Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt





Pt-Richcore/Sn-Richsubsurface/Ptskin Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction


Rizo,  Rubén
Interface Science, Fritz Haber Institute, Max Planck Society;
Departamento de Química Física, Instituto de Materiales y Nanotecnología, Universidad de La Laguna;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Rizo, R., Arán-Ais, R. M., Padgett, E., Muller, D. A., Lázaro, M. J., Solla-Gullón, J., et al. (2018). Pt-Richcore/Sn-Richsubsurface/Ptskin Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society, 140(10), 3791-3797. doi:10.1021/jacs.8b00588.

Direct ethanol fuel cells are one of the most promising electrochemical energy conversion devices for portable, mobile and stationary power applications. However, more efficient and stable and less expensive electrocatalysts are still required. Interestingly, the electrochemical performance of the electrocatalysts toward the ethanol oxidation reaction can be remarkably enhanced by exploiting the benefits of structural and compositional sensitivity and control. Here, we describe the synthesis, characterization, and electrochemical behavior of cubic Pt–Sn nanoparticles. The electrochemical activity of the cubic Pt–Sn nanoparticles was found to be about three times higher than that obtained with unshaped Pt–Sn nanoparticles and six times higher than that of Pt nanocubes. In addition, stability tests indicated the electrocatalyst preserves its morphology and remains well-dispersed on the carbon support after 5000 potential cycles, while a cubic (pure) Pt catalyst exhibited severe agglomeration of the nanoparticles after a similar stability testing protocol. A detailed analysis of the elemental distribution in the nanoparticles by STEM-EELS indicated that Sn dissolves from the outer part of the shell after potential cycling, forming a ∼0.5 nm Pt skin. This particular atomic composition profile having a Pt-rich core, a Sn-rich subsurface layer, and a Pt-skin surface structure is responsible for the high activity and stability.