de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Binary black hole evolutions of approximate puncture initial data

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons20659

Hinder,  Ian
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

0902.1127
(Preprint), 464KB

PRD_80_024008.pdf
(beliebiger Volltext), 638KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bode, T., Laguna, P., Shoemaker, D. M., Hinder, I., Herrmann, F., & Vaishnav, B. (2009). Binary black hole evolutions of approximate puncture initial data. Physical Review D., 80: 024008. doi:10.1103/PhysRevD.80.024008.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0012-BC6E-1
Zusammenfassung
Approximate solutions to the Einstein field equations are a valuable tool to investigate gravitational phenomena. An important aspect of any approximation is to investigate and quantify its regime of validity. We present a study that evaluates the effects that approximate puncture initial data, based on "skeleton" solutions to the Einstein constraints as proposed by Faye et al. [PRD 69, 124029 (2004)], have on numerical evolutions. Using data analysis tools, we assess the effectiveness of these constraint-violating initial data and show that the matches of waveforms from skeleton data with the corresponding waveforms from constraint-satisfying initial data are > 0.97 when the total mass of the binary is > 40M(solar). In addition, we demonstrate that the differences between the skeleton and the constraint-satisfying initial data evolutions, and thus waveforms, are due to negative Hamiltonian constraint violations present in the skeleton initial data located in the vicinity of the punctures. During the evolution, the skeleton data develops both Hamiltonian and momentum constraint violations that decay with time, with the binary system relaxing to a constraint-satisfying solution with black holes of smaller mass and thus different dynamics.