de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Comprehensive Metabolomics Studies of Plant Developmental Senescence

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons97470

Watanabe,  M.
Amino Acid and Sulfur Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97445

Tohge,  T.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97060

Balazadeh,  S.
Stress Control Networks, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97140

Erban,  A.
Applied Metabolome Analysis, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97166

Giavalisco,  P.
Small Molecules, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97239

Kopka,  J.
Applied Metabolome Analysis, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97307

Mueller-Roeber,  B.
Transcription Factors and Gene Regulatory Networks, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97147

Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97197

Hoefgen,  R.
Amino Acid and Sulfur Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Locator

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Watanabe, M., Tohge, T., Balazadeh, S., Erban, A., Giavalisco, P., Kopka, J., et al. (2018). Comprehensive Metabolomics Studies of Plant Developmental Senescence. In Y. Guo (Ed.), Plant Senescence: Methods and Protocols (pp. 339-358). New York, NY: Springer New York.


Cite as: http://hdl.handle.net/21.11116/0000-0000-63A7-4
Abstract
Leaf senescence is an essential developmental process that involves diverse metabolic changes associated with degradation of macromolecules allowing nutrient recycling and remobilization. In contrast to the significant progress in transcriptomic analysis of leaf senescence, metabolomics analyses have been relatively limited. A broad overview of metabolic changes during leaf senescence including the interactions between various metabolic pathways is required to gain a better understanding of the leaf senescence allowing to link transcriptomics with metabolomics and physiology. In this chapter, we describe how to obtain comprehensive metabolite profiles and how to dissect metabolic shifts during leaf senescence in the model plant Arabidopsis thaliana. Unlike nucleic acid analysis for transcriptomics, a comprehensive metabolite profile can only be achieved by combining a suite of analytic tools. Here, information is provided for measurements of the contents of chlorophyll, soluble proteins, and starch by spectrophotometric methods, ions by ion chromatography, thiols and amino acids by HPLC, primary metabolites by GC/TOF-MS, and secondary metabolites and lipophilic metabolites by LC/ESI-MS. These metabolite profiles provide a rich catalogue of metabolic changes during leaf senescence, which is a helpful database and blueprint to be correlated to future studies such as transcriptome and proteome analyses, forward and reverse genetic studies, or stress-induced senescence studies.