facing north and the y-axis
facing east. v, denotes the object’s velocity in northern
direction whereas v, is the velocity in eastern direction. r
describes the turning rate about the z-axis which is facing
down. The bow’s velocity is assumed to be equal to the
stern’s velocity. This assumption contradicts the fact that
the turning rate r is not zero. Nevertheless, this model still
leads to reasonable estimates. Whenever the position of the
bow B and the stern S are measured the Kalman filter
states are updated. Since both measurements are fed into
the Kalman filter synchronously the estimated velocity will
end up being the mean of the real velocities at the bow and
stern. Thus, the estimated velocity (v, v,)T describes the
velocity at the center of the vessel since the vessel is a rigid
body. That way, the estimation gains robustness against
symmetric variations in the length of the major axis of the
ellipse.

If AIS data is available a third point A = (A,, 4,)T
for the AIS positional measurements can be added. By
including this third point, the velocity vector (vw,vy)T
and ultimately the turning rate r get updated when
an AIS measurement becomes available. Therefore, the
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information from the radar antenna and the AIS receiver
is fused by this Kalman filter to get a combined estimate.

Typical values for the standard deviations of this radar
object tracking method without AIS fusion are given in
table 1.

Table 1. Std for the radar object tracker

Position (m)  Velocity (m/s)  Turning Rate (°/min)
6.6 0.23 1.7

2.2 State Prediction

In order to predict the future dynamic states of other
vessels a single point kinematic model is used. It is the
same as the two point model from the previous section
with the difference of only having one point, namely the
center of area of the vessel’s projection onto the xy-plane:

T =y (8)
Y=y (9)
Uy = =T 0y (10)
Uy =T Vg (11)
=0 (12)

If this model is initialized with values from the radar object
tracker it can be integrated in order to receive future values
of the vessel’s position under the assumption that the
turning rate r remains constant. However, this prediction
method exhibits two major drawbacks:

(1) Initial uncertainties are increased through integra-
tion.
(2) The shape of the river is not taken into account.

(1) Using a linearized version of model (8)-(12) it can
be shown that the initial uncertainties given in table 1
lead to a standard deviation of the position of 35m after
100s already. This means that the position circle for the
estimate with a confidence of 95.5% (20) already has a
diameter of 140m which is more than the width of most
fairways in Europe.

(2) If a vessel’s future position is estimated with the
described method while it is on a straight river stretch
in front of a bend the estimate will result in a straight line
and will therefore leave the bending river. This is due to
the fact that the information about the river bend is not
visible in the estimated turning rate yet.

Problems (1) and (2) lead to the conclusion that additional
information has to be included to back up the prediction
method. A skipper is still able to predict other vessels’
behaviors although his estimates of their dynamic states
are certainly not more accurate than the Kalman filter
estimates. This is due to the fact that a skipper uses his
knowledge about typical navigational routes and traffic
rules on top of the initial position and velocity. That is
why information from guiding lines which are available in
the integrated navigation system is used to increase the
prediction accuracy. Guiding lines serve as the reference
tracks for the automatic track-keeping module and repre-
sent therefore typical navigational routes. Several guiding
lines exist for different water levels and for the direction
of navigation (upstream or downstream). These lines also
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implicitly contain information about the shape of the river
since they lie within the river’s fairway.
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Fig. 1. Block diagram of the prediction model.
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The information about the river shape is fed into the
prediction model at different places depending on the
initial state of the vessel. Figure 1 shows the block diagram
of the prediction model (8)-(12). The later the information
about the guiding line is injected into the prediction model
the more the initial uncertainties are reduced. However,
the assumption that the vessel travels along the guiding
line is dominating more and more over the integration
of the inital estimates which is not always desirable. The
following possibilities to inject guiding line information are
used:

(1) 7 from the guiding line: The second time derivative
of the course angle & that is required to stay on the
guiding line if the initial values for r and v are in
accordance with the guiding line is given as

(13)

with the absolute velocity v.,s and the guiding
line’s curvature derivative kf,;. Under the assump-
tion that the second time derivative of the drift angle

[ is zero, the time derivative of the turning rate for
traveling along the guiding line is given as

S 2 !
Q= Vgps FGL

T= U?zbs H/GL . (14)

Note: ¢p = r and ¢ = a + 3, with ¢ being the

heading angle, o being the course angle and 3 being
the drift angle.

(2) r from the guiding line: To further reduce the influ-
ence of initial uncertainties it is assumed in this case
that the turning rate of the predicted vessel follows
the one that is required to navigate along the guiding
line. For kinematic reasons

o= Vabs RGL (15)
has to hold which means that
T = Vgbs KGQL (16)

has to be valid under the assumption of a negligible
drift derivative £3.

(3) vo projected onto the guiding line: Under the assump-
tion that the vessel travels along the guiding line its
initial velocity vector vg = (vz0,vy0)7 is projected
onto the guiding line such that the resulting velocity
vector is tangential to the guiding line. Furthermore,
the turning rate r from the guiding line is fed into
the prediction model. This prediction results in a line
parallel to the guiding line.

According to the type of vessel and its initial dynamic
state, one of the prediction methods (1) — (3) is chosen.
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For example, it is clear that prediction method (3) is not
valid for a ferry traveling across the river with a large angle
between its course and the guiding line. Figure 2 shows the
prediction errors for the different prediction methods for
a ferry crossing the river. The values are calculated from
a real world scenario. Method 0 denotes pure integration
whereas method 4 denotes a special variant of method 3
with an initial angle to the guiding line that is reduced
with first order dynamics.

While prediction method (3) performs poorly when pre-
dicting ferries it works very well for normal vessels trav-
eling on the river. Figure 3 depicts such a case. Generally
speaking, a set of conditions determine the choice of the
prediction method. The conditions consisit of the angle be-
tween the course and the guiding line, the existence of ferry
lines and the existence of lane switching areas where the
standard navigation side for up- and downstream traffic is
switched.
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Fig. 2. Prediction errors for the different prediction meth-
ods for a ferry crossing the river.
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Fig. 3. Prediction errors for the different prediction meth-
ods for a normal vessel.
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2.8 Ranges of Encounter

A range of encounter is defined as the area on the river
occupied by another object while our vessel is traveling
next to it along the river. Ranges of encounter are spatial
objects and do not exhibit a time component. Therefore,
they are locally fixed. Planned paths can be considered
collision-free if the spatial dimensions of our vessel do not
intersect any range of encounter. In order to treat our
vessel as one point only, namely the center of area, the
ranges of encounter are enlarged to account for our vessel’s
dimensions.

Beginning of encounter

End of encounter

[ > N S
Fig. 4. Range of encounter for passing drawn for the center
of area of vessel 1.

Figure 4 shows the generation of such a range of encounter
using a passing procedure of vessel 1 as example. Since
the relative velocity between the two vessels determines
the amount of time during which both vessels are next
to each other the range of encounter in the example is
longer than the length of vessel 2. Therefore, in case of
a stationary object the range of encounter equals the
vessel’s dimensions plus the enlargement for our own vessel
whereas the range of encounter is smaller than the vessel
size plus enlargement when the two vessels meet with
velocities greater than zero.

For all types of encounter the beginning and the end of
the encounter are characterized by either the bow or stern
of both vessels being at the same point along the river.
Therefore, there exist four possibilities: bow-bow, bow-
stern, stern-bow, stern-stern. By introducing a coordinate
system whose x-axis points along the river in the direction
of our vessel’s velocity, the z-axis down and the y-axis such
that a right hand system is formed the bow and stern of
our vessel at t = tg is given as

e (t0) = melto) + 2 (1)
res(to) = (1) — 22 (18)

with L. being our vessel’s length. Similarly, for the other
vessel:

Lol (to) = :L'O(to) +

To2(to) = To(to) — =,

with its length L,. Denoting the velocity along the x-axis
of our vessel by v,. and the other vessel’s velocity by v,
the four possible extrema are calculated by

To1(to) — Te1(to)

T T @)
tps = z"l(jO) :ZeQ(tO) , (22)
tmy = 2 (f)) _:Z(t‘)) , (23)
fy = %2(1;:)3 - xz;(to) _ (24)

Vze — Uzo

Which two of the four extrema are active is determined by
the following equations:

(25)
(26)

Tp1 =min (tp1,te, tes, tes),
Tpe = max (tp1,te, tes, tea),

with Tp1 being the beginning of the encounter and Tpo
being the end. The spatial dimensions of the range of
encounter can easily be calculated as z.(Tg1) and z.(Tg2)
in x-direction and as y,(Tr1) and y,(Tr2) in y-direction
extended by the widths of the other vessel and our vessel.
Note: These derivations are only valid for the standard case
of a vessel traveling along the river. They are not valid for
vessels going across the river such as ferries. Such vessels
must be treated separately. The new coordinate system’s
x-axis follows the river and is therefore not straight.
Nevertheless, the coordinate system can be treated as
a cartesian system locally since the typical curvature of
rivers is small enough.

The ranges of encounter are also enlarged in order to
account for drift angles of the other vessels and our own
vessel. A worst-case assumption on the possible drift angles
is adopted but omitted here.

3. COLLISION AVOIDANCE

A path planning algorithm for inland navigation must
satisfy certain criteria if the resulting path will be used
as reference track for automatic track-keeping.

(1) Navigability: The vessel which the path is computed
for must be able to follow the path. This means that
the required rudder angle § cannot exceed a maximum
value. The constrained dynamics of the rudder hy-
draulics can be accounted for by also requiring bounds
on the time derivative of the rudder angle 5.

(2) State constraints: Bounds on the turning rate r and
the angle between the course o and the guiding line
ensure that the avoidance module computes reason-
able paths. They can be freely chosen by the captain
and pose a trade-off between smooth avoidance paths
and more extreme maneuvers.

(3) Collision-free paths: The generated paths must be
collision-free. All ranges of encounter have to be
avoided as well as the boundaries of the fairway.

(4) Maneuver detectability: Other vessels need to be able
to realize what type of avoidance maneuver our vessel
is carrying out in order to take measures accordingly.
This means that the calculated paths must result in
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short clear maneuvers as opposed to long transient
behavior.

8.1 Path Planning using Nonlinear Optimization and the
Setpoint Filter Model

Path planning based on nonlinear optimization using the
so-called setpoint filter model is able to account for all
criteria given above. Navigability is inherintly included in
the special model. The optimization algorithm is capable
of dealing with state constraints as well as constraints that
guarantee collision-free paths. The resulting maneuvers are
also detectable since this avoidance algorithm only permits
a limited number of clear lane changes.

Mathematical Model The setpoint filter model is based
on a reduced ship model and was first introduced by Wahl
(2001). Its state vector consists of the turning rate r, its
time derivative 7 the heading angle i) between the vessel
and the guiding line and the distance to the guiding line
y. The model equations read as follows:

T —Cyr — C3T+C37‘Off
d (r T
il - 2
dt | v r ’ 27)
Y Lpr+ uy
dy =y, (28)
with
C.
Toff = Sat(g(i/foff =), Tmaz) » (29)
3
C
woff = Sat(é(doff - y)a wmaz) . (30)

The input to this model is d, sy and represents the desired
lateral offset to the guiding line. The model structure
is similar to a fourth-order lag system except for the
fact that the saturation functions (29) and (30) limit the
turning rate r to 7,4, and the heading to the guiding
line 9 to ¥maz. The output dy is a filtered lateral offset
that assymptotically tends to d,rs. Equation (27) can be
viewed as a ship model with linearized lateral dynamics
and a continuous turning acceleration 7. The lateral dy-
namics consist of the term w1 which represents the lateral
component of the constant forward speed u and the drift
term Lpr with Lp as the distance between the pivot point
and the center of gravity. A suitable choice of the free
parameters C, ..., Cy is given by Wahl (2001).

Us
T Us
Uy Us
Y Uy Us
X1 X9 X3 Xy 1‘(5 Xe
TI G172 GoT3 G3 T4 Gy T5 Gy T6

Fig. 5. Avoidance scenario with constraints of the variable
lateral offset inputs U; with variable switching times
Ti-

Problem Formulation  Figure 5 depicts a typical avoid-
ance scenario. The ranges of encounter are drawn as red
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boxes whereas the navigable part of the river is shown in
green. All coordinates refer to the guiding line coordinate
system that was introduced above with the x-axis pointing
in guiding line direction. Since our vessel’s velocity in
x-direction is considered constant all coordinates in x-
direction can be transformed into time coordinates and
vice versa. At every x-position X; — Xg a new input
Uy — Us to the setpoint filter model can be chosen by the
optimization algorithm. By limiting the number of offsets
the avoidance maneuvers become detectable. One offset
can be chosen at the before each range of encounter and
after each range. Each offset’s U; upper and lower bound
is determined by the available lateral space at the next
offset. The last offset Ug is chosen to be zero which means
that the avoidance path ends on the guiding line again.
With these definitions the optimization problem can be
formulated as follows:

The goal is to find the piecewise constant input function
u*(t, ) with

u(t,7) = U; form <t<my Vi=1...ny (31)
0 for ¢t > Tns+1
and
1
T = 'U_(Xl — ,CCQ), (32)
1
Tne+1 = U_(an+1 - 330)7 (33)
TiE(Gifl,Gi) Vi:2,...,nf, (34)
1
Gi = (0,5 (Xis1 — Xi) = 20), (35)
that minimizes the cost function
J = &(z(t),u(t, 7)) (36)
such that equation (27), the initial conditions
7(to) = 70, r(to) = 70, Y(to) = Yo, y(to) =vo,  (37)
the input constraints
lb1 S ’U,(t,T) S ’U,bi,
1 1
—(Xi — $Q) <t< ’U_(XH_l — .1‘0), (38)

x x

Vi=1...ny

with

Vi=1...nf—1,
Vi=1...n5—1,

1b; = max(Ymin,i, Ymin,i+1)
ub; = min(ymam,iv ymam,iJrl),
lbnf = Ymin,ny >

Ubnf = Ymaz,ny

and the output constraints
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Ymin,i S df (t) S Ymazx,is

1 1
—(Xi — $Q) <t< ’U_(XH_l — $0),

x x

(43)
Vi=1...ny

are satisfied. In this problem formulation each of the n¢
green zones is described by the four-tuple

Vi=1...ny. (44)

{zmin; Tmaxs Ymin, ymaz}i

The choice of the cost function J (36) strongly influences
the shape of the avoidance path. Two possible choices are:

(1) Minimization of the distance to the guiding line:

nffl

b 2 2
J:Wy/t dj(t)dt + W, > (Uigr — Ui)*. (45)
1=1

0

(2) Maximization of the distance to obstacles:

ty
J =W, [ (ds(t) — 0,5 (Ib(t) + ub(t))? dt+
t
oyt (46)
Wy > (Ui —Ui)?,  with
=1
(t) = 1b;, ub(t) = ub; , and

1 1 .
te [—(X1 — ZL'O), ’U_(XiJrl — zo))V’L =1.. SNy
(47)

Both choices for the cost function J include a term punish-
ing the difference between consecutive inputs besides the
term describing the primary goal. This term allows for a
trade-off between the primary goal and a straighter path
by adjusting the corresponding weights W, and Wy.

Problem Solution ~ The problem (31)-(47) is discretized
using a forward Euler integration method for the differ-
ential equation with a sufficiently small sample time to
guarantee numerical stability. The nonlinear optimization
package NOMAD belongs to the group of black-box optimiza-
tion tools. This means that only the cost function value
depending on the optimization variables is needed to find
the solution to the optimization problem. Derivatives for
the cost function and the constraints are not necessary. It
is capable of solving non-smooth nonlinear optimization
problems with a small number of variables.

Since the inputs to our optimization problem only change
ny times it is sufficient to only use the vector (Uy, ..., Uy, )
as optimization variables in addition to ny — 1 variables [;
that denote the variable switching times of Us, ..., Uy, .

Results  Figure 6 shows a high traffic scenario with six
stationary objects together with the resulting collision-free
paths that are computed using the nonlinear optimization
problem with the cost function variants (1) and (2). Corre-
sponding values for the number of optimization variables
and the computation times are given in table 2.

4. CONCLUSION

In practice the presented collision detection and avoidance
method robustly delivers solutions for any relevant prob-
lem size.
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(a) J=(1)

Fig. 6. Avoidance paths for a high traffic scenario for both
version of the cost function J.

Table 2. Number of optimization variables and
computation time for scenario in figure 6.

Fig J W, W, Variables Time (ms)
6(a) (1) 100 100 17 1361
6(b) (2) 100 100 17 1400

The fairly large uncertainties described in section 2 need
to be compensated for by repeatedly solving the avoidance
problem. The results show that the computation time
that is needed to solve one problem permits the repeated
solution at update rates greater than 0.5Hz which is
sufficient considering the vessels’ velocities.

Ferries and other vessels crossing the river can not be
accounted for with the presented algorithm. They pose
a special problem also because they are recognized fairly
late by the radar object tracker. This is due to the fact
that the radar object tracker needs several radar images
as measurements for the recognition.
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