de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The GEO 600 squeezed light source

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons40504

Vahlbruch,  Henning
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons40463

Khalaidovski,  Alexander
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons40471

Lastzka,  Nico
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons40454

Gräf,  Christian
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons40490

Schnabel,  Roman
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

CQG_27_8_084027.pdf
(Any fulltext), 859KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Vahlbruch, H., Khalaidovski, A., Lastzka, N., Gräf, C., Danzmann, K., & Schnabel, R. (2010). The GEO 600 squeezed light source. Classical and Quantum Gravity, 27: 084027. doi:10.1088/0264-9381/27/8/084027.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0012-9D57-6
Abstract
The next upgrade of the GEO 600 gravitational-wave detector is scheduled for 2010 and will, in particular, involve the implementation of squeezed light. The required non-classical light source is assembled on a 1.5 m2 breadboard and includes a full coherent control system and a diagnostic balanced homodyne detector. Here, we present the first experimental characterization of this setup as well as a detailed description of its optical layout. A squeezed quantum noise of up to 9 dB below the shot-noise level was observed in the detection band between 10 Hz and 10 kHz. We also present an analysis of the optical loss in our experiment and provide an estimation of the possible non-classical sensitivity improvement of the future squeezed light enhanced GEO 600 detector.