Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Detection of IMBHs with ground-based gravitational wave observatories: A biography of a binary of black holes, from birth to death

MPG-Autoren
/persons/resource/persons20654

Amaro-Seoane,  Pau
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20672

Santamaria,  Lucia
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

0910.0254
(Preprint), 493KB

APJ722_2_1197.pdf
(beliebiger Volltext), 696KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Amaro-Seoane, P., & Santamaria, L. (2010). Detection of IMBHs with ground-based gravitational wave observatories: A biography of a binary of black holes, from birth to death. Astrophysical Journal, 722(2), 1197-206. doi:10.1088/0004-637X/722/2/1197.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0012-9CB1-2
Zusammenfassung
Even though the existence of intermediate-mass black holes has not yet been corroborated observationally, these objects are of high interest for astrophysics. Our understanding of formation and evolution of supermassive black holes (SMBHs), as well as galaxy evolution modeling and cosmography would dramatically change if an IMBH was observed. The prospect of detection and, possibly, observation and characterization of an IMBH has good chances in lower-frequency gravitational-wave (GW) astrophysics with ground-based detectors such as LIGO, Virgo and the future Einstein Telescope (ET). We present an analysis of the signal of a system of a binary of IMBHs based on a waveform model obtained with numerical relativity simulations coupled with post-Newtonian calculations at the highest available order so as to extend the waveform to lower frequencies. We find that initial LIGO and Virgo are in the position of detecting IMBHs with a signal-to-noise ratio (SNR) of $\sim 10$ for systems with total mass between 100 and $500 M_{\odot}$ situated at a distance of 100 Mpc. Nevertheless, the event rate is too low and the possibility that these signals are mistaken with a glitch is, unfortunately, non-negligible. When going to second- and third-generation detectors, such as Advanced LIGO or the proposed ET, the event rate becomes much more promising (tens per year for the first and thousands per year for the latter) and the SNR at 100 Mpc is as high as 100 -- 1000 and 1000 -- $10^{5}$ respectively. The prospects for IMBH detection and characterization with ground-based GW observatories would not only provide us with a robust test of general relativity, but would also corroborate the existence of these systems. Such detections would be a probe to the stellar environments of IMBHs and their formation.