de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Symmetric tops in combined electric fields: Conditional quasisolvability via the quantum Hamilton-Jacobi theory

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons217229

Schatz,  Konrad
Molecular Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21529

Friedrich,  Bretislav
Molecular Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

PhysRevA.97.053417.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schatz, K., Friedrich, B., Becker, S., & Schmidt, B. (2018). Symmetric tops in combined electric fields: Conditional quasisolvability via the quantum Hamilton-Jacobi theory. Physical Review A, 97(5): 053417. doi:10.1103/PhysRevA.97.053417.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-6D1C-7
Zusammenfassung
We make use of the quantum Hamilton-Jacobi (QHJ) theory to investigate conditional quasisolvability of the quantum symmetric top subject to combined electric fields (symmetric top pendulum). We derive the conditions of quasisolvability of the time-independent Schrödinger equation as well as the corresponding finite sets of exact analytic solutions. We do so for this prototypical trigonometric system as well as for its anti-isospectral hyperbolic counterpart. An examination of the algebraic and numerical spectra of these two systems reveals mutually closely related patterns. The QHJ approach allows us to retrieve the closed-form solutions for the spherical and planar pendula and the Razavy system that had been obtained in our earlier work via supersymmetric quantum mechanics as well as to find a cornucopia of additional exact analytic solutions.