de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Exact analytical solutions to the master equation of quantum Brownian motion for a general environment

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons2687

Roura,  Albert
Quantum Gravity and Unified Theories, AEI Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1004.1603
(Preprint), 4MB

AoP326_1207.pdf
(beliebiger Volltext), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fleming, C. H., Roura, A., & Hu, B. L. (2011). Exact analytical solutions to the master equation of quantum Brownian motion for a general environment. Annals of Physics, 326(5), 1207-1258. doi:doi:10.1016/j.aop.2010.12.003.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0012-BC00-8
Zusammenfassung
We revisit the model of a quantum Brownian oscillator linearly coupled to an environment of quantum oscillators at finite temperature. By introducing a compact and particularly well-suited formulation, we give a rather quick and direct derivation of the master equation and its solutions for general spectral functions and arbitrary temperatures. The flexibility of our approach allows for an immediate generalization to cases with an external force and with an arbitrary number of Brownian oscillators. More importantly, we point out an important mathematical subtlety concerning boundary-value problems for integro-differential equations which led to incorrect master equation coefficients and impacts on the description of nonlocal dissipation effects in all earlier derivations. Furthermore, we provide explicit, exact analytical results for the master equation coefficients and its solutions in a wide variety of cases, including ohmic, sub-ohmic and supra-ohmic environments with a finite cut-off.