de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Wall Crossing As Seen By Matrix Models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons2705

Ooguri,  Hirosi
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1005.1293
(Preprint), 528KB

CMP307_429.pdf
(Verlagsversion), 635KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ooguri, H., Sułkowski, P., & Yamazaki, M. (2011). Wall Crossing As Seen By Matrix Models. Communications in Mathematical Physics, 307(2), 429 -462. doi:10.1007/s00220-011-1330-x.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0012-BD1F-7
Zusammenfassung
The number of BPS bound states of D-branes on a Calabi-Yau manifold depends on two sets of data, the BPS charges and the stability conditions. For D0 and D2-branes bound to a single D6-brane wrapping a Calabi-Yau 3-fold $X$, both are naturally related to the K\"ahler moduli space ${\cal M}(X)$. We construct unitary one-matrix models which count such BPS states for a class of toric Calabi-Yau manifolds at infinite 't Hooft coupling. The matrix model for the BPS counting on $X$ turns out to give the topological string partition function for another Calabi-Yau manifold $Y$, whose K\"ahler moduli space ${\cal M}(Y)$ contains two copies of ${\cal M}(X)$, one related to the BPS charges and another to the stability conditions. The two sets of data are unified in ${\cal M}(Y)$. The matrix models have a number of other interesting features. They compute spectral curves and mirror maps relevant to the remodeling conjecture. For finite 't Hooft coupling they give rise to yet more general geometry $\widetilde{Y}$ containing $Y$.