de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Bayesian Prediction of Future Street Scenes through Importance Sampling based Optimization

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons197297

Bhattacharyya,  Apratim
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44451

Fritz,  Mario
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45383

Schiele,  Bernt
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1806.06939.pdf
(Preprint), 9MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bhattacharyya, A., Fritz, M., & Schiele, B. (2018). Bayesian Prediction of Future Street Scenes through Importance Sampling based Optimization. Retrieved from http://arxiv.org/abs/1806.06939.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-997B-9
Zusammenfassung
For autonomous agents to successfully operate in the real world, anticipation of future events and states of their environment is a key competence. This problem can be formalized as a sequence prediction problem, where a number of observations are used to predict the sequence into the future. However, real-world scenarios demand a model of uncertainty of such predictions, as future states become increasingly uncertain and multi-modal -- in particular on long time horizons. This makes modelling and learning challenging. We cast state of the art semantic segmentation and future prediction models based on deep learning into a Bayesian formulation that in turn allows for a full Bayesian treatment of the prediction problem. We present a new sampling scheme for this model that draws from the success of variational autoencoders by incorporating a recognition network. In the experiments we show that our model outperforms prior work in accuracy of the predicted segmentation and provides calibrated probabilities that also better capture the multi-modal aspects of possible future states of street scenes.