de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantitative iTRAQ proteome and comparative transcriptome analysis of elicitor-induced Norway spruce (Picea abies) cells reveals elements of calcium signaling in the early conifer defense response

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons4094

Phillips,  M.
Department of Biochemistry, MPI for Chemical Ecology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons3884

Gershenzon,  J.
Department of Biochemistry, MPI for Chemical Ecology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Lippert, D. N., Ralph, S. G., Phillips, M., White, R., Smith, D., Hardie, D., et al. (2009). Quantitative iTRAQ proteome and comparative transcriptome analysis of elicitor-induced Norway spruce (Picea abies) cells reveals elements of calcium signaling in the early conifer defense response. Proteomics, 9(2), 350-367. doi:10.1002/pmic.200800252.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0012-A6C3-E
Abstract
Long-lived conifer trees depend on both constitutive and induced defenses for resistance against a myriad of potential pathogens and herbivores. In species of spruce (Picea spp.), several of the late events of pathogen-, insect-, or elicitor-induced def