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Abstract

We undertake first steps in making a class of discrete models of quantum gravity, spin
foams, accessible to a large scale analysis by numerical and computational methods. In
particular, we apply Migdal-Kadanoff and Tensor Network Renormalization schemes to spin
net and spin foam models based on finite Abelian groups and introduce ‘cutoff models’ to
probe the fate of gauge symmetries under various such approximated renormalization group
flows. For the Tensor Network Renormalization analysis, a new Gauß constraint preserving
algorithm is introduced to improve numerical stability and aid physical interpretation. We
also describe the fixed point structure and establish an equivalence of certain models.

Contents

1 Introduction 1

2 Spin foams and spin net models 3
2.1 Spin net models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Spin foam models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Relation between spin foam and spin net models . . . . . . . . . . . . . . . . . . 13

3 Coarse graining methods 14

4 The Migdal–Kadanoff approximation 16
4.1 Migdal-Kadanoff relations explored . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Restoration of BF symmetry in Abelian cutoff models . . . . . . . . . . . . . . . 18

5 The tensor network renormalization scheme 21
5.1 Gauß constraint preserving TNR method . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Equivalence of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Structure of fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Analysis of Abelian cutoff models . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Discussion and outlook 34

1 Introduction

Spin foam models aim at providing a description of the microscopic structure of spacetime and
thus a theory of quantum gravity [1–11]. These models can be understood as a non–perturbative
definition of the path integral for quantum gravity. To make these path integrals well defined
one has to introduce a regularization based on a choice of discretization, i.e. a lattice or, more
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generally, a triangulation or two–complex. Indeed, spin foams can be understood as generalized
lattice gauge theories.

This discrete (a priory auxiliary) structure should not be confused with another feature of
spin foams, which is often termed ‘Planck scale discreteness’ [12–16], namely that the spectra of
(kinematical) geometrical quantum observables, like areas and volumes, are discrete. There are
thus two different kinds of UV cutoffs, whose interplay has not been fully understood yet. This
has to be kept in mind when discussing a possible breaking of (global) Lorentz or (local) diffeo-
morphism symmetry. A (naive) lattice regularization will generically break these symmetries,
see for instance [17–24] for a discussion of these issues in gravity.

We may, however, consider a continuum limit with respect to this auxiliary discretization
scale, for example by a coarse graining or blocking procedure, see [25–27] for recent examples
involving gravity or related to it. A crucial question then is whether Lorentz or diffeomorphism
symmetry will be restored in this limit, despite the possibility of still having the second kind
of UV cutoff, provided by the discreteness of the spectra, in the theory. That this cutoff does
not necessarily lead to a violation of Lorentz symmetry has, for instance, been argued in [28]
on kinematical grounds. A full dynamical scenario for 4D gravity where a restoration has been
shown to occur is, however, missing, nonetheless see [29, 30] for progress in this direction.1

These questions motivate us to consider a continuum limit which involves many building
blocks or large lattices (with many vertices), as this is the limit where one can hope to obtain
a diffeomorphism invariant theory. An alternative is the semi–classical limit [36–38], in which
rather the Planck constant, leading to ‘Planck scale discreteness’, is taken to zero. To distinguish
these two kind of limits we will sometimes refer to the first one as statistical limit.

Experience with other quantum gravity models, such as (causal) dynamical triangulations,
has shown [39–45] that even before the question of restoration of symmetries can be addressed,
it is not at all obvious whether such a statistical limit leads to any viable model of spacetime, i.e.
whether such a limit will result in smooth four–dimensional spacetime manifolds. Indeed, in this
kind of limit statistical considerations become important and it can easily happen that state sums
become entropically dominated by configurations not resembling any four–dimensional manifold
at all. As we will see, a related issue arises for spin foam models (or other models based on first
order/tetrad formulations) where geometrically degenerate configurations might be dominant.
Such configurations also turn up in a semi–classical or classical phase space analysis, even if this
involves only a single simplex [46–48].

Hence it is crucial to investigate which kind of large scale physics or, in other words, phases,
are encoded in the candidate quantum gravity models. Phases are often characterized by sym-
metries, that is such a study might also answer which kind of symmetries might be restored
in a large scale / statistical limit. Indeed, making progress in this direction is one of the most
pressing issues for the spin foam approach. However, it is also a long standing open issue [49–51]
charged with a number of conceptual and technical challenges.

One important challenge is the complex structure of the models which lead to very com-
plicated amplitudes as compared, for instance, to QCD. Here, our strategy [11] is to develop a
wide range of simplified models which capture essential features of spin foams while being much
easier to handle. These simplifications are obtained on the one hand by replacing Lie groups,
on which the gravitational spin foams are based, with finite groups. On the other hand, we can
also consider ‘dimensionally reduced’ models (spin net models). In fact, 2D spin net models of
the simplest class share many statistical properties with their counterpart 4D spin foam models.

Similar simplified models have been successfully studied, e.g. [52–54], to get insights into the

1For 3D gravity, which is a topological theory, that is without propagating degrees of freedom, discretization
does not necessarily lead to a breaking of diffeomorphism symmetry [20, 31, 32]. This holds also for 3D gravity
with cosmological constant [33]. One can, however, consider discretization or quantization methods which a priori
break diffeomorphism symmetry and look for methods to restore these symmetries, see [25, 34, 35].
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large scale behavior of lattice gauge theories. Here we hope for a similar improved understanding
of the possible phases that can occur in quantum gravity models. In particular, we will see in the
course of the paper, how conjectures or even conclusions for Lie groups can be made based on
findings for finite groups. These simplified models can also be interesting in their own right [55–
57], in particular if an example is found in which some analogue to diffeomorphism symmetry
is restored. Indeed topological phases and string net condensates [58] which are studied in
condensed matter, also regarding the question of symmetry restoration, are tightly related to
3D spin foams with finite groups [11].

The development of coarse graining and renormalization techniques seems to be the most
promising avenue to study the large scale behavior and simplified models allow us to adapt and
further refine methods from lattice gauge theory and condensed matter systems. In this work we
will therefore apply the Migdal-Kadanoff scheme [59, 60] and the tensor network renormalization
(TNR) method [61, 62]. These schemes involve a regular lattice and, due to this regular structure,
they are amenable to efficient numerical simulations.

With this approach we are able to explicitely answer the question of BF symmetry restora-
tion for a range of models and to gain insights into how these results are related to the case of
infinite groups. These results should be understood as a first step towards harnessing the power
of numerical methods from statistical physics to deepen the understanding of the large-scale
physics of spin foam models.

In this work, we will first introduce spin foam and spin net models and write them in ways
suitable for coarse graining (section 2). We will also define a particularly important class of
models, termed ‘Abelian cutoff models’, discuss the role of BF / translation symmetry and
detail the relationsship between spin foams and nets. Subsequently, in section 3, we discuss
the conceptual challenges of coarse graining in this context and argue for the approach pursued
here, in particular for the use of a regular lattice.

We then apply the Migdal-Kadanoff and tensor network approximation schemes to coarse
grain our models (sections 4 and 5, resp.). In each case, we first introduce the method and
highlight some of its analytical properties before presenting numerical results that focus on
the question whether renormalization of Abelian cutoff models will restore BF symmetry. In
particular, we feature a Gauß constraint preserving TNR algorithm tailored to the geometric
interpretation of our models and establish an equivalence amongst certain cutoff models under
the TNR renormalization scheme. We conclude by comparing both approximation schemes and
pointing out possible future directions of research.

2 Spin foams and spin net models

Spin foams are a particular class of lattice gauge models (see e.g. [63] for a recent review and
[11] for a review emphasizing the relation to lattice gauge and statistical physics models). Such
models are specified by variables, taking values in some group G, associated to the edges of
a lattice (or more generally an oriented 2–complex) and weights associated to the plaquettes.
They can thus also be termed plaquette models.

A related class of models, which will be introduced below, are so called edge or spin net
models [11]. Here group variables are associated to the vertices of a lattice (or more generically
an oriented graph or 1–complex) and weights to the edges. This class includes the well–known
Ising models, based on the group Z2. Indeed it will turn out that the structures involved in a
spin net model are very similar to those involved in spin foam models – just that where, for
instance, weights are associated to 2D plaquettes for spin foams, weights are associated to 1D
edges in spin nets, similarly for the group variables and so on. In this sense spin nets are a
simpler or dimensionally reduced form of spin foams. There is however one essential difference,
which is that spin foams enjoy a local gauge symmetry whereas spin nets only feature a global
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symmetry, in both cases given by the group G the models are based on. In section 2.3 we will
also comment on another relationship between spin foams and spin nets: spin nets can be seen
as measuring non gauge-invariant observables in spin foam models.

Spin foams and spin nets are defined by partition functions, and we will first consider a
representation of these partition functions as sums over group variables. Via a group Fourier
transform we can rewrite these partition functions as sums over variables labeling the irreducible
representations of the group G. This is where the name ’spin foam’ stems from, as ’spin’ refers
to the representation labels for the group SU(2). This alternative representation is well known
as a duality transformation for both edge and plaquette models, and is usually employed for
the high temperature or strong coupling expansion [64]. The models in this representation
are not only specified by the dual weights but also by an intertwining projector acting on a
certain representation space. Non–trivial spin foam or spin net models can be constructed by
choosing this projector to be different from its standard form (which is the Haar intertwiner
introduced below) in plaquette and edge models respectively. In the case of Abelian groups
we will explicitly construct non-trivial models, the so-called Abelian cutoff models, which only
consider representation labels of the group up to a certain cutoff. For these models, we will see
that the choice of a non-trivial projector is equivalent to retaining the Haar intertwiner while
restricting the dual weights in a particular way. These are precisely the models that we will
numerically analyze in sections 4 and 5.

For the non-trivial models, one can then apply the inverse group Fourier transform and again
obtain a partition function in terms of group variables. As will be explained below, this will
however require the introduction of several group variables per vertex (for edge models) or edge
(for plaquette models) [65–67]. This representation is termed holonomy representation, both for
spin foams and spin nets.

In the next two subsections we will give a short introduction into the main concepts and
different representations of spin foams and spin nets. Furthermore we will detail the different
possibilities of rewriting these models into tensor network form, as this will be the basis of one
of our coarse graining methods, to be discussed later on.

2.1 Spin net models

To construct spin net models we start with state sum models formulated over a finite group
G and on a graph (one-dimensional complex) with oriented edges. More precisely we consider
partition functions of the type

Z =
1

|G|]v
∑
{gv}

∏
e

we(gs(e)g
−1
t(e)), (2.1)

where ]v is the number of vertices in the graph, s(e) denotes the source vertex (starting point)
of the edge e, t(e) denotes its target vertex (final point), and the curly brackets under the sum
symbol denote that there is a sum per vertex:

∑
{gv} =

∏
v

∑
gv

. Here group elements are
associated to vertices and weights, which determine the couplings, to edges. Therefore these
models are also known as edge models and include the standard Ising model for which G is
equal to Z2. The weights we(gs(e)g

−1
t(e)) can be arbitrary functions2 over the group G. However,

if we are class functions, i.e. invariant under conjugation (we(g) = we(hgh
−1) ∀g, h ∈ G), the

model will feature a global symmetry given by the group G: the partition function remains
invariant when applying the same conjugation to group variables at each vertex.

The form (2.1) defines the simplest form of spin net models in the representation based
on group variables. This representation will be called holonomy representation in analogy to

2To have a statistical interpretation of we as probability weights these should be positive. This will however
not necessary be the case for spin foam models.
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e

v v′(w̃ρe)aebe

ρe(gv)aece ρ∗e(gv′)bece

w̃e

ρe(gv) ρ∗e(gv′)

Figure 1: On the left: the three objects associated to every edge. On the right: their schematic
representation. Every straight line joining two objects means a contraction of indices.

spin foam models (where group variables are associated to edges and represented holonomies
of a connection). Holonomy representations of more general models will require several group
variables associated to each vertex, as we will see later.

Via the group Fourier transform, we can change from the above representation in terms of
group elements, to the spin net representation, which is in terms of the irreducible representa-
tions of the group3. Every function on the group can be decomposed in terms of matrix elements
of the irreducible representations ρ,

w(g) =
∑
ρ

dimρ∑
a,b=1

(w̃ρ)ab ρ(g)ab, (w̃ρ)ab =
dimρ

|G|
∑
g

w(g) ρ∗(g)ab, (2.2)

being ρ∗ the dual of ρ. For class functions this decomposition reduces to the character decom-
position

w(g) =
∑
ρ

w̃ρ χρ(g), w̃ρ =
1

|G|
∑
g

w(g)χρ∗(g), (2.3)

where χρ(g) =
∑dimρ

a=1 ρ(g)aa denotes the character. We note that our convention for the delta
function over the group, δG, is

1

G

∑
g

δG(g)f(g) = f(id), δG(g) =
∑
ρ

dimρχρ(g). (2.4)

Using the property
ρ(g−1)ab = ρ∗(g)ba. (2.5)

we obtain

Z =
1

|G|]v
∑
{gv}

∑
{ρe}

∏
e

(w̃ρe)aebe ρe(gs(e))aece ρ
∗
e(gt(e))bece , (2.6)

where we sum over repeated indices.4 Note that, associated to every edge, there is a coefficient
(w̃ρe)aebe , and two group representations, ρe(gs(e))aece living on the source vertex and ρ∗e(gt(e))bece
living in the target vertex. The indices of these three objects are contracted, as described
schematically in figure 1.

Now we can carry out the sums over group variables. The result is

Z =
∑
{ρe}

(∏
e

(w̃ρe)aebe
)∏

v

P̃ vae...,be′ ...;ce...,ce′ ...({ρe}e⊃v) (2.7)

where we have defined the vertex weight

P̃ vae...,be′ ...;ce...,ce′ ...({ρe}e⊃v) :=
1

|G|
∑
gv

∏
e:v=s(e)

ρe(gv)aece
∏

e′:v=t(e′)

ρ∗e′(gv)be′ce′ . (2.8)

3We refer the reader e.g. to [68] for the main concepts of group representation theory that we employ.
4For class functions we we have (w̃ρe)aebe = (w̃)ρe δaebe , which will contract the representation matrices

(ρe)aece to the characters χρe .
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ae1ae1

ae2
ae2

be3 be3

be4
be4

ce1 ce1

ce2 ce2

ce3 ce3

ce4ce4

ρe1(gv)

ρe2(gv)

ρ∗e3(gv)

ρ∗e4(gv)
P̃ v(ρe1 , ..., ρe4)

Figure 2: Four-valent vertex with two outgoing edges, e1 and e2, and with two incoming edges,
e3 and e4. On the left: representations meeting in the vertex. On the right: schematic repre-
sentation of the resulting vertex weight.

The first and third groups of indices involve all the edges for which v is the source vertex. The
second and fourth groups of indices involve all the edges for which v is the target vertex. Using
the schematic representation employed in figure 1, we can represent the vertex weight as in
figure 2.

Note that P̃ v can be seen as an intertwiner map, called the Haar intertwiner, acting on a
certain representation space for the group G. This representation space, Hv, associated to the
vertex v, is given by the tensor product of the representations ρe associated to the outgoing
edges and the representations ρ∗e′ associated to the incoming edges

P̃ v :

 ⊗
e:v=s(e)

Vρe

⊗
 ⊗
e′:v=t(e′)

Vρ∗
e′

 →
 ⊗
e:v=s(e)

Vρe

⊗
 ⊗
e′:v=t(e′)

Vρ∗
e′

 . (2.9)

The intertwining property of this map is guaranteed by the averaging over the group in (2.8).
Indeed, the Haar intertwiner defines an orthogonal projector onto the subspace Hinvv of Hv,
invariant under the group action defined on this representation space.

The same intertwining map will appear in spin foam models. There, the choice of the Haar
intertwiner as a projector and face weights to be trivial defines topological models, known as
BF–theories. A gauge symmetry, known as translation symmetry, arises in this case, forcing
the model not to have local physical degrees of freedom. The analog situation happens in spin
net models. The choice of edge weights w̃e ≡ id and of the Haar intertwiner as a projector
corresponds to the model at zero temperature, with no local degrees of freedom. For the weights
we this amounts to choosing we ∼ δG. In this case the projectors P̃ v are just contracted along
the edges of the graph.

Non-trivial models are more interesting. They are constructed by restricting the projector
further, i.e. by selecting a subspace of the invariant subspace of Hv and by replacing the Haar
intertwiner (2.8) by a projector onto this subspace. We will proceed in that way here, and in
general assume that P̃ v is a projector onto some subspace of Hinvv . This allows us to obtain
interesting models even if we choose the edge weights w̃e to be trivial. Indeed, in these models,
the original gauge symmetry is broken and local physical degrees of freedom arise. We will see
this behavior for the Abelian cutoff models described below.

In general, in order to re–express the partition function Z of such non-trivial models in the
holonomy representation, namely as a sum over group variables, we will need to associate more
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than one group elements to each of the vertices in the lattice. Let us denote the number of edges
attached to the vertex v by nv. Now, we assign one group element g(v, e) to each of the edges
attached to v and define

P v({g(v,e)}e⊃v) =
∑
{ρe}

P̃ vae...,be′ ...;ce...,ce′ ...({ρe}e⊃v)

×
∏

e|v=s(e)

dim(ρe) ρ
∗
e(g(v,e))aece

∏
e′|v=t(e′)

dim(ρ′e) ρe′(g(v,e′))be′ce′ . (2.10)

In terms of this vertex amplitude, the partition function reads

Z =
(∏

v

1

|G|nv
) ∑
{g(v,e)}

(∏
e

we(g(s(e),e)g
−1
(t(e),e))

)(∏
v

P v({g(v,e)}e⊃v)
)
. (2.11)

In case that P̃ v is given by (2.8), i.e. by the Haar intertwiner, we obtain the form of the partition
function given in (2.1), as P v then enforces equality between the group elements associated to
one and the same vertex.

A different simplification occurs when we(h) ∼ δG(h), a choice that we already mentioned
above. Then the two group elements g(v,e) and g(v′,e) associated to any edge e have to be equal.
Hence, the partition function reduces to a sum over group elements ge = g(v,e) = g(v′,e) associated
to edges. This type of models is known as vertex models – the energy of a configuration is now
determined by the vertex weights P v({ge}e⊃v).

In this work we will apply coarse graining to models with Abelian groups Zq. In this case,
all irreducible unitary representations, which we will label by k ∈ Zq, are one–dimensional and
defined by their characters χk(g) = exp(2πiq k · g) for g ∈ Zq. The transformation between
functions on the group Zq and on the dual, equal to the space of characters, which is also given
by Zq, is given by the discrete Fourier transform

w(g) =

q−1∑
k=0

w̃k χk(g) w̃k = q−1
q−1∑
g=0

w(g)χk(g) . (2.12)

Characters for Abelian groups are multiplicative, i.e. χk(g1 · g2) = χk(g1) · χk(g2), and also
χk(g

−1) = χ−1k (g) = χk(g). Moreover, the delta over the group is now the q-periodic delta. It
verifies q−1

∑
g δ

(q)(g)f(g) = f(0).
The spin net representation of the partition function simplifies in the case of Abelian groups

to
Z =

∑
{ke}

∏
e

w̃ke
∏
v

P̃ v({ke}e⊃v), P̃ v({ke}e⊃v) :=
∏
e⊃v

δ(q)
(∑
e⊃v

εevke
)
, (2.13)

where εev is equal to +1 (−1) if v is the source (target) of e. The projector P̃ v implements the
Gauß constraints at the vertex v. It indeed projects to the irreducible subrepresentation in the
tensor product of all representations associated to the outgoing edges and the tensor product
of dual representations of incoming edges. The tensor product is one–dimensional and equal to
the trivial representation if the oriented sum of the representation labels ke is equal to zero.

Note that the spin net representation is the starting point for the high temperature expansion
[69]. The infinite or high temperature fixed point is represented by w̃e(k) = δ(q)(k). On the
other hand the zero or low temperature fixed point is given by w̃e(k) ≡ 1. This corresponds to
weights we(h) = δG(h) in the original group representation. The model is ‘frozen’, i.e. the group
elements at the different vertices have to agree (assuming that the graph has only one connected
component).
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As commented before, for this choice of weights there is a gauge symmetry. It is associated
to the faces, i.e. the two–dimensional cells (here we are assuming that the graph is actually given
by an orientable 2–complex, i.e. the 2–dimensional cells are well defined). Associating to every
face f an element kf ∈ Zq we define a gauge transformation acting as

ke 7→ k′e = ke +
∑
f⊃e

εfekf (2.14)

where εfe is +1 (−1) if the orientations of e and f agree (disagree). Under such a transformation
the contribution of a configuration {ke}e to the partition function Z does not change. Choosing
either the edge weights w̃e or the vertex projector P̃ v to be non–trivial will in general break this
translation symmetry either completely or down to a smaller symmetry. Choosing a non-trivial
projector P̃ v will in general result in vertex models, as one can basically reduce the set of vertices
allowed by the Gauß constraints even further.

We are now in position to introduce the Abelian cutoff models. As said before, for the low
temperature fixed point (analog to BF in spin foam models) the weights are

we(g) = δ(q)(g) =
∑
{k}

χk(g) ↔ w̃e(k) = 1 ∀k. (2.15)

The Abelian cutoff models are derived from this by ‘cutting off’ the sum at some value K such
that some of the dual weights w̃e vanish. Explicitly,

w̃e(k) =

{
1, for |k| ≤ K
0, for |k| > K

(2.16)

where we will consider only even q, hence K ≤ q
2 . Here the range for k is given by −q2 < k ≤ q

2 .
Also, note that the symmetry condition w̃(k) = w̃(−k) ∀k is fulfilled. This requirement is
desired in the quantum gravity setting because it ensures that the model does not depend on
edge orientations and certain types of face and edge subdivisions [70, 71].

Abelian cutoff models could be equivalently described by a restriction of the projector P̃ v

(and keeping the weights w̃e(k) ≡ 1). They provide a simple example of breaking the translation
gauge symmetry from the frozen model in order to introduce physical degrees of freedom. Also
this choice of model corresponds to a regularization one often choses for BF lattice theories
with Lie groups [72]. In this case the orbits of the translation gauge symmetry are non–compact
and the evaluation of the partition function gives generically infinity. Different methods of
regularization have been developed, one would be equivalent to introducing a cutoff K (for a
theory with group G = U(1)). One can then ask whether these regularized models would flow
back to the full BF model, or more generally the low temperature fixed point, under coarse
graining. We will consider this question in sections 4 and 5.

So far we have presented the partition functions for spin net models as sums over group
variables (the holonomy representation) or representation labels (the spin net representation).
An alternative is to write the partition function as a contraction over tensors attached to the
vertices of the underlying lattice (or some graph associated to the lattice), that is, in the tensor
network representation. The tensor network representation is commonly employed in statistical
and quantum systems [61, 73–76], since it is especially suitable for developing techniques of
renormalization. We will make use of this representation of the partition function in section 5,
where we will apply the renormalization approach to spin net models with Abelian groups.

In this representation, the contraction of the indices is prescribed by the edges. The partition
function can hence be expressed as a tensor trace

Z =
∑
{ke}

∏
v

T̃ v{ke}e⊃v ≡ tTr⊗v T̃ v. (2.17)
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ω̃
ω̃

ω̃

ω̃
ω̃

ω̃ ω̃

ω̃ω̃ω̃

ω̃
ω̃

P̃ P̃ P̃

P̃P̃P̃

P̃P̃P̃

Z = tTr

Figure 3: Employing the schematic representation of figures 1 and 2 it is straightforward to
realize that the partition function of spin net models can be written in the form of a tensor-
trace over a network of tensors, being the tensor-trace the sum over representations.

ω̃

ω̃ ω̃

ω̃

P̃P̃

P̃P̃

T̃T̃

T̃T̃

Figure 4: Schematic definition of the vertex tensor T̃ v{ke}e⊃v in a square lattice.

This way of representing the partition function is related to the so–called graphical calculus
[77–80], which is often employed in the spin foam literature.

In the particular example of Abelian models in the spin net representation, we first absorb

the edge weights w̃ke into the vertex weights P̃ v({ke}e⊃v) by distributing w̃
1/2
ke

factors to each
of the adjacent vertices, namely in every vertex we define the tensor

T̃ v{ke}e⊃v =
(∏
e⊃v

(w̃ke)k
1/2
)
P̃ v({ke}e⊃v) (2.18)

The partition function is then given by the tensor trace (2.17) (see figure 3 and figure 4).
More generally, we can find tensor network representations also for the non–Abelian models

in the different representations. The holonomy representations is a convenient starting point
for a low temperature expansion, the spin net representation to the high temperature region.
For the spin net representation we can proceed as for the Abelian models. For the holonomy
representation assume that we have edge weights such that we(h) = δG(h). We then just
need to understand the group elements ge as indices attached to the tensors T s(e) = P s(e) and
T t(e) = P t(e) to see that (2.11) can be rewritten as a tensor trace. For the more general case of
non–trivial edge weights we can introduce another set of rank two tensors w to the midpoints
of the edges.

9
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Figure 5: (a) A face f bound by the edges e1, · · · , e5. The curvature is hf = ge1ge2g
−1
e3 ge4g

−1
e5 .

(b) An edge e with four faces attached, f1 and f4 with positive relative orientation with respect
to e, and f2 and f3 with negative relative orientation. The corresponding edge-weight is denoted
by P̃ e
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2.2 Spin foam models

Spin foams are in many respects similar to spin nets. The main difference is that spin foams are
gauge theories, formulated with a gauge group G, which here will be a finite group. Furthermore
spin foams require an oriented two–complex for their definition. This implies, that we have a
well defined notion of oriented edges as well as oriented faces (which are the 2D cells of the
complex, or the plaquettes for a regular lattice).

In order to define a spin foam model, we assign a group element ge to every edge e of the
two-complex and a weight wf : G→ C to every face f . The state sum model is then defined by
the partition function

Z =
1

|G|]e
∑
{ge}

∏
f

wf (hf ), (2.19)

where ]e denotes the total number of edges in the two-complex.
The function wf is a class function. Furthermore, in (2.19) wf depends on the group elements

only through the holonomy hf around the closed loop of edges forming the face f , that we will
call curvature. Let us make its definition explicit. For that, we recall that the relative orientation
between a face f and any edge e in the boundary of f is denoted by εfe , and it is equal to +1
(−1) when e and f have the same (opposite) orientation. Given a face f bounded by the ordered
sequence of edges e1, e2, · · · , en, the associated curvature is given by

hf = g
εfe1
e1 g

εfe2
e2 · · · g

εfen
en , (2.20)

as depicted in figure 5a. These properties of the weight wf guarantee that the partition function
is invariant under gauge transformations ge → gs(e)geg

−1
t(e). As before, s(e) denotes the source

vertex of the edge e while t(e) denotes its target vertex.
The partition function (2.19) describes standard lattice gauge theories. The weights can for

instance be chosen to emulate the Wilson action

wf (h) = exp(−SW (h)) , SW =
1

2α
(χρ(h) + χρ(h

−1)) , (2.21)

where α is a coupling constant. For the choice wf (hf ) = δG(hf ), with δG the delta function
over the group defined as before, the partition function only sums over (locally) flat holonomies.

10



This is a discretization of BF theory, which is a topological field theory (without propagating
degrees of freedom). It coincides with the zero temperature fixed point or zero coupling fixed
point of lattice gauge theories of Yang Mills type.

In order to obtain a representation of the partition function (2.19) as a sum over represen-
tation labels (spin foam representation), we again apply the group Fourier transform. Here we
only need to decompose class functions into characters

w(g) =
∑
ρ

w̃ρ χρ(g), w̃ρ =
1

|G|
∑
g

w(g)χρ∗(g) . (2.22)

To decompose wf (hf ) = wf (g
εfe1
e1 g

εfe2
e2 · · · g

εfen
en ) we use the properties

χρ(gh) =
∑
ab

ρ(g)abρ(h)ba, ρ(g−1)ab = ρ∗(g)ba. (2.23)

We introduce this decomposition in equation (2.19) and individually carry out the sums over
the group elements (note that given an edge e, the groups elements ge and g−1e appear in

∏
f wf

as many times as number of faces share the edge e). We obtain the following expression for the
partition function

Z =
∑
{ρf}

(∏
f

w̃ρf
) dimρf∑
{afv=1}v⊂f

∏
e

P̃ e
af

+
s ,...,af

−
s ,...;af

+

t ,...,af
−
t ,...

({ρf}f⊃e), (2.24)

where, associated to every edge, we have defined the projector

P̃ e
af

+
s ,...,af

−
s ,...;af

+

t ,...,af
−
t ,...

({ρf}f⊃e) :=
1

|G|
∑
ge

∏
f+⊃e

ρf+(ge)
af

+
s af

+

t

∏
f−⊃e

ρ∗f−(ge)
af
−
t af

−
s
. (2.25)

In the above tensor, the first and third groups of indices (distinguished by the superindex f+)
involve all the faces that have e in their boundary with the same orientation as the face. These
groups of indices have therefore as many indices as number of faces with εfe = 1. In turn, the
second and fourth groups of indices (distinguished by the superindex f−) have as many indices

as number of faces f with εfe = −1. We show an example in figure 5b. To every pair face–edge
two indices are associated, afs and aft , that we attach to the vertices of f that bound the edge
e, namely s(e) and t(e). In equation (2.24), for every face f of the two-complex, there is a sum

for every vertex v belonging to that face. Note that every index afv appears twice, since there
are two edges meeting at the vertex v and bounding the face f . Then, the product over edge
projectors contracts all the indices.

Associated to every edge there is a Hilbert space He. Let us denote by f1, · · · fm the faces
attached to e. Then,

He := Vρf1 ⊗ Vρf2 ⊗ . . .⊗ Vρfm . (2.26)

Here, to keep the notation simple, we are assuming that εfe = 1 for all the faces5. The corre-
sponding tensor P̃ e defines an orthogonal projector onto the gauge–invariant subspace of the
edge-Hilbert space He

(P̃ eψ)a1a2···am := (P̃ e)a1a2···am; b1b2···bmψb1b2···bm (2.27)

5If there would be some face with opposite orientation to that of e, we would replace the corresponding vector
space Vρf for its dual V ∗ρf .
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for ψ ∈ He. Here, as for the spin net models, the projector (2.25) is the Haar-intertwiner. As
before, more general spin foam models are constructed by restricting the Haar intertwiner to
proper subspaces of the gauge invariant subspace of He.

For spin foam models one usually reorganizes the partition function (2.24) such that am-
plitudes can be associated to vertices. To this end, one decomposed the projectors P̃ e by
introducing an orthonormal basis ιek , k = 1, . . . ,m, for the invariant subspace of He. By ad-
justing the basis we can decompose any gauge invariant projector as (here m′ ≤ m and m′ = m
for the Haar intertwiner)

P̃ e =
m′∑
k=1

|ιek〉〈ιek |, P̃ ea1a2···am′ ; b1b2···bm′ =
m′∑
k=1

ιeka1a2···am′ ι
ek
b1b2···bm′

, (2.28)

so that the indices attached to t(e) are now carried by the intertwiners |ιe〉 and the indices
attached to s(e) are carried by the intertwiners 〈ιe|. According to the description above, we can
contract within every vertex the corresponding ιe obtaining vertex amlitudes Av(ρf , ιe), that
depend on the representations ρf and intertwiners ιe associated to the faces and edges that meet
at v. With this, the partition function can be written in terms of vertex amplitudes via

Z =
∑
ρf ιe

∏
f

w̃ρf
∏
v

Av(ρf , ιe). (2.29)

This is the usual description employed in spin foam models for quantum gravity.
As for the spin net models, we can also define a holonomy representation [65–67] for spin

foams using the inverse group Fourier transform. In case we are dealing with a non–trivial edge
projector (2.28), i.e. not the Haar intertwiner, the resulting holonomy representation will be
of the form of a generalized lattice gauge theory. That is, instead of only one group variable
associated to every edge we will have as many group variables attached to a given edge as there
are faces attached to this edge. Furthermore, there will not only be face weights wf but also
edge weights P e which result from the transformed edge projectors P̃ e.

Let us now consider the case of Abelian groups Zq. As for spin net models, the spin foam
representation simplifies since the irreducible representations are just one–dimensional and the
group Fourier transform is just given by the usual discrete Fourier transform. Namely, we obtain

Z =
∑
{kf}

∏
f

w̃kf
∏
e

δ(q)
(∑
f⊃e

εfekf
)

=
∑
{kf}

∏
f

w̃kf
∏
v

∏
e⊃v

δ(q)
(∑
f⊃e

εfekf
)
, (2.30)

where the q−periodic delta function δ(q)(·) enforces the Gauß constraints, now based on the edges
(instead on the vertices as for spin nets). In the last step we just splitted the delta functions over
every edge into two delta functions over every vertex, in order to define the vertex amplitudes
(which here are Av =

∏
e⊃v δ

(q)
(∑

f⊃e ε
f
ekf
)
).

In case the face weights are given by w̃kf = 1, which is the BF theory case, we obtain an
additional symmetry for the partition function (2.30), which as commented before is known as
translation symmetry. For spin foams the gauge parameters kc ∈ Zq are based on the 3–cells
of the lattice (here we assume that the 3–cells are well defined, for a regular hypercubic lattice
these would be the 3D cubes):

kf 7→ k′f = kf +
∑
c⊃f

εcfkc (2.31)
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Figure 6: Schematic definition of the tensor network for spin foams on a cubic lattice.

where εcf = +1 (= −1) if the orientations of the 3–cell c agrees (disagrees) with the one of the
2–cell f . As for the spin net models this translation symmetry does not change the validity of
the Gauß constraints appearing in the partition function (2.30). For the gravitational spin foam
models (in 3D) this type of gauge symmetry gives the diffeomorphism symmetry underlying
general relativiy [20, 31]. It hence has a special status and is indeed deeply intertwined with
triangulation or more generally discretization independence of the models [20–22, 25, 27].

For coarse graining we will consider the Abelian cutoff models with face weights coinciding
with the edge weights in spin net models (2.16). For the cutoff models the translation symmetry
will be broken as the weights are now no longer constant in kf . The motivating question will be
to see whether these models flow back to the BF phase, in which the translation symmetry is
restored.

Finally let us note that also spin foams can be represented in various ways as tensor networks.
One possibility would be to start with the representation (2.29) involving vertex amplitudes. To
obtain an algebraically similar form to the tensor network representation of spin net models one
would however keep the edge projectors P̃ e intact. To this end we associate the tensor T̃ e = P̃ e

to the midpoints of the edges of the lattice. The edges of the lattice carry a number of indices
which are all contracted with each other in the lattice vertices according to the description below
(2.25). Furthermore we have to take care of the face weights w̃ρf and the sum over representation

labels ρ. This can be achieved by introducing another type of tensor T̃ f = w̃, see figure 6. If we
work with a cubic lattice these tensors are four-valent carrying as indices representation labels:
(T̃ f )ρ1ρ2ρ3ρ4 = w̃ρ1δ(ρ1, ρ2, ρ3, ρ4). The second factor is equal to one if all representation labels
in the argument coincide and zero otherwise. This tensor is connected by auxiliary edges to the
four adjacent edge tensors T e ensuring that the sum over the representation labels involves the
same representation label for every face.

2.3 Relation between spin foam and spin net models

Here we want to comment on an interesting relationship between spin net and spin foam models.
Namely, one can understand spin nets as expectation values of (gauge symmetry breaking)
observables inserted into the spin foam partition functions. We will illustrate this only for the
simplest case: the spin foam represents BF theory and the spin net is of the form (2.1), i.e. the
vertex projector is given by the Haar intertwiner.
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Indeed, the partition function (2.1) can be rewritten in the form

Z =
1

|G|]e
∑
{ge}

∏
e

we(ge)
1

|G|]v
∑
{gv}

∏
e

δG(g−1e gs(e)g
−1
t(e))

∝ 1

|G|]e
∑
{ge}

∏
e

we(ge)
∏
f

δG(hf ), (2.32)

where f runs over a set of faces whose boundary edges and vertices generate the initial graph
over which the spin net model is defined. Moreover, the two-complex made up by this set of
faces must be simply connected for equation (2.32) to be valid (otherwise we have to amend
the condition that holonomies along non–contractible loops should be trivial). The constant
of propotionality comes from the normalization of the delta functions and can be absorbed by
a redefinition of the weights we(ge) in the second line. The second line of equation (2.32) is
the result of introducing the product of edge weights we(ge) in the partition function for BF
theory (wf = δG) on a simply connected two-complex. Similar observables have been considered
in the context of 3D quantum gravity, namely for the Ponzano-Regge model [81, 82] and have
been interpreted as Feynman diagram evaluations. That is, the edge-weights we(ge) can be
understood as propagators and the spin net model as a Feynman diagram evaluation.

3 Coarse graining methods

Having introduced the models of interest in the previous section, we now turn to the challenge of
implementing a coarse graining procedure. In this section, we will outline our general approach
and discuss the conceptual issues that arise. The application of two approximation schemes in
our context will then be discussed in the following sections.

Although gravitational spin foams are usually defined on a general triangulation or two–
complex we will here consider coarse graining on a regular lattice. This allows us to actually
make explicit computations and to use methods from lattice gauge theory and condensed matter
systems. One might object that using a regular lattice will introduce a background structure,
spoiling background independence. There are, however, indications [25, 27, 83] that a restoration
of diffeomorphism symmetry will be connected with a notion of triangulation or discretization
independence, and hence the choice of a particular underlying lattice may not matter. Indeed,
the universality phenomenon of statistical systems also suggests that the details of the chosen
lattice might not matter for the questions we are interested in, i.e. a characterization of the
possible phases of the models, or whether spin foams can avoid degenerate phases. Nevertheless
one should study whether the results depend on the choice of lattice.

The development of a scheme where order parameters or coupling strengths might be locally
varying is another conceptual challenge [49, 50], which we will not address here. This would be
appropriate for a random lattice or for situations with a very inhomogeneous dynamics. Again,
we think that developing feasible coarse graining methods for spin foams and nets on a regular
lattice is an indispensable first step.

Furthermore, for gravitational systems, a regular underlying lattice can nevertheless repre-
sent very inhomogeneous or irregular geometries. This is due to the fact that the dynamical
variables are the geometrical data which also determine the lattice geometry and moreover the
physical scale. In this sense a very fine lattice can carry very different (coarser) geometries
[20, 84].6 This opens up the possibility that refining in lattice quantum gravity is even equiva-
lent to summing over (a class of coarser) lattices [84], thus eventually leading to a discretization

6See also the universality result [85], which implies the simulation of irregular sublattices based on a regular
underlying lattice.
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independent theory at the fixed point [25, 27, 83]. Indeed, systems with diffeomorphism (like)
symmetry might add interesting new insights to the theory of phase transitions.

Another issue, which has to be addressed for any coarse graining or renormalization scheme,
is which space of models one considers the renormalization flow to take place in [51]. Indeed,
this question is not quite obvious for spin foam or spin net models as, for instance, spin net
models mix aspects of edge models, where couplings are along edges, with vertex models, where
couplings are based at the vertices. type of degrees of freedoms couple in a certain way might
not be available for the non–trivial models.

Furthermore, spin foam models are constructed to be as independent as possible from the
underlying discretization. This translates into certain invariance properties of the amplitudes
under a certain class of subdivisions, those which effect edges or plaquettes, but do not lead to
an increase in the number of (non–trivial) vertices [70, 71, 86, 87]. Spin foam models, which
are constructed using trivial face weights but non-trivial projectors, will satisfy this invariance.
Invariance under this subclass of subdivisions can be seen as a first step towards a discretization
independent model. One might ask whether it is possible to come up with a renormalization
scheme in which this form of the spin foam amplitudes and the invariance properties under face
and edge subdivisions is preserved, see also [67]. However, this seems not to be very likely, as long
as the amplitudes are not invariant under all kinds of subdivisions and hence renormalization
flow is trivial or at a fixed point. An intuitive reason is that the faces and edges of a coarse
grained spin foam are ‘effective’ building blocks, containing a huge number of bare vertices,
edges or plaquettes. That is, a change of the effective triangulation, even if it only involves a
subdivision of edges and faces, will correspond to a more complicated change of the underlying
‘bare’ triangulation. Indeed, we will find that under the renormalization schemes presented here,
the invariance property under edge and face subdivisions is not preserved.

A general problem with real space renormalization schemes of (higher than one–dimensional)
statistical models is that an increasing number of non–local couplings appear with each blocking
step.7 To keep the renormalization flow in a space with a finite number of parameters, some
sort of truncation or approximations scheme has to be used. We will consider two such schemes.
The first one, the Migdal-Kadanoff [59, 60] scheme, is based on a truncation to local couplings.
The derivation of this scheme is based on arguments that rely on the standard form of edge
and plaquette models. Here an important question for future work would be to generalize this
scheme to proper spin foam or spin net models, which constitute a rather generalized form of
these models.

Whereas the Migdal-Kadanoff scheme is based on a blocking of the group variables, the
second scheme, based on tensor network renormalization, is blocking the degrees of freedom
encoded in the representation labels. This might be an advantage as the representation labels
are related to metric degrees of freedom in the geometric spin foam models. Hence, this kind
of blocking is much closer to the blocking used in the gravitation models in [25, 26], which is
derived by geometrical arguments. Moreover we will see that this scheme allows direct access to
the behavior of the vertex and edge projectors and makes use of the properties of representation
theory encoded in the models.

The tensor network renormalization can, however, also be applied in the holonomy repre-
sentation of the spin foam and spin net models, see also [90]. Which scheme to use might
depend on which region one aims to explore, the high temperature (where the spin net/ spin
foam representation is more appropriate) or the low temperature region (where the holonomy

7Indeed, such non–local couplings are essential to regain diffeomorphism [26] or Lorentz symmetry [88, 89].
This at least applies to models with genuine field degrees of freedom, i.e. 4D gravity, but not for 3D gravity, which
is a so–called topological field theory. Nevertheless, 3D gravity (which can be described by BF theory, that is
the low temperature fixed point of lattice gauge theories) is an important test case for which the restoration of
symmetries can be studied in a simpler setting.
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representation might be more useful). Indeed, tensor networks are an extremely general tool,
in which it is also possible to consider the emergence of different kinds of effective degrees of
freedom, long range order as well as topological phases [91]. Another advantage is that tensor
networks can handle non–positive weights [90]. This is an important point for gravitational spin
foams where oscillating amplitudes appear, preventing the use of Monte Carlo simulations.

The issue of non–local couplings in this renormalization scheme appears in the form of
having more and more degrees of freedom. One has to choose a cutoff for this number. The
advantage as compared to the Midgdal Kadanoff scheme is that the accuracy of this scheme can
be systematically improved by increasing this cutoff. Furthermore, it is possible to study the
dependence of the results on the choice of cutoff.

On the other hand the tensor network renormalization scheme requires much more effort than
the Migdal-Kadanoff scheme and offers less analytical control. This is of course related to the
much bigger parameter space one is considering in the case of tensor networks. A crucial question
for future research is how feasible the tensor network scheme will be for higher dimensional
systems, as most work performed so far is for one and two–dimensional systems. Our application
of the tensor network renormalization method is also restricted to two–dimensional spin net
models.

4 The Migdal–Kadanoff approximation

Migdal-Kadanoff (MK) approximations are a simple tool to overcome a key difficulty in real-
space renormalization: the introduction of non-local couplings in the renormalized action (which
in the statistical physics language is the Hamiltonian) with each coarse graining step.

When coarse graining the one-dimensional Ising model with nearest-neighbour interactions
by decimation, the state sum factorizes. Integrating out the chosen spins gives a renormalized
Hamiltonian of the same form as the one we had started with [60]. However, this no longer
happens in higher dimensions: generically, the renormalized Hamiltonians feature new, longer-
ranged interaction terms that render it impossible to continue with the procedure [59]. The
central idea behind the MK approximation is to substitute this renormalized Hamiltonian by an
approximate Hamiltonian which features the same interaction terms as the original Hamiltonian,
thus making the renormalization transformation form-invariant.

The original proposal [59] of Migdal amounts to neglecting certain terms in the state sum,
while strengthening others. Applied to the two-dimensional Ising model, this translates to
moving bonds (couplings along the edges) away from those nodes which are to be eliminated by
decimation. In this way the valency of those particular nodes is reduced to two and the situation
is thereby effectively reduced to the one-dimensional case (see figure 7).

Kadanoff subsequently identified bond-moving as a special case of a general approximation
scheme for which he derived a bound on the free energy [60]. Further justification for this
approximation is derived from Monte Carlo simulations [52, 53]. In practice, MK approximations
do fairly well at finding fixed points and phase transitions and not so well at determining the
order of these transitions [54]. However, specific fixed points of Kosterlitz-Thouless type might
not be reproduced by this approximation [92]. MK approximations are computationally efficient
and comparably easy to implement but not refineable in a systematic way.

4.1 Migdal-Kadanoff relations explored

Let as consider a model of spin net type

Z ∼
∑
{ge}

∏
e

w(ge) (4.1)
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(a) isotropic decimation (b) anisotropic decimation

Figure 7: Derivations of MK relations for 2d spin net models involve moving bonds and sub-
sequent integrations. The isotropic procedure leads to exponents γ = 1, λ = 2, whereas in
the anisotropic case this is only true for the couplings in the vertical direction – the horizontal
couplings feature γ = 2, λ = 1.

based on the Abelian group Zq. Bond–moving then involves dropping some of the terms in (4.1)
and replacing some of the others with

w(ge′)→ w2(ge′) =
∑
k

∑
j

w̃(k − j)w̃(j)

χk(ge′) (4.2)

leading to convolution of Fourier coefficients, the main feature of MK approximations. The
subset of group variables corresponding to dropped terms can then be integrated out without
generating non–local couplings.

One can proceed similarly for lattice gauge theories or plaquette models of the form (2.19).
For both kind of models different versions of bond–moving and different decimation schemes can
be defined. In particular, in anisotropic methods the renormalized couplings will be different
in different lattice directions, while in simpler isotropic methods the couplings will remain ho-
mogeneous (see figure 7). We will only consider the isotropic methods here, which can also be
made exact on so–called hierarchical lattices [93].

For the normalized weights Q(k) := w̃(k)/w̃(0) this results in general recursion relations of
the form [92]

Qn+1(k) =

(∑q−1
j=0Q

γ
n(k − j)Qγn(j)∑q−1

j=0Q
γ
n(−j)Qγn(j)

)λ
. (4.3)

Here, γ and λ are constants specific to the model and derivation in question. However, models
with fixed γ · λ are qualitatively equivalent and share the same fixed point structure in the
following sense: Two instances of (4.3), with exponents γ, λ; γ̃, λ̃ resp. and γ · λ = γ̃ · λ̃ are
related by

Qn(k) = [Q̃n(k)]λ/λ̃ (4.4)

given initial configurations that satisfy

Q̃0(k) = [Q0(k)]γ/γ̃ . (4.5)

Typical values for the exponents are γ = 1 and λ = 2 for ‘isotropic’ 2D spin net and 4D lattice
gauge models and γ = 1 and λ = 4 ‘isotropic’ 3d lattice gauge theories. The corresponding fixed
point equations are given by

Q(k)

q−1∑
j=0

Qγ(−j)Qγ(j)

λ

−

q−1∑
j=0

Qγ(k − j)Qγ(j)

λ

= 0. (4.6)
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(a) λ = 2, spin net 2D (b) λ = 4, spin foam 3D

Figure 8: Parameter space of Z4 symmetric models and their renormalization flow. The three
regions correspond to configurations flowing to HTF (0, 0), LTF / BF (1, 1) and the ‘cyclic fixed
point’ (0, 1). Other unstable fixed points (dots) and invariant submanifolds (thick lines) are also
depicted. Note the differing behaviour of the cutoff-model (square) at (1, 0) in both cases.

The high and low temperature fixed points ( Q(0) = 1, Q(k > 0) = 0 and Q(k) = 1∀k, resp.)
are common solutions of eq. (4.6), independently of the exponents. Furthermore, for some fixed
factor d of q, there is a class of fixed points given by

Q(k) =

{
1 k mod d = 0

0 else
(4.7)

which derive this property from being invariant under d-fold cyclic permutations.
More generally, for a fixed factor d of q, (symmetric and normalized) configurations with

Q(k) = 0 for k mod d 6= 0 and those given by

Q(k) =

{
1 k mod d = 0

α else
(4.8)

form invariant submanifolds of the parameter space. There are also more nontrivial fixed points,
including the higher dimensional analogue of the Ising fixed point on the one-dimensional invari-
ant line connecting the low and high temperature fixed points. For Z2, this point is predicted
to be a nontrivial solution of

Q(1 +Q2γ)λ − (2Qγ)λ = 0. (4.9)

In the 2D standard Ising model case (with exponents γ = 1, λ = 2) the solution is given by Q =
w̃1/w̃0 = 0.296 which corresponds via kT = Artanh(Q)−1 to a temperature of kT = 3.282 (the
exact solution is given by kTc = 2/ log(1+

√
2) ≈ 2.269 [94]). Also note that MK approximations

only predict this Ising-type fixed point for exponents with γ · λ > 1. Figure 8 illustrates the
afore-mentioned features for 2D spin net and 3D spin foam models with group Z4.

4.2 Restoration of BF symmetry in Abelian cutoff models

Cutoff models are certain initial configurations for the MK renormalization group flow which
are of particular interest to quantum gravity because they are derived from BF theory. The
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question of interest here is whether the topological nature of BF theory, which is destroyed
in the construction of the cutoff models, will be restored under the renormalization group flow.
With a possible restoration of the BF phase, also the translation symmetries (2.14)-(2.31) would
be restored, which in the 3D gravity models correspond to diffeomorphism symmetry. Whereas
the BF phase —or low temperature fixed point (LTF)— in a 3D gravity setting represents flat
space time, the high temperature fixed point (HTF), at which Q(0) is equal to unity and vanishes
for all other labels k, corresponds to a geometrically degenerate phase, in which all geometric
(length) observables have vanishing expectation value. However, whether the models flow back
to BF or not depends very much on the initial configuration in question. Instead of focussing on
one model with one specific group, we here address the differences between different models for
finite Abelian groups Zq with varying q, leaving other (non-Abelian) groups for further research.

Let us first consider the case of 3D lattice gauge theory / spin foam models over Zq for varying
q where the exponents in (4.3) are given by γ = 1, λ = 4. Here, different initial configurations
parametrized by q and K converge quite fast (after 5 to 10 iterations) either to the HTF or to
LTF, see figure 9b. In general, there are two competing effects encoded in the recursion relations
(4.3): the convolution leads to a broadening of the function Q(k), whereas the exponents γ and
λ lead to a dampening effect (as the Q(k) ≤ 1).

For the 3D gauge models most configurations flow to the HTF, that is the dampening factor
is quite strong. Regarding the question of restoration of the translation symmetries we see
that this happens only in cases where the initial configuration is already quite close to the BF
configuration, which coincides with the LTF.

These observations are in accordance with similar, but analytical work done in the generalized
case of U(1) [92]. There it is found that for 3D U(1) gauge models all configurations satisfying
certain conditions8 flow to the HTF.

These results have been extended to 3D lattice gauge models with non–Abelian compact
groups U(N) and SU(N) by [95]. Hence this applies also to the 3D gravitational (Ponzano–
Regge) model, which is based on SU(2) (assuming a change from a lattice based on tetrahedra
to a cubic lattice does not matter) and we have to conclude that within the Migdal-Kadanoff
approximation translation symmetry / diffeomorphism symmetry is not restored. Note, however,
that for finite groups (i.e. finite q), there are some (even) cutoff configurations that do flow back
to the LTF or BF phase. Here we might draw the conclusion that it is easier to restore a
compact symmetry as compared to a non–compact one, as the translation symmetry is based
on a compact parameter space for Zq and on a non–compact one for proper Lie groups. Here
it would be interesting to see whether for some analogous modifications of the Tuarev–Viro
models [33], which describe 3D quantum gravity with a cosmological constant and are based
on quantum groups, such a restoration of the (here compact) translation symmetries occurs.
See also a discussion of related issues in loop quantum gravity quantization of 3D gravity with
a cosmological constant [34, 35] and a classical coarse graining treatment of the same system,
where diffeomorphsim symmetry can be restored [25]. To study this question for the Tuarev–
Viro models one would have to adjust the Migdal-Kadanoff method to quantum groups or to
apply alternative renormalization schemes, such as the tensor network scheme described in the
next section.

For 4D ‘isotropic’ lattice gauge models, or equivalently for 2D spin net or edge models,
the exponents in (4.3) are given by γ = 1, λ = 2. Hence the dampening effect is much less
pronounced than for the 3D gauge models. Indeed, now most configurations flow back to the
LTF or BF phase, see figure 9a. An exception are the K = 1, q ≥ 8 configurations which flow

8 These include a positivity requirement on the weight functions both in representation space and group
space which is not satisfied for our cutoff models. However it would be satisfied for instance for a heat kernel
regularization of for instance the Ponzano–Regge model. This would show that with the Migdal-Kadanoff method
these regulated models would not flow back to the Ponzano–Regge model, but to the high temperature fixed point.
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(a) spin net, λ = 2 (b) spin foam, λ = 4

Figure 9: Flow behaviour of different cutoff models, labelled by K and q. Markers half-filled
at the top flow to BF/LTF (diagonal models, K = q/2), markers half-filled at the bottom flow
to HTF (horizontal modesl with K = 0). In (a), unstable fixed points appear (pentagonal and
hexagonal markers).

to HTF, however only after a considerably large number of iterations (around 60). Nevertheless
this can be interpreted as a phase boundary in the q −K diagram.

For a given cutoff K > 1 the number of iterations necessary to converge to the LTF grows
with q. (For K = 2 these are 8, 15, 60 iterations for q = 8, 10, 12 respectively). Moreover, for
sufficiently large q, the simulations go through a long phase of only very small changes of the
order 10−5 − 10−4, so that the iterations are almost constant. For K = 2 this appears starting
with q ≥ 14. For instance from around iteration 10 to iteration 100 the following configurations
appear for the q = 14 simulation

Q = (1, 0.81, 0.43, 0.15, 0.03, 0.005, 0.0005/6, 0.0001, 0.0005/6, 0.005, 0.03, 0.15, 0.43, 0.81) (4.10)

and would be stable at least up to the number of digits displayed in (4.10). This configuration
converges after 970 iterations to the low temperature fixed point.9 Note however that this
number of iterations corresponds to an extremely large lattice (in lattice units).

This type of behavior is typical for fixed points with unstable directions but could also occur
for quasi fixed points. To differentiate between these two cases, we considered a one–parameter
deformation of the q = 14,K = 2 model, for which we changed the Q(1) = Q(2) = Q(12) =
Q(13) values from unity to an arbitrary parameter 0 < x < 1. Indeed, there is a phase boundary
for x ∼ 0.365 which leads to a non–trivial fixed point (we give only the first two non-vanishing
digits)

Q = (1, 0.72, 0.28, 0.057, 0.0062, 0.00035, 0.000011, 0.00000070, 0.000011, 0.00035, 0.0062, 0.057, 0.28, 0.72). (4.11)

This fixed point is considerably different from the configuration (4.10) and also the initial con-
figurations parameterized through x = 1 and x = 0.365 are quite different. Hence we see that
a rather large portion of parameter space is dominated by the unstable fixed point. To obtain
convergence to either LTF and HTF extremely large iteration numbers are necessary. In other

9For higher q this convergence requires much more iterations, more than 36000 for q = 16. But the values
(4.10) appearing through the stable phase would be very similar in the q = 14, q = 16 simulations. Indeed as will
be explained in section 5 these two configurations can be considered to encode the same physical model.
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words, the phase transition between LTF and HTF is very weak and the phase boundary not
very pronounced.

Indeed, in two–dimensional systems and in the limit of a continuous symmetry group, such as
U(1), one cannot expect the usual type of second order phase transition between the symmetry
breaking phase (which here would be LTF) and the disordered phase (HTF). This is explained
by the Mermin–Wagner (Coleman) theorem stating that continous symmetries cannot be spon-
taneously broken at finite temperature [96–98]. Nevertheless, there are two phases, both in the
two–dimensional system with global U(1) symmetry [99, 100] connected by a Kosterlitz-Thouless
transition [101] and in the four–dimensional gauge system [102, 103]. This is a phase transition
of infinite order. However, for the (isotropic) MK relations it was proven by Ito (again under
certain assumptions on the initial configurations, including positivity of weights both in group
and Fourier space), that this phase transition is not detected [92]. But also here extremely
slow convergence (of all configurations towards HTF) has to be expected due to the existence of
quasi fixed points. Our findings are explained by these considerations (although we use initial
configurations not satisfying Ito’s assumptions), that is by going to larger q we have to expect
weaker and weaker phase transitions. Furthermore, the Ising type fixed point on the invariant
line between LTF and HTF is drawn continuously towards HTF, indicating the absence of the
transition in the limit of large q. For 4D lattice gauge theories with non–Abelian Lie groups
it is speculated [92] that the MK relations provide a better approximations than for Abelian
ones. The confinement conjecture states that in contrast to Abelian groups there is no phase
transition for systems with non–Abelian Lie groups [103].

5 The tensor network renormalization scheme

Here we will discuss a second coarse graining method and apply it to spin net models in 2D in
the spin net representation.

We have shown in section 2.1 that the spin net models can be easily brought into tensor
network form. For these a number of real space renormalization techniques have been developed
in recent years [61, 62, 104]. Moreover, tensor networks have became popular not only as a tool to
formulate partition functions for ‘classical statitistical models’ but also to provide a variational
ansatz for trial wave functions [73, 76, 105] for quantum statistical models. For a variational
ansatz one has to find the expectation value of the Hamitonian with respect to the trial wave
functions. The computational techniques [105] are similar to the tensor network renormalization
group techniques.

This is another point that motivates us to consider renormalization of spin net models,
as structures very similar to spin nets, the so-called spin networks, appear in the canonical or
Hilbert space formulation of spin foam models. Hence the renormalization techniques considered
here could also be useful to find e.g. the physical wave function (ground state) via a variational
ansatz. Indeed, the tensor network ansatz has also been developed to describe topological phases
[62, 105], which often are represented by the so-called physical wave functions of BF–theories,
which are the starting point of spin foam quantization. Moreover, as we have also seen in
section 2.1, tensor networks and spin networks are naturally related [74, 78]. More generally,
tensor networks are a general tool for graphical calculus [78, 79], which becomes especially
powerful for representation theoretic models such as spin foams and spin nets [77, 80].

The starting point of the tensor network renormalization (TNR) method is to write the
partition function of a given model as a contraction of tensors associated to vertices of a graph
(or lattice)

Z =
∑

a,b,c,d...

T abcdT aefgT bhij · · · . (5.1)
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The contraction of indices is along the edges of the graph, that is every edge of the graph carries
one index. As these are summed over we can interpret the indices as the variables or degrees of
freedom of the model. The dynamics is encoded in the choice of tensor.

The tensor network itself, that is its underlying graph, can also be interpreted as a lattice in
space or space–time. Choosing appropriate subsets of tensors and contracting all tensors inside
each subset according to the connectivity given by the network will result in a network with
fewer vertices and edges. Hence, this procedure corresponds to the blocking procedure in real
space renormalization. Each subset results in a new ‘effective’ tensor T ′ describing an effective
model. Notice, however, that in the two and higher dimensional case the effective tensors T ′

generically10 carry more indices than the original tensors T . For a regular lattice the number of
indices associated to the effective tensors T ′ grows with the number of iteration steps. For the
underlying graph it means that the valency of the effective vertices will grow – mostly in the
form of having multiple edges between pairs of vertices. These multiple edges can be summarized
into effective edges, which then carry indices with an exponentially growing range.

Here is where one has to choose an approximation such that the indices run over a pre-
chosen maximum number of values Dc. By increasing Dc the approximation can be improved
systematically. Ideally, this approximation should pick out only the relevant physics and neglect
the irrelevant short distance fluctuations. The details of how this selection is implemented
depend on the scheme, here we will follow a refined version of [61, 62].

The TNR method is very general as many different models can be written in tensor network
form. That is in principle one can also flow between different models based on different kind
of variables. models we obtain the same initial tensor network models for which also follow
the same renormalization flow. On the other hand one loses a direct physical interpretation of
the ’blocking procedure’, i.e. how the effective/ blocked degrees of freedom are built up from
the microscopic ones. This information can be supplemented by studying expectation values
of (coarse grained) observables. Below we will introduce a method which allows to keep some
physical interpretation of the indices associated to the effective tensors. This is however specific
to the spin net/ spin foam representation, where the indices are group representation labels and
for the gravitational spin foam models carry geometric information, such as lengths and area
values. Hence we can argue that this method would correspond to blocking over these area
or lengths variables. Such a blocking procedure was also employed in [25, 26] for the classical
Regge model and has the advantage of a direct geometrical interpretation of the coarse graining
procedure.

Here we will consider the TNR method for a regular lattice but the principle is also applicable
to generic graphs arising for instance from random triangulations or Feynamn graphs. In this
case one needs, however, to find some suitable approximation scheme to prevent an exponentially
growing index range of the effective tensors.

5.1 Gauß constraint preserving TNR method

In this section we will shortly describe the TNR method following [61, 62] applied to 2D Abelian
spin net models. We will, however, introduce a technique to keep the Gauß constraints explicitly
valid throughout the renormalization process, see also [74, 75]. The reason for doing this is that
the Gauß constraints have an immediate geometrical information: In a given spin net (with
oriented edges) consider any region such that its boundary cuts only through edges. Then only
those configurations will contribute to the partition sum for which the sum of all ingoing indices
is equal (modulo q) to the sum of all outgoing indices. This means that the Gauß constraints
should also hold at the effective vertices, which arise from blocking all the vertices in certain

10An exception are hierarchical lattices [93].
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Figure 10: The square lattice with even (blue circles) and odd (green squares) vertices.

regions. We will first review the method for a general 2D tensor network model based on a square
lattice and afterwards specify to the case of spin net models and deal with the Gauß constraints.

Consider a 2D tensor network based on a square lattice, so that the tensors T abcd are of rank
four, see figure 10a. An obvious way to proceed would be to contract always four tensors along
a square and to define in this way a new effective tensor which would now carry four double
indices.

However, to find a suitable approximation, that is a method to keep the index range constant,
one proceeds differently. The first step is to decompose the tensors T into a product of two other
tensors S. This is performed in two different ways according to the partition of vertices into odd
and even ones. A vertex is even, respectively odd, if the sum of its lattice coordinates is even,
respectively odd.

For even vertices we decompose (see figure 10b)

T abcd =
∑
i

Sab,i1 Scd,i2 . (5.2)

Such a decomposition is always possible using a singular value decomposition (SVD) for the

d2 × d2 matrix Mab,cd
1 = T abcd. Here d gives the range of the indices a, b, . . .. This gives

Mab,cd
1 =

q2−1∑
i=0

Uab,i1 λi(V
†
1 )i,cd (5.3)

with positive singular values λi and unitary matrices U and V . We can then define Sab,i1 =√
λiU

ab,i
1 and Scd,i2 =

√
λi(V

†
1 )i,cd.

Similarly for the odd vertices we decompose (see figure 10b)

T abcd =
∑
i

Scb,i3 Sad,i4 (5.4)

where now one uses a SVD for the matrix M cb,ad
2 = T abcd.

In a second step we contract four of the tensors S along the indices of type a, b, . . . to obtain
the new tensor T ′ijkl, now with indices i, j, . . . (see figure 11a), and arranged along a square
lattice rotated by 45◦ (see figure 11b)

T ′
ijkl

=
∑
a,b,c,d

Sab,i2 Sac,j4 Sdc,k1 Sdb,l3 . (5.5)
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Figure 11: (a) Contraction of the four S tensor to the new T ′ tensor. (b) The coarse grained
lattice.

If we keep the range of i as in equation (5.3) the index range of the tensors T would grow
exponentially with the number of iterations. This is where the key approximation step comes
in, namely to consider only the Dc largest singular values in the decomposition (5.3). This
approximation is justified as the partition function is a trace over the tensors, thus involving the
sum over the singular values. The validity of the approximation can be checked by comparing
the values of the neglected singular values against the largest singular values in the SVD [61].
One can choose a rescaling after each iteration step such that this largest singular value is equal
to one. Implementing the cutoff Dc in the number of singular values in the decomposition (5.3)
we will obtain a flow in the space of tensors of rank four with a constant index range given by
Dc.

The SVD does not only serve as an approximation method but leads also to a field redefi-
nition. Here the field variables are given by the indices over which the tensors are contracted.
In the SVD these tensors are linearly transformed, which also induces a transformation on the
fields. The transformations aim at an efficient representation of the partition sum, i.e. involving
a minimal range of indices or equivalently minimal number or range of variables. The SVD is
not unique, in particular for degenerate singular values one can add rotation matrices acting on
the eigenspaces associated to the degenerate singular values. For the spin net models we will,
however, modify the method so that the kind of field redefinitions that can occur are restricted.
This is related to preserving the Gauß constraints throughout the renormalization process. It
also has the advantage that the indices keep their original physical interpretation, which for the
gravitational models are related to geometrical quantities.

Let us now specify to the Abelian spin net models in the spin net representation. Here it
is convenient to introduce an orientation for the edges: for the square lattice we will choose all
horizontal edges to point to the right and all vertical edges to point upwards. In this case the
initial tensor T is of the form (the indices are anti-clockwise cyclically ordered starting from the
leg pointing to the right, as in figure 10b)

T abcd = u(a)u(b)u(c)u(d) δ(q)(a+ b− c− d) (5.6)

where u(·) =
√
w̃(·) in the notation of (2.16) and a = 0, . . . , q− 1 for a model based on Zq. The

delta function factor signifies the Gauß constraints. Because of this factor the matrices M1 and
M2 can be brought into block diagonal form, namely for Mab,cd

1 we have the condition that

a+ b = c+ d =: i mod q (5.7)

for non-vanishing entries, whereas for M cb,ad
2 we have that

b− c = d− a =: j (5.8)
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Here the indices i, j label the non–vanishing blocks.
In the first iteration step the decomposition into the tensors S can be obtained exactly and

involves at most q non–vanishing singular values

Sab,i1 = u(a)u(b) δ(q)(a+ b− i) , Scd,i2 = u(c)u(d) δ(q)(c+ d− i) ,

Scb,j3 = u(c)u(b) δ(q)(b− c− j) , Sad,j4 = u(a)u(d) δ(q)(d− a− j) . (5.9)

We assume that Dc > q (or alternatively that Dc is bigger than the number of non–vanishing
u(a)), so that no approximation is necessary at the first iteration step. Note that at least
Dc = q is necessary to flow to the low temperature fixed point, where u(a) = 1 for a =
0, . . . , q − 1. (As one can check the corresponding tensor is a fixed point also for the tensor
network renormalization flow.)

The contraction of four tensors S along the four edges of the square would involve four sums.
Due to the (four) delta functions in the sum this, however, reduces to one summation. There
will be one delta function δ(q)(i+ j − k − l) left, which amounts to the Gauß constraint for the
effective tensor T ′ijkl:

T ′ijkl = δ(q)(i+ j − k − l)
∑
c

u2(c)u2(i− c)u2(j + c)u2(k − j − c) . (5.10)

This new tensor will in general not be of the factorizing form (5.6) anymore, so generically
the decomposition into tensors S will now involve q2 non–vanishing singular values. That is in
case Dc < q2, the approximation sets in. Nevertheless, the block diagonal form of all tensors
and matrices involved can be kept through the following iterations.

At a general iteration step we will work with a tensor T abcd with double indices a = (ja,ma)
where ja = 0, . . . q − 1. As will be explained below the range of ma depends on the SVD in the
previous iteration step. These tensors will satisfy the Gauß constraints

T (ja,ma)(jb,mb)(jc,mc)(jd,md) ∼ δ(q)(ja + jb − jc − jd) (5.11)

at all iteration steps.

Similarly as before we can define for the even vertices the matrixM
(ja,ma)(jb,mb),(jc,mc)(jd,md)
1 =

T (ja,ma)(jb,mb)(jc,mc)(jd,md). Due to the Gauß constraint (5.11) this matrix can be brought into
block diagonal form, as the non–vanishing entries must verify ja + jb = jc + jd =: i. We will
denote these blocks by M1(i). Then the singular value decomposition can be applied on the
single blocks M1(i) for i = 0, . . . , q − 1, so that

(M1(i))
(ja,ma)(jb,mb),(jc,mc)(jd,md) =

∑
mi

(U1(i))
(ja,ma)(jb,mb),(i,mi)λmi(V1(i)

†)(jc,mc)(jd,md),(i,mi) . (5.12)

This yields of course the same singular values as for the entire matrix. Apart from providing
a faster algorithm [74, 75], the numerical implementation leads also to more stable results for the
following reason. Generically one encounters the case of having singular values with multiplicities
higher than one. In this case the singular value decomposition is not unique as one can perform
rotations among the basis vectors associated to a given singular value. Here, keeping the block
structure explicit prevents a mixing between different blocks induced by these rotations.

To implement the approximation we now have to select the Dc largest singular values among
the singular values of each block. The number N1(i) of singular values selected from the block
i determines the range of the second index mi in the double index (i,mi). That is this number
N1(i) can take values between zero (no singular value selected) and Dc (all selected singular
values come from one and the same block). Note that for the first iteration step N1(i) = 1 (in
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case all the u(a) are non–vanishing). We define the S matrices by

S
(ja,ma)(jb,mb),(i,mi)
1 =

√
λmi(U1(i))

(ja,ma)(jb,mb),(i,mi) ,

S
(ja,ma)(jb,mb),(i,mi)
2 =

√
λmi(V1(i)

†)(jc,mc)(jd,md),(i,mi) . (5.13)

Note that we have i = ja + jb and i = jc + jd (mod q) for the non–vanishing entries of S1 and S2
respectively. For the matrices (M2(i))

(jc,mc)(jb,mb),(ja,ma)(jd,md) at the odd vertices we proceed

similarly, which will result in matrices S
(jc,mc)(jb,mb),(i,mi)
3 and S

(ja,ma)(jd,md),(i,mi)
4 . For the non–

vanishing entries of these matrices we have jb− jc = i and jd− ja = i (mod q) respectively. The
range of the indices mi is now determined by the number N2(i) of singular values selected from
the block i of the matrix M2.

The contraction of the four S–matrices along the square now results in a sum

T ′
(i,mi)(j,mj)(k,mk)(l,ml) =

∑
c

∑
mc,mi−c,mj+c,mk−j−c

S
(c,mc)(i−c,mi−c),(i,mi)
2 S

(c,mc)(j+c,mj+c),(j,mj)
4

S
(k−j−c,mk−j−c)(j+c,mj+c),(k,mk)
1 S

(k−j−c,mk−j−c)(i−c,mi−c),(l,ml)
3

∼ δ(q)(i+ j − k − l) . (5.14)

Here the range of mc,mk−j−c is determined by N1(c), N1(k− j − c) from the previous iteration
step whereas mi−c,mj+c is determined by N2(i−c), N2(j+c) respectively, also from the previous
iteration step. Accordingly, the range of mi,mk is determined by N1(i), N1(k) of the iteration
step under consideration (that is by the last SVD) and mj ,ml by N2(j), N2(l) respectively.

This altered algorithm has not only the advantage of keeping the Gauß constraint explicit
but is also keeping any physical interpretation that might be attached to the representation
labels / indices ja. For the gravitational spin foam models these would carry information on
lengths and area variables – and the procedure here would correspond to a blocking where the
microscopic geometrical variables are basically added to obtain the coarse grained variables.
The Gauß constraints arise because of reasons rooted in representation theory: namely that
for Abelian groups the tensor product of representations k and k′ leads to a representation
k + k′. Indeed the tensors T and S can just be seen as intertwining maps between (tensor
products of) representation spaces, and the first index ja of the double index (ja,ma) encodes
the representation carried by the associated edge.

The same arguments based on representation theory apply for the non–Abelian spin net
models. Also there the tensors T and S are intertwining maps between representation spaces
leading to matrices of block diagonal form. For the abstract spin net models the initial tensor
T is basically determined by the choice of projector P̃ v in (2.9), which restricts the intertwining
map from one of maximal rank to one of some smaller rank. Here it will be interesting to study
whether any of the projector properties are preserved under coarse graining.

Tensor network methods thus have the potential to give direct insight in the behavior of the
projectors P̃ v under coarse graining, which are the key dynamical entities in spin foam models.
Moreover, the kind of coarse graining in the spin net or spin foam representation uses the
representation theory underlying these models and furthermore corresponds to a geometrically
natural coarse graining.

5.2 Equivalence of models

A crucial point in every renormalization method is the question which space of models one is
considering, that is in which space the renormalization flow is taking place. Often the coarse
graining process leads to models outside this space and usually some approximation method is
employed to project the models back into the chosen space. For instance, in the Migdal-Kadanoff
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approach one considers models with local interactions, that is non-local terms have either to be
neglected or replaced by appropriately chosen local interaction terms. In particular for a Zq
gauge model with local (single plaquette) interactions one always stays in the form of the Zq
gauge model (with single plaquette interactions).

In contrast the space of models in the TNR method is defined by the chosen cutoff Dc on the
index range of the tensors T . Hence different models, for instance spin net models with different
Zq groups, can be considered in the same space. Indeed, for certain initial conditions the initial
tensors T abcd might actually define the same tensor network models.

Consider, for instance, the Abelian cutoff models for different (even) q but for the same
cutoff parameter K. That is we deal with the initial tensor (5.6) where

u(k) =

{
1, for |k| ≤ K
0, for |k| > K

(5.15)

with k running from −( q2 − 1) to q
2 (we consider even q).

As T abcd = u(a)u(b)u(c)u(d)δ(q)(a+b−c−d) the corresponding (symmetric) matrices Mab,cd
1

and M bc,ad
2 will have zero rows and columns if these include an index a with u(a) = 0. In the

SVD these rows/columns can just be neglected as it leads to a vanishing singular value. After
neglecting zero rows and columns in the matrices arising from different models, these matrices
might however coincide (with appropriate matching of indices) and in this sense define the same
TNW model.

Indeed, one can check that in the case of the models (5.15) this occurs for a fixed cutoff K
but for varying q as long as q ≥ 4K + 2. In this case the first singular value decomposition for
the matrices M1,M2 give for both matrices the same 4K + 1 non–vanishing singular values

λmax, λmax − 1, λmax − 1, λmax − 2, λmax − 2, . . . , 1, 1 , where λmax = 2K + 1 . (5.16)

As long as the cutoff in singular values Dc is chosen such that Dc ≥ 4K+1 the first decomposition
(5.2) of the T matrices into S matrices is exact.

In particular this means that Abelian spin net models with q ≥ 4K + 2 and fixed K but
different q should go through the same renormalization sequence and hence should also end in
the same fixed point. We will see in section 5.4 that this holds almost always in the numerical
simulations. There will however be also examples where the fixed points depend on q. In these
cases the simulations approach an unstable fixed point and the difference in the simulations
appear only for large iteration numbers (more than 100 iterations). Hence, the difference can
be explained by numerical instabilities and the fact that our method depends on the parameter
q in order to keep the block structure of the T matrices explicit: q defines the number of blocks
and hence the kind of possible field redefinitions which underly the method.

Disregarding this point the equivalence between models should also hold if we send q →∞,
that is consider U(1). In general, we see that the TNR method might also be applied to Lie
groups (which would lead to infinite dimensional matrices) as long as we consider initial data
such that the initial matrices reduce to finite dimensional ones due to either the appearance of
zero singular values, or singular values which are sufficiently small. This equivalence between
models appears only approximately in the Migdal–Kadanoff method, as there the number of
parameters on which the renormalization flow acts is fixed by q, or more generally the size of
the group, on which the model is based.

5.3 Structure of fixed points

In the Migdal-Kadanoff scheme we considered a renormalization flow within a space described
by q (or (q − 1) after normalization) parameters for spin nets based on the group Zq. We are
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much more flexible with the TNR method, where the number of parameters is determined by
the chosen cutoff Dc on the number of singular values. Hence there are potentially many more
fixed points. Indeed the fixed point structure is considerably more complicated, in particular for
Dc >> q, as we will exemplify below with the Ising model, q = 2. Note that (with the exception
of Dc = 2, which can be treated analytically) we will only discuss fixed points which we found as
a result of the renormalization process, i.e. by flowing to these fixed points. That is we will miss
most of the unstable fixed points, which are those with repellent directions and would require a
fine tuning of parameters to flow into.

The main feature of the TNR method – with the approximation based on the singular value
decomposition – is the appearance of non–isolated fixed points. These are argued [62, 104] to be
due to short scale degrees of freedom which are not averaged out by the approximation method
employed here. In [62] different forms of additional approximation steps (termed entanglement
filtering) are suggested, that apply once the flow reaches the non–isolated fixed points. We will
not consider these additional steps here and just describe the type of fixed point encountered
in the original TNR method. For future work one should, however, study this issue in more
detail. In particular, one could benefit from a detailed comparison between approximations of
Migdal-Kadanoff type and approximations based on the TNR method and furthermore from an
analysis of relevant and irrelevant directions for the linearized renormalization flow around this
kind of fixed points.

In the following we will describe the results of the TNR method for the Ising model in the
spin net representation (associated to the high temperature expansion) for the choice of different
cutoffs Dc, see also [62] for a treatment of the Ising model with the TNR method improved by
entanglement filtering.

The smallest cutoff which would also allow a representation of the low temperature fixed
point (LTF) u(0) = u(1) = 1 is Dc = 2. We start with configurations u(0) = 1, u(1) = x. For
x > 0.60858 these flow to the LTF represented by u(0) = u(1) = 1. Accordingly, the singular
values λi for this fixed point are λ0 = 1, λ = 1 with every block j = 0, 1 contributing one singular
value. (We normalize the tensors in every step such that the largest singular value is equal to
one.)

For 0 ≤ x < 0.60857 the configurations flow towards the high temperature fixed point
(HTF) represented by u(0) = 1, u(1) = 0. This corresponds to having only one non–vanishing
singular value λ0 = 1. The transition point at u(1) = 0.6085 corresponds to a phase transition
temperature of kTc ≈ 2.572. This is a better approximation to the exact result of kTc ≈ 2.269
than the isotropic Migdal-Kadanoff result of kTc = 3.282 in section 4.1.

In this case, Dc = 2, one can analytically compute the flow in some suitable parameters, for
instance the tensor components T abcd. This allows to find a further (unstable) fixed point, given

by the matrix Mab,cd
1 = T abcd (the numbering of the rows and columns is ab = 00, 11, 01, 10)

M1=


1 + s42 s21(1 + s22) 0 0

s21(1 + s22) 2s41 0 0
0 0 2s21s2 s21(1 + s22)
0 0 s21(1 + s22) 2s21s2

 ,with s1 = 0.592902, s2 = 0.43105. (5.17)

Note that the tensor describing this fixed point is no longer of the original form (5.6) as this
would require s2 = s21. Nevertheless it leads to the phase transition between the low and high
temperature regime.

Let us now turn to the case Dc = 4. In this case configurations with x > 0.6466 will still
flow to the LTF characterized by two non–vanishing singular values λ0 = λ1 = 1, one from every
block. For configurations with x < 0.6465 we encounter however a new type of non–isolated
fixed points, so–called Corner Double Line tensors [62, 104].
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Figure 12: Tensor with Corner Double Line structure

‘Double Line’ indicates that we have to deal with pairs A = (a, a′) of indices. The tensors
are defined by associating a matrix Cab to each corner of the four–valent vertex, see figure 12,

T (aa′)(bb′)(cc′)(dd′) = Ca
′bCb

′c′Ccd
′
Cda . (5.18)

Such tensors are fixed points of the renormalization flow (for Dc sufficiently large). The decom-
position (5.2) of such a tensor is determined by the singular value decomposition of Cab. Namely
if

Cab =
∑
I

ua,I ηI v
b,I (5.19)

we can write

T (aa′)(bb′)(cc′)(dd′) = Ca
′b

∑
I,I′

ub
′,Iud,I

′
ηIηI′v

c′,Iva,I
′

Ccd
′
. (5.20)

Hence if the SVD of Cab includes n non–vanishing singular values ηI , we will obtain n2 non–
vanishing singular values of the form ηIηI′ for the matrices obtained from T .

The fixed point we encounter in the high temperature region for Dc = 4 is of CDL type with
corner matrix

C =

(
1 0
0 y

)
. (5.21)

That is in the SVD for the matrices associated to the tensor T we encounter four non–vanishing
singular values λi = 1, y, y, y2. Here y ranges from zero and seems to get arbitrarily close to
1 for u(1) = x reaching the transition point at 0.6496562.... Note that here we encounter a
continuous fixed point family of ‘high temperature type’ ranging from having only one non–
vanishing singular value equal to one to having four non–vanishing singular values, with three
of these almost equal to one. If we take the transition between this fixed point family and the
LTF (with two non–vanishing singular values equal to one) as the phase transition we obtain
a critial temperature of kTc = 2.221. This again is a better approximation to the exact phase
transition temperature than the Dc = 2 result.

The appearance of these non–isolated fixed points is interpreted [62, 104] to be due to
short range entanglement, which is not filtered out by the renormalization flow. Hence certain
microscopic details of the models are remembered and the usual universality property of phase
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transitions does not apply. One can nevertheless argue that the correspondence between phases
and fixed points does hold: here models in a certain phase flow to a certain type of fixed points.
Indeed we will see that for Dc = 9 two different types of non–isolated fixed points appear,
representing the low and high temperature regime respectively. In [62] additional approximation
steps are suggested, designed to filter out this short range entanglement. We will leave the
investigation of these and other additional approximation steps for future work.

The appearance of the CDL type fixed points suggest that cutoffs Dc = n2 with n a natural
number, might lead to a fast convergence, as these accommodate the n2 non–vanishing singular
values of a CDL type fixed points. We therefore will also discuss the case Dc = 9. Here, both
the low temperature phase and the high temperature phase are described by non–isolated fixed
points. For the initial value u(1) = x ≤ 0.64293 we flow to fixed points, described by nine
non–vanishing singular values of the form

λi = 1, y, y, y2, z, z, yz, yz, z2 . (5.22)

(For x = 0.64293 we have y = 0.7588 and z = 0.4200.) This suggest a fixed point of CDL
form based on a 3× 3 matrix C with singular values ηI = 1, y, z. This family of fixed points is
continuously connected to the proper high temperature fixed point, where y = z = 0.

For u(1) = x ≥ 0.64295, that is in the low temperature phase, we also flow to a non–trivial
fixed point, this time characterized by eight non–vanishing singular values of type

λi = 1, 1, y, y, y, y, y2, y2 . (5.23)

(For x = 0.64295 we obtain y = 0.6434. For x→ 1 the parameter y approaches 0 and we obain
the proper low temperature fixed point.) Hence this tensor cannot be of CDL type. Indeed it
turns out that it is of the form

T = TCDL ⊗ TLTF (5.24)

where TCDL is a tensor based on the corner matrix (5.21) and TLTF is the tensor associated to
the low temperature fixed point, that is of the form (5.6) with u(0) = u(1) = 1. Therefore eight
non–vanishing singular values appear, as products of the four singular values λ = 1, y, y, y2 for
the CDL tensor and the two singular values λ′ = 1, 1 for the LTF tensor. The appearance of
this type of fixed point tensors of product form was conjectured in [62]. We will encounter more
fixed points of this form in the next subsection.

The transition between the high temperature family of fixed points and low temperature
family of fixed points corresponds to a critical temperature of kTc ≈ 2.274, which again approx-
imates the exact result kTc ≈ 2.269 better than the Dc = 4 result (kTc ≈ 2.221).

5.4 Analysis of Abelian cutoff models

We will now discuss the renormalization behavior of Abelian cutoff models to compare it to the
results obtained with the Migdal-Kadanoff method in section 4.2. We will consider the same
kind of configurations as in section 4.2, parametrized by the size of the group q and by the
cutoff11 K.

Now, as was pointed out in section 5.2 configurations with the same cutoff parameter K
but different q might encode the same tensor network model. To utilize this we will choose
the same cutoff Dc (Dc = 16, 25 and equal to 32 for some models) for different q, so that the
renormalization flow should also be the same in these cases. This is different from the MK
method, where the number of parameters always depends on q.

11Let us recall that K refers to the cutoff introduced in the space of group representations, that actually defines
the model, while Dc is the maximum number of singular values considered when approximating the SVD.
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(a) Dc = 16 (b) Dc = 25

Figure 13: Flow behaviour of different cutoff models, labelled by K and q, compare figure
9. Markers half-filled at the top flow to LTF/LTF×CDL (diagonal models, K = q/2), empty
hexagonal markers indicate a quasi fixed point or oscillating behaviour. Connected markers
illustrate equivalent models in the sense of section 5.2.

We have seen in section 4.2 that the MK renormalization flow for the 2D spin net models
was much more involved than for the 3D spin foam models: For sufficiently large groups Zq
configurations would undergo a behavior determined by unstable fixed points and rather weak
phase transitions leading to very long convergence times. Therefore we have to expect similar
properties to appear in the tensor network renormalization. Furthermore, as is usually the case
if configurations approach a region around phase transitions, the approximation implemented
by the cuttoff Dc might get less and less accurate. Indeed, the values of the neglected singular
values might become comparably large (of order 10−1 of the largest singular value, which will
always be normalized to one), even for the quite large cutoff Dc = 32. The TNR method,
however, offers the possibility to increase the cutoff and thereby study the influence of the cutoff
on the results obtained.

Another issue that appears during a number of simulations are configurations for which the
symmetry k → −k (equivalent to reversing all the edges) is broken. The reason for this is that
singular values usually appear with a two–fold degeneracy, namely one from a k–block, the other
from a (−k)–block. The singular values from the block with k = 0 and k = q/2 are an exception
to this rule. Also, quite often singular values appear with even higher degeneracy. Now, taking
only a fixed number of singular values into account, one will quite often dismiss one singular
value of a degeneracy pair and in this way break the edge reversing symmetry. As the number
of k = 0 singular values, which are taken into account by the cutoff is not known a priori, and
might even change during the iterations, it might be quite difficult to find a cutoff where this
issue does not appear.

In regions ‘near’ phase transitions, that is where convergence takes very long, these non-
symmetric modes typically lead to unstable, oscillating behavior. This also signifies that the
influence of the cutoff is not negligible. In the Migdal-Kadanoff method non-symmetric con-
figurations may only appear due to numerical inaccuracies and it is quite straightforward to
implement a symmetrization after each iteration step. A similar procedure for the TNR method
(which is however not as straightforward to implement as for the MK method) would probably
be very helpful to obtain more reliable results as well. Here we will interpret an oscillating
behavior over large iteration times as indicating the presence of an unstable or quasi fixed point.

We can broadly summarize the behavior we encountered in the simulations of the Abelian
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cutoff models into the following classes, wich we also illustrate in figure 13:

• The models flow quite fast (typically during 10 to 30 iterations) to the low temperature
fixed point or to a fixed point of type TLTF ⊗ TCDL as described in section 5.3. This
happens for cutoff models which are not independent of q. The low temperature fixed
points come with q non–vanishing singular values equal to unity. The more complicated
fixed points with CDL structure appear, in particular, for the higher cutoff Dc = 25.
The singular values associated to the CDL structures are however quite small (∼ 10−5

to 0.2), so that we can safely interpret these fixed points as of low temperature type. It
also happens that initially the configurations flow to a TLTF ⊗ TCDL fixed point with a
higher number of non–vanishing singular values than provided by the chosen cutoff. In
this case the configurations slowly keep changing such that the singular values associated
to the CDL structure decrease. With the exception of two models (K = 3, q = 12 and
K = 4, q = 16) such a behavior appearing in the Dc = 16 simulation would be confirmed
in the Dc = 25 treatment.

• An interesting special case is K = 1 and q ≥ 6 (which describes the same tensor network
model independent of q as long as q ≥ 6). For Dc = 16 the fixed point (reached after
about 60 iterations) is of the form TLTF ⊗ TCDL, but the TLTF factor comes with only
four singular values equal to unity. The CDL structure leads to 16 non–vanishing singular
values, where apart from the four singular values equal to one, the next eight ones are
equal to 0.86 and the final four equal to 0.73.

The Dc = 25 results are slightly different: due to the appearance of non-symmetric config-
urations as described above, the configurations are oscillating for more than 80 iterations.
Then the results do actually start to depend on q: for q = 6 a TLTF ⊗ TCDL fixed point
is reached with six singular values equal to one (so it is really a q = 6 low temperature
fixed point), 12 singular values equal to 0.81 and six equal to 0.655. Whereas for q = 8 a
fixed point is approached (around 200 iterations) with eight singular values equal to one,
another sixteen are around 0.3, plus eight singular values around 0.12. This gives more
than 25 non–vanishing singular values, so as described above the configuration is slowly
changing, decreasing the CDL singular values. Note however that due to the high iteration
numbers involved and the appearance of ‘non-symmetric’ configurations the results should
be taken with some care.

• For the Dc = 16 simulations there are two examples K = 2 and q = 10 or higher, and
K = 3 and q = 14 or higher, which show stable behavior and seem to approach a (non–
trivial) fixed point for long iteration times (approx. 20 iterations for K = 2 and approx.
100 iterations for K = 3). The change in the singular values during this approach can
get very small, with instances where the change in the singular values are of the order
10−7. There is a large number of non–vanishing singular values indicating a complex
(quasi/unstable) fixed point. After this stable phase configurations become unstable and
‘non-symmetric’ showing a slightly oscillating behavior (changes of the order 10−3 − 10−2

from one to the next iteration). For K = 3 the configurations converge to q–dependent
low temperature fixed points (at iterations 230 for q = 14 and 180 for q = 16), for K = 2
the behavior remains unstable for very long iteration times. This behavior is confirmed
for K = 2 with the Dc = 25 and Dc = 32 simulations (where now the stable phase
is up to 100 iterations). For K = 3, the DC = 25 and Dc = 32 simulations lead to
non-symmetric configurations which show oscillating behaviour for long iteration times.
However, the complicated structure of the largest q singular values agrees with the one of
the simulations with smaller cutoff.

32



Note that examples flowing to a high temperature fixed point do not appear. The best
candidate would be the K = 1 configurations (describing the same tensor network models
starting with q = 6 and larger q), which however flow for Dc = 16 to a fixed point with four
singular values equal to unity, plus more non–vanishing singular values due to the CDL structure.

In the following table we list the details of our findings and compare them with the results
obtained with the Migdal-Kadanoff method.

K q MK TNR Dc = 16 TNR Dc = 25

1 4 LT(05) LT(6)×CDL(7) LT(6)×CDL(>100)

1 6 LT(18) LT4(50)×CDL(53) Osc→LT6(42)×CDL(48)

1 8 HT(59) LT4(50)×CDL(53) Osc→LT8(98)×CDL(>100)

2 6 LT(04) LT(19)×NULL(53) LT(07)×CDL(26)

2 8 LT(07) LT(11)×NULL(14) LT(18)×CDL(19)

2 10 LT(14) QF(6)→Osc(13) QF(8)→Osc(53)

2 12 LT(59) QF(6)→Osc(13) QF(8)→Osc(53)

2 14 QF(3)→LT(969) QF(6)→Osc(13) QF(8)→Osc(53)

3 8 LT(003) LT(04)×NULL(06) LT(04)×CDL(05)

3 10 LT(005) LT(06)×NULL(09) LT(17)×NULL(38)

3 12 LT(008) LT(10)×NULL(13) Osc

3 14 LT(013) QF(18)→Osc(49)→LT14(115) Osc
3 16 LT(030) QF(18)→Osc(45)→LT16(093) Osc
3 18 LT(140) - Osc
3 20 QF(4)→LT(>1000) - Osc

4 10 LT(04) LT(4)×NULL(6) LT(07)×NULL(28)

4 12 LT(05) LT(6)×NULL(8) LT(08)×NULL(15)

4 14 LT(06) LT(7)×NULL(9) LT(10)×NULL(12)

4 16 LT(09) LT(9) Osc

4 18 LT(13) - Osc

Table 1: Summary of the renormalization flow of Abelian cutoff models. To a precision of 10−10,
the numbers in brackets give the iteration times (halfed for TNR to make comparable) it takes
to reach a certain behaviour: LT (low temperature fixed point, bold numbers denote the number
of ones that appear explicit), HT (high temperature fixed point), QF (quasi fixed point), Osc
(oscillating behaviour), CDL (corner double line), NULL (finite part that dies off). For a given
K and growing q, the fine line indicates the beginning of physically equivalent models in the
sense of section 5.2.

The overall picture of the Migdal Kadanoff results is confirmed by the tensor network sim-
ulations: Most configurations flow to the low temperature fixed point or to a low temperature
fixed point embellished with a CDL structure. With growing q, cutoff models with sufficiently
small K show long stable phases where a fixed point seems to be approached but then enter an
unstable phase with (slightly) oscillating behaviour. For some cases these converge finally to a
LTF fixed point, however this result has to be taken with some care, due to the oscillating phase
in which ‘non-symmetric’ configurations appear.

There is one important difference between the MK and the TNR results. As we explained
in section 5.2 examples with q ≥ 4K + 2 should encode the same physical models both exactly
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and in the approximation provided by choosing the cutoff Dc. This property is inherent in
the TNR method (and only appears to be violated for large iteration numbers due to the
oscillating behavior). But in the MK method the truncation is determined by q and hence the
renormalization flow is still different for q not much larger than qK := 4K + 2. For much larger
q the renormalization sequences will turn out to be almost the same, however this behavior sets
in later than in the TNR examples. Moreover from [92] we have to expect that going to q →∞
the configurations should flow to the high temperature fixed point.

This is the reason why the quasi fixed point behavior has to set in earlier for the TNR
method, as here the results starting with qK should in principle also hold in the limit q → ∞.
From this point of view it is interesting that we have not seen an example in the TNR method
(especially not K = 1, as opposed to the MK K = 1, q = 8 example) which would flow to the
high temperature fixed point. Hence the TNR method might be able to detect two different
phases for the U(1) theory.

As we have also seen definite conclusions are very much hindered by the appearance of non-
symmetric configurations, i.e. where the k– blocks would differ from the −k–blocks. These also
appeared in the MK simulations for the examples which go through very long almost stable
phases. In this case non-symmetric configurations only appeared due to numerical errors and
this problem can be easily cured in the MK method by symmetrizing the Q(k) parameters after
each coarse graining step.

In the TNR method non-symmetric configurations not only appear due to numerical errors
but are also caused by the cutoff, which might neglect one of a pair of degenerate singular values.
This happens quite generically if the cutoff is increased (apart from the Dc = 25 simulations we
also tried Dc = 32 and inbetween values) and it is increasingly difficult to find a value for Dc

where this does not appear, say, for the first twenty iterations.
This non-symmetric behavior does not matter so much for configurations which would con-

verge fast to some stable fixed point but do cause long sequences of oscillating behavior for
configurations, which we suspect would otherwise rather approach slowly an unstable fixed
point. For these examples the ordered sequence of singular values at a given iteration decreases
rather slowly. Even for Dc = 32 the neglected singular values can be of order 10−1 and an
unsymmetric cutoff will have considerable influence on the overall behaviour. This problem is
especially pronounced for the 2D models with larger q, as we there encounter rather weak phase
transitions.

For future work one should address this issue12. There are different possibilities, one is to use
a symmetric parametrization in the coarse graining procedure, i.e. only work with the k–blocks
where k ≤ q

2 . Another option is to use an adaptive cutoff Dc for each iteration step, such that
it avoids to cut between (k,−k) pairs.

A third option would be to change the approximation scheme slightly by choosing a block
dependent cutoff Dc(k). This would actually simplify the algorithm considerably. For sufficiently
high Dc and Dc(k) these schemes should yield equivalent results, this has however to be tested.

Note that non-symmetric configurations can however also appear due to numerical instabili-
ties, so that one might have to implement some symmetrization procedure (if one does not work
with a parametrization that only allows symmetric configurations).

6 Discussion and outlook

Extracting large scale physics from spin foam models is one of the most pressing issues for
the field. Here we advocated the development and use of coarse graining and renormalization

12It does however only appear for groups where the dual representation ρ∗ is not equivalent to the original
representation ρ. For the rotation group SU(2) we rather have ρ∗ ≡ ρ, but for U(1) we have ρ∗k ≡ ρ−k.
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techniques so that hopefully a feasible method for 4D models can be found. To this end, we
introduced a wide range of simplified models, spin foams with finite groups and moreover spin
nets, which can be seen as a dimensionally reduced version of spin foams. This not only enables
us to test and develop coarse graining methods but also to obtain some physical insights and to
put forward conjectures about the dynamical behavior of the full models.

This strategy allows us to adopt coarse graining methods from lattice gauge theory and con-
densed matter system, here the Migdal-Kadanoff scheme and the tensor network renormaliza-
tion method. The two methods have different drawbacks and advantages. The Migdal-Kadanoff
scheme facilitates quick results (even a large number of iterations can take only seconds on a
PC), so that an overview of the phase structure encoded in the model can easily be obtained.
Here the main question is how this method can be generalized to non–Abelian spin foams with
non–trivial projectors, which no longer fall into the class of standard lattice gauge theories.

The tensor network renormalization method has the advantage of providing a systematic
improvement on the accuracy of the results. The required effort is considerably larger (100
Dc = 32 iterations may take several days on a PC). The method is however very general and
in its version based on the spin net representation, allows direct access to the behavior of the
(vertex) projector under coarse graining. Moreover, the blocking of variables is very natural if
one takes into account the geometric meaning of the representation labels in the gravitational
spin foam models. We presented an algorithm in which the Gauß constraint are kept explicitly
intact.

The tensor network renormalization method is easily generalizable to models with non–
Abelian groups, and indeed would nicely interact with the group theoretic content of these
models, see also [74]. Here it will be very interesting to study how a non–trivial vertex or edge
projector might change the phase structure as compared to the standard choice of the Haar
projector. This will also facilitate a better understanding of the dynamics in the full gravitational
models. To this end, a class of finite group models emulating the current gravitational EPRL
models [8] is constructed in [106]. An important question for future research will be whether the
degenerate phase, that is the high temperature fixed point can be avoided by selecting suitable
projectors. This can already be studied for the 2D spin net models. Furthermore it has to be
explored how the tensor network renormalization method can successfully be applied to three
and four–dimensional spin net and spin foam models.

An alternative to using the tensor network formalism to describe the partition function of
a system would be to apply tensor network renormalization as a kind of improved mean field
approach in a canonical quantization. This would change the (statistical) systems from D–
dimensional classical to (D − 1)–dimensional quantum ones. In this case the tensor networks
would provide an ansatz for the ground states of the models [73, 76, 105]. In gravity, instead
of minimizing one Hamiltonian or energy functional, one rather has to deal with a number
of constraints, which have to annihilate the so–called physical states. The master constraint
[107–109] or the uniform discretization approach [110, 111] provide a framework where just one
(master) constraint has to be minimized.

In this work we have considered systems on a regular lattice, as this made explicit simulations
feasible. Nevertheless one should consider generalizations of these methods to random lattices
[49, 50]. Another question is how the phase structure found on a fixed lattice relates to phases
in models, that include a sum over all possible lattices [112–115], in particular regarding the
remarks in section 3.

We see this work as a contribution towards a closer link between the quantum gravity and
the statistical physics / condensed matter communities. For quantum gravity researchers, this
offers the prospect of new concepts and numerical tools to study the large-scale physics of their
models, whereas for people working in statistical physics it offers new models, new questions, a
geometrical perspective and a rich set of mathematical tools behind it.
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