de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Redox behavior of solid solutions in the SrFe1‐xCuxO3‐δ system for application in thermochemical oxygen storage and air separation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21590

Hävecker,  Michael
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons205557

Skorupska,  Katarzyna
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vieten, J., Bulfin, B., Starr, D. E., Hariki, A., de Groot, F. M. F., Azarpira, A., et al. (2018). Redox behavior of solid solutions in the SrFe1‐xCuxO3‐δ system for application in thermochemical oxygen storage and air separation. Energy Technology. doi:10.1002/ente.201800554.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-AC60-1
Zusammenfassung
Perovskite oxides with temperature and oxygen partial pressure dependent non‐stoichiometry δ, such as SrFeO3‐δ or its Cu‐doped variants, can be applied as redox materials for two‐step thermochemical processes, i.e. to reversibly store oxygen and thereby thermal energy, or separate air using concentrated solar power. We studied the redox state of Cu in SrFe1‐xCuxO3‐δ samples using in‐situ X‐ray photoelectron spectroscopy (XPS) and X‐ray absorption (XAS) measurements in oxygen atmospheres using synchrotron radiation, and characterized these materials through thermogravimetric analysis. By this means, we show how spectroscopic and thermogravimetric data are correlated, suggesting that Cu and Fe are reduced simultaneously for x = 0.05, whereas the reduction of samples with x = 0.15 is mainly driven by a change in the Fe oxidation state. Furthermore, we studied the re‐oxidation kinetics of reduced SrFe1‐xCuxO3‐δ, revealing very high reaction speeds with t1/2=13 min at 150 °C for SrFeO3‐δ. Our results indicate that SrFe1‐xCuxO3‐δ solid solutions can be applied for oxygen storage and air separation with high capacity at relatively low temperatures, which allows an efficient thermochemical process.