English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Redox behavior of solid solutions in the SrFe1‐xCuxO3‐δ system for application in thermochemical oxygen storage and air separation

MPS-Authors
/persons/resource/persons21590

Hävecker,  Michael
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons205557

Skorupska,  Katarzyna
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Vieten, J., Bulfin, B., Starr, D. E., Hariki, A., de Groot, F. M. F., Azarpira, A., et al. (2018). Redox behavior of solid solutions in the SrFe1‐xCuxO3‐δ system for application in thermochemical oxygen storage and air separation. Energy Technology. doi:10.1002/ente.201800554.


Cite as: https://hdl.handle.net/21.11116/0000-0001-AC60-1
Abstract
Perovskite oxides with temperature and oxygen partial pressure dependent non‐stoichiometry δ, such as SrFeO3‐δ or its Cu‐doped variants, can be applied as redox materials for two‐step thermochemical processes, i.e. to reversibly store oxygen and thereby thermal energy, or separate air using concentrated solar power. We studied the redox state of Cu in SrFe1‐xCuxO3‐δ samples using in‐situ X‐ray photoelectron spectroscopy (XPS) and X‐ray absorption (XAS) measurements in oxygen atmospheres using synchrotron radiation, and characterized these materials through thermogravimetric analysis. By this means, we show how spectroscopic and thermogravimetric data are correlated, suggesting that Cu and Fe are reduced simultaneously for x = 0.05, whereas the reduction of samples with x = 0.15 is mainly driven by a change in the Fe oxidation state. Furthermore, we studied the re‐oxidation kinetics of reduced SrFe1‐xCuxO3‐δ, revealing very high reaction speeds with t1/2=13 min at 150 °C for SrFeO3‐δ. Our results indicate that SrFe1‐xCuxO3‐δ solid solutions can be applied for oxygen storage and air separation with high capacity at relatively low temperatures, which allows an efficient thermochemical process.