de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Inflationary observables in loop quantum cosmology

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons4348

Calcagni,  Gianluca
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1011.2779
(Preprint), 365KB

JCAP2011_03_032.pdf
(beliebiger Volltext), 433KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bojowald, M., & Calcagni, G. (2011). Inflationary observables in loop quantum cosmology. Journal of Cosmology and Astroparticle Physics, 2011(3): 032. doi:10.1088/1475-7516/2011/03/032.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0012-D158-9
Zusammenfassung
The full set of cosmological observables coming from linear scalar and tensor perturbations of loop quantum cosmology is computed in the presence of inverse-volume corrections. Background inflationary solutions are found at linear order in the quantum corrections; depending on the values of quantization parameters, they obey an exact or perturbed power-law expansion in conformal time. The comoving curvature perturbation is shown to be conserved at large scales, just as in the classical case. Its associated Mukhanov equation is obtained and solved. Combined with the results for tensor modes, this yields the scalar and tensor indices, their running, and the tensor-to-scalar ratio, which are all first order in the quantum correction. The latter could be sizable in phenomenological scenarios. Contrary to a pure minisuperspace parametrization, the lattice refinement parametrization is in agreement with both anomaly cancellation and our results on background solutions and linear perturbations. The issue of the choice of parametrization is also discussed in relation with a possible superluminal propagation of perturbative modes, and conclusions for quantum spacetime structure are drawn.