de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Simulations of black-hole binaries with unequal masses or non-precessing spins: accuracy, physical properties, and comparison with post-Newtonian results

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons4287

Husa,  Sascha
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons4364

Ohme,  Frank
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1007.4789
(Preprint), 2MB

PRD124008.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hannam, M., Husa, S., Ohme, F., Mueller, D., & Bruegmann, B. (2010). Simulations of black-hole binaries with unequal masses or non-precessing spins: accuracy, physical properties, and comparison with post-Newtonian results. Physical Review D., 82(12): 124008. doi:10.1103/PhysRevD.82.124008.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0012-C455-7
Zusammenfassung
We present gravitational waveforms for the last orbits and merger of black-hole-binary (BBH) systems along two branches of the BBH parameter space: equal-mass binaries with equal non-precessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein's equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each BH is $\chi_i = S_i/M_i^2 \in [-0.85,0.85]$, and along the unequal-mass branch the mass ratio is $q =M_2/M_1 \in [1,4]$. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties of the final merged BH, and compare the last 8-10 GW cycles up to $M\omega = 0.1$ with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN TaylorT1 approximant (including spin terms up to only 2.5PN order) gives the most robust performance, but it is possible to treat TaylorT4 in such a way that it gives the best accuracy for spins $\chi_i > -0.75$. When high-order amplitude corrections are included, the PN amplitude of the $(\ell=2,m=\pm2)$ modes is larger than the NR amplitude by between 2-4%.