Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics

MPG-Autoren

Chekhov,  Alexander L.
Department of Physics, Moscow State University;
Faculty of Physics, University of Bialystok;
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons182542

Razdolski,  Ilya
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chekhov, A. L., Stognij, A. I., Satoh, T., Murzina, T. V., Razdolski, I., & Stupakiewicz, A. (2018). Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics. Nano Letters, 18(5), 2970-2975. doi:10.1021/acs.nanolett.8b00416.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-734D-8
Zusammenfassung
We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale.