de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Blandford's Argument: The Strongest Continuous Gravitational Wave Signal

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons1452

Knispel,  Benjamin
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons40518

Allen,  Bruce
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

PRD78-2008.pdf
(Verlagsversion), 586KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Knispel, B., & Allen, B. (2008). Blandford's Argument: The Strongest Continuous Gravitational Wave Signal. Physical Review D, 78(4): 04431. doi:10.1103/PhysRevD.78.044031.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-6BD8-F
Zusammenfassung
For a uniform population of neutron stars whose spin-down is dominated by the emission of gravitational radiation, an argument by Blandford states that the expected gravitational wave amplitude of the nearest source is independent of the deformation and rotation frequency of the objects. Recent work has improved and extended this argument to set upper limits on the expected amplitude from neutron stars which also emit electromagnetic radiation. We restate these argments in a more general framework, and simulate the evolution of such a population of stars in the gravitational potential of our Galaxy. The simulations allow us to test the assumptions of Blandford's argument on a realistic model of our Galaxy. We show that the two key assumptions of the argument (two-dimensionality of the spatial distribution and a steady-state frequency distribution) are in general not fulfilled. The effective scaling dimension of the spatial distribution of neutron stars is significantly larger than two, and for frequencies detectable by terrestrial instruments the frequency distribution is not in a steady state unless the ellipticity is unrealistically large. Thus, in the cases of most interest, the maximum expected gravitational wave amplitude does have a strong dependence on the deformation and rotation frequency of the population. The results strengthen the previous upper limits on the expected gravitational wave amplitude from neutron stars.