de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Leveraging Semantic Annotations for Event-focused Search & Summarization

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons79375

Mishra,  Arunav
Databases and Information Systems, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44119

Berberich,  Klaus
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mishra, A. (2018). Leveraging Semantic Annotations for Event-focused Search & Summarization. PhD Thesis, Universität des Saarlandes, Saarbrücken. doi:10.22028/D291-27108.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-1844-8
Zusammenfassung
Today in this Big Data era, overwhelming amounts of textual information across different sources with a high degree of redundancy has made it hard for a consumer to retrospect on past events. A plausible solution is to link semantically similar information contained across the different sources to enforce a structure thereby providing multiple access paths to relevant information. Keeping this larger goal in view, this work uses Wikipedia and online news articles as two prominent yet disparate information sources to address the following three problems: • We address a linking problem to connect Wikipedia excerpts to news articles by casting it into an IR task. Our novel approach integrates time, geolocations, and entities with text to identify relevant documents that can be linked to a given excerpt. • We address an unsupervised extractive multi-document summarization task to generate a fixed-length event digest that facilitates efficient consumption of information contained within a large set of documents. Our novel approach proposes an ILP for global inference across text, time, geolocations, and entities associated with the event. • To estimate temporal focus of short event descriptions, we present a semi-supervised approach that leverages redundancy within a longitudinal news collection to estimate accurate probabilistic time models. Extensive experimental evaluations demonstrate the effectiveness and viability of our proposed approaches towards achieving the larger goal.