de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Near-Constant Mean Curvature Solutions of the Einstein Constraint Equations with Non-Negative Yamabe Metrics

MPG-Autoren

Allen,  Paul T.
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

cqg8_7_075009.pdf
(Verlagsversion), 204KB

0710.0725v1.pdf
(Preprint), 220KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Allen, P. T., Clausen, A., & Isenberg, J. (2008). Near-Constant Mean Curvature Solutions of the Einstein Constraint Equations with Non-Negative Yamabe Metrics. Classical and Quantum Gravity, 25(7): 075009. doi:1088/0264-9381/25/7/075009.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-62CD-6
Zusammenfassung
We show that sets of conformal data on closed manifolds with the metric in the positive or zero Yamabe class, and with the gradient of the mean curvature function sufficiently small, are mapped to solutions of the Einstein constraint equations. This result extends previous work which required the conformal metric to be in the negative Yamabe class, and required the mean curvature function to be nonzero.