de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Local magnetism in MnSiPt rules the chemical bond

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons126819

Rosner,  Helge
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126726

Leithe-Jasper,  Andreas
Andreas Leithe-Jasper, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126563

Carrillo-Cabrera,  Wilder
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126838

Schnelle,  Walter
Walter Schnelle, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126505

Ackerbauer,  Sarah V.
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126611

Gamza,  Monika B.
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126626

Grin,  Yuri
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Rosner, H., Leithe-Jasper, A., Carrillo-Cabrera, W., Schnelle, W., Ackerbauer, S. V., Gamza, M. B., et al. (2018). Local magnetism in MnSiPt rules the chemical bond. Proceedings of the National Academy of Sciences of the United States of America, 115(30), 7706-7710. doi:10.1073/pnas.1806842115.


Cite as: http://hdl.handle.net/21.11116/0000-0001-DF76-0
Abstract
A crystal structure can be understood as a result of bonding interactions (covalent, ionic, van der Waals, etc.) between the constituting atoms. If the forces caused by these interactions are equilibrated, the so-stabilized crystal structure should have the lowest energy. In such an atomic configuration, additional weaker atomic interactions may further reduce the total energy, influencing the final atomic arrangement. Indeed, in the intermetallic compound MnSiPt, a 3D framework is formed by polar covalent bonds between Mn, Si, and Pt atoms. Without taking into account the local spin polarization of manganese atoms, they would form Mn–}Mn bonds within the framework. Surprisingly, the local magnetic moments of manganese prevent the formation of Mn{–}Mn bonds, thus changing decisively and significantly the final atomic arrangement.Among intermetallic compounds, ternary phases with the simple stoichiometric ratio 1:1:1 form one of the largest families. More than 15 structural patterns have been observed for several hundred compounds constituting this group. This, on first glance unexpected, finding is a consequence of the complex mechanism of chemical bonding in intermetallic structures, allowing for large diversity. Their formation process can be understood based on a hierarchy of energy scales: The main share is contributed by covalent and ionic interactions in accordance with the electronic needs of the participating elements. However, smaller additional atomic interactions may still tip the scales. Here, we demonstrate that the local spin polarization of paramagnetic manganese in the new compound MnSiPt rules the adopted TiNiSi-type crystal structure. Combining a thorough experimental characterization with a theoretical analysis of the energy landscape and the chemical bonding of MnSiPt, we show that the paramagnetism of the Mn atoms suppresses the formation of Mn{–Mn bonds, deciding between competing crystal structures.