de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Isotropic Curvature and the Ricci Flow

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons2715

Nguyen,  Huy T.
Geometric Analysis and Gravitation, AEI Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

rnp147v1.pdf
(beliebiger Volltext), 172KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nguyen, H. T. (2010). Isotropic Curvature and the Ricci Flow. International Mathematics Research Notices, 2010(3): rnp147, pp. 536-558. doi:10.1093/imrn/rnp147.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0012-9DDC-9
Zusammenfassung
In this paper, we study the Ricci flow on higher dimensional compact manifolds. We prove that nonnegative isotropic curvature is preserved by the Ricci flow in dimensions greater than or equal to four. In order to do so, we introduce a new technique to prove that curvature functions defined on the orthonormal frame bundle are preserved by the Ricci flow. At a minimum of such a function, we compute the first and second derivatives in the frame bundle. Using an algebraic construction, we can use these expressions to show that the nonlinearity is positive at a minimum. Finally, using the maximum principle, we can show that the Ricci flow preserves the cone of curvature operators with nonnegative isotropic curvature.