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Summary

How humans understand the intention of others’ actions
remains controversial. Some authors have suggested that

intentions are recognized by means of a motor simulation
of the observed action with the mirror-neuron system

[1–3]. Others emphasize that intention recognition is an
inferential process, often called ‘‘mentalizing’’ or employing

a ‘‘theory of mind,’’ which activates areas well outside the
motor system [4–6]. Here, we assessed the contribution of

brain regions involved in motor simulation and mentalizing
for understanding action intentions via functional brain

imaging. Results show that the inferior frontal gyrus (part
of the mirror-neuron system) processes the intentionality of

an observed action on the basis of the visual properties of
the action, irrespective of whether the subject paid attention

to the intention or not. Conversely, brain areas that are part
of a ‘‘mentalizing’’ network become active when subjects

reflect about the intentionality of an observed action, but

they are largely insensitive to the visual properties of the
observed action. This supports the hypothesis that motor

simulation and mentalizing have distinct but complementary
functions for the recognition of others’ intentions.

Results

Understanding the intentions of others is the basis of social
cognition and is of crucial importance for any species living
in groups. The ability to understand intentions has been dem-
onstrated in 14-month-old human infants [7], as well as in other
social animals [8, 9]. The mechanisms behind the ability to
understand intentions are, however, poorly understood. On
the one hand, it has been proposed that understanding the
intention of others’ actions is accomplished by means of an
automatic motoric simulation [1]. This simulation is thought
to be carried out by neurons in the parietal and premotor cor-
tex that are active during both observation and execution of
action—the mirror-neuron system (MNS) [2, 3]. On the other
hand, others assert that intention understanding cannot be
purely motoric in nature. Rather, mental states like beliefs
and desires are attributed to other people in order to under-
stand the intentions of their actions—the formation of a
so-called theory of mind (ToM) [4, 5]. This mentalizing process
recruits a network of cerebral regions that are well outside
the motor system, namely superior temporal cortex, the

*Correspondence: florisdelange@gmail.com (F.P.d.L.), h.bekkering@nici.ru.

nl (H.B.)
temporoparietal junction, and the midline structures posterior
cingulate and medial prefrontal cortex [4, 6, 10, 11].

These different accounts of intention understanding have
often been considered mutually exclusive, but recently the
hypothesis has been coined that these two systems may
have a complementary role in understanding action intentions
[12, 13]. For instance, motor-simulation mechanisms may pro-
vide a ‘‘prereflective’’ or automatic representation of an action
based on the visual state of the other, whereas inferential
mechanisms may then elaborate on this initial hypothesis by
using conceptual knowledge of the other’s mental state [12].
We tested this hypothesis by recording neural activity while
participants observed an actor performing an ordinary or
extraordinary goal-directed action, in terms of its intention or
in terms of its motoric manner (see Figure 1A for examples).
Moreover, we varied the task of the participant: On some trials,
participants had to judge whether the intention of the action
was ordinary, whereas on other trials, subjects had to judge
whether the action was carried out in an ordinary manner
(Figure 1B). By means of this design, we could pry apart
regions that encode the intentionality of an action in an auto-
matic stimulus-driven manner and regions that are activated
when we actively reflect about the intentionality of an action.
Areas driven automatically by the intention conveyed by the
visual information should be modulated by the stimulus,
irrespective of the task for the participants. On the other
hand, areas sensitive to mentalizing should be modulated by
the task, irrespective of the stimulus.

Behavioral data indicate that both the intentionality and
means of the observed actions were processed, irrespective
of the task in which subjects were engaged (Supplemental
Experimental Procedures and Figure S1, available online).

Observing actions with extraordinary intentions was associ-
ated with increased activation (compared to ordinary actions)
in the inferior frontal gyrus (Figure 2A, left column). Activity in
this region was independent of whether the participants
attended to the intention or to the manner of the action
(Figure S2A). Observing actions that were carried out in an
extraordinary manner was associated with higher activity
(compared to ordinary actions) in the lateral occipitotemporal
cortex, around the ‘‘extrastriate body area’’ (Figure 2A, right
column) [14].

When participants selectively attended to the intentionality
of the action, three regions showed an enhanced response
(compared to when they attended to the means): The medial
prefrontal cortex, posterior cingulate cortex, and right
posterior superior temporal sulcus (Figure 2B). These three
regions are all part of a network that is involved in inferential,
interpretive processes, such as mentalizing [10, 15] and intro-
spection [16].

Discussion

A recent hypothesis states that motor simulation and inferen-
tial nonmotoric mechanisms may play complementary roles in
understanding action intentions [12, 13]. Our results provide
empirical support for a specific type of division of labor
between mirroring and mentalizing networks during action
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understanding: Whereas the inferior frontal gyrus, part of the
MNS, automatically encodes the intentionality of an action
on the basis of its visual properties, brain regions that are
part of a ‘‘mentalizing network’’ are specifically engaged
when we reflect about its intention.

Previous studies have shown the involvement of the MNS in
action understanding [17, 18]. Consistent with these observa-
tions, we found activation of the inferior frontal gyrus related to
action understanding. The inferior frontal gyrus was not
modulated by the task of the observer, but its contribution
was nevertheless specific to intention extraction. Actions
that had an ordinary intention but were carried out in an
unusual manner did not modulate the MNS, but rather the
extrastriate body area (EBA) [14]. This area selectively re-
sponds to body parts [14], and disruption of the region results
in impaired identification of body parts [18]. Our data show that
EBA activity is further influenced by the motoric context in
which the body part is presented. Although we found distinct
brain regions involved in processing the means and the inten-
tion of an action, these aspects of action understanding do

Figure 1. Stimulus Material and Experimental Design

(A) Examples of the stimuli. Subjects observed pictures of normal

actions (left column), actions of which the intention was unusual (middle

column), and actions that were carried out in an unusual manner (right

column).

(B) Task setup. Participants were instructed to attend either the intention

or the means of the action. They subsequently had to judge a series of

stimuli. The stimulus-onset asynchrony (SOA) between subsequent

stimuli within one block was 5–6 s. We used a mixed blocked and

event-related design to isolate both stimulus- and task-related effects.

Figure 2. Stimulus-Driven and Task-Driven Brain Reponses

(A) Stimulus effects. Unusual intentions evoked greater activity bilater-

ally in the inferior frontal gyrus (IFG; left column), part of the MNS. Ac-

tions that were carried out in an unusual manner evoked greater activity

bilaterally in the lateral occipitotemporal cortex, around the putative ex-

trastriate body area (EBA; right column).

(B) Task effects. When subjects watched ordinary actions but

selectively attended the intention of the action, there was greater activity

in the posterior cingulate and medial prefrontal cortex (left column) and

in the right superior temporal sulcus (right column). These are three core

nodes of the ‘‘mentalizing’’ network.

appear intricately linked and exhibit a hierarchical relation-
ship [19]: Only after an actor’s intention is recognized can
the means of an action be usefully interpreted. This hierar-
chical and distributed organization of goal-directed action
fits well with neuropsychological [20, 21] and brain-imaging
[22–24] dissociations found between different levels of the
hierarchy of motor control.

When participants attended to the intentionality of the
action, there was an increase in activation in the medial pre-
frontal cortex, the posterior cingulate, and the right posterior
superior temporal sulcus (compared to when the participants
attended to the means). All these regions have been involved
in several aspects of social cognition, such as the interpreta-
tion of human motion, attribution of agency, and inference of
the mental state of an observed actor [10, 11, 15]. This network
also showed intrinsic (non-task-related) activity (Figure S2), in
line with earlier studies showing a link between these regions
and stimulus-independent thought and introspection [16, 25].
Here we show that activity in this network is driven by the
reflective state of the participant but is largely insensitive to
the visual properties of the observed action.

To infer another person’s intentions, we need to comple-
ment sensorimotor knowledge with conceptual information
about mental states and attitudes [26]. Therefore, motor
simulation and mentalizing are not mutually exclusive. Rather,
our data underscore the notion that mirroring mechanisms
and reflective, inferential mechanisms play distinct but
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complementary roles in understanding the intentions of other
agents around us. The exact nature of this interaction should
be the focus of future research.

Experimental Procedures

Subjects

The study was approved by the local ethics committee and in accordance

with the Helsinki declaration. Subjects were screened for the following

exclusion criteria: left handedness, regular taking of drugs or medication,

history of psychiatric or neurological illnesses, and contraindications to

MRI scanning (pregnancy, claustrophobia, metallic implants). All subjects

gave informed consent prior to taking part. A total of 19 subjects were

scanned: 10 females (mean age 21.5 6 2.3 yr; Edinburgh Handedness Inven-

tory 92 6 11) and 9 males (mean age 24.2 6 3.3 yr; Edinburgh Handedness

Inventory 91 6 14).

Behavioral Task and Analysis

Subjects were shown pictures of an actor who was engaged in an interac-

tion with an object. The scene could depict a normal action (e.g., an actor

bringing a coffee cup to her mouth), an action with an unusual intention

(e.g., an actor bringing a coffee cup to her ear), or an action with an unusual

means (e.g., an actor bringing a coffee cup to her mouth while holding the

cup with a power grip; see Figure 1A for examples and Supplemental

Data for a full list of stimuli). Scenes with both unusual intention and means

were also included in order to balance all the possible combinations of usual

and extraordinary means and intentions. We have used the term ‘‘intention’’

to refer to the global intention of the actor performing a given motor act, or

the ‘‘why’’ of an action, as defined by Iacoboni et al. [17]. Note that this

distinction between intentions and means coincides with the distinction

between ‘‘prior intentions’’ and ‘‘motor intentions’’ [27]. The picture was

shown for a duration of 3 s. Subjects had to judge either the intentionality

of the action or whether the means of the action was normal or unusual

by pressing one of two buttons with the index or middle finger of their right

hand. The instruction for the intention task was, ‘‘For the following set of

pictures, decide whether the intention of the action is ordinary or unusual.’’

The instruction for the means task was, ‘‘For the following set of pictures,

decide whether the action is carried out in an ordinary or unusual manner.’’

Before scanning, subjects were familiarized with the tasks by practicing 36

trials per task. For the scanning session, we grouped the different task

conditions in separate blocks. Each block consisted of 6–7 stimuli. The

stimulus-onset asynchrony (SOA) ranged from 5 to 6 s. Each stimulus

type was replicated 20 times for each task, leading to an experimental dura-

tion of w21 min, spaced over a total of 26 task blocks. Stimulus presentation

was controlled with Presentation software (Neurobehavioral Systems,

Albany, NY, USA). Reaction times (RTs) and error rates (ERs) were recorded

for subsequent behavioral analysis. We assessed the influence of Task (two

levels: attend to intention, attend to means) and Stimulus (three levels:

normal action, unusual intention, unusual means) on RT and ER with

a multivariate repeated-measures ANOVA.

Image Acquisition and Analysis

Whole brain T2*-weighted echo-planar imaging blood-oxygenation-level-

dependent (EPI-BOLD) fMRI data were acquired with a Siemens Trio 3T

magnetic resonance scanner using the CP head array coil, with ascending

slice ordering, a volume repetition time of 2.13 s, an echo time of 30 ms,

a 80� flip angle, and isotropic voxel size of 3.5 mm. The fMRI data were

preprocessed and analyzed in an event-related manner, within the general

linear model, with SPM5 software (Wellcome Department of Imaging Neuro-

science, London, UK). The first five volumes of each session were dis-

carded, to allow for T1 equilibration effects. Preprocessing consisted of

spatial realignment, slice-timing correction, normalization, and spatial

smoothing with a Gaussian kernel with a full width at half-maximum of 10

mm. We used a single statistical linear regression model for all our analyses,

as follows. Each trial was modeled as a boxcar, of which the onset corre-

sponded to stimulus onset and the duration corresponded with the average

reaction time of the subject. Two control analyses were carried out to

exclude the possibility that reaction-time differences between tasks were

driving the observed task differences (see Supplemental Data). Separate

regressors were created for the six conditions (two tasks 3 three stimulus

types). Separate regressors that modeled the instruction epochs, erroneous

trials, and missed trials were included in the model. All regressors were

convolved with a canonical hemodynamic response function (HRF). To
correct for motion-related artifacts, we modeled subject-specific realign-

ment parameters as covariates of no interest. Linear contrasts of regression

coefficients were computed at the individual subject level and then taken to

a group-level random-effects analysis. To avoid any priors on brain localiza-

tion, we applied whole-brain family-wise error (FWE) correction for multiple

comparisons on the basis of random field theory. We used a corrected clus-

ter threshold of p < 0.05, on the basis of a voxel-wise threshold of p < 0.001.

The contrasts isolating stimulus-related effects (unusual intention >

normal action and unusual means > normal action) considered stimuli in

both task blocks. The contrast isolating task-related effects considered

only normal actions, in order to avoid any confounding effects of stimulus

type on this comparison.

Supplemental Data

Additional Experimental Procedures, two figures, and two tables are

available at http://www.current-biology.com/cgi/content/full/18/6/454/

DC1/.
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