de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cluster Formation in the Superconducting Complex Intermetallic Compound Be21Pt5

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons214276

Amon,  Alfred
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126787

Ormeci,  Alim
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons146769

Bobnar,  Matej
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126510

Akselrud,  Lev G.
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126556

Burkhardt,  Ulrich
Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126806

Prots,  Yurii
Yuri Prots, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126726

Leithe-Jasper,  Andreas
Andreas Leithe-Jasper, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126626

Grin,  Yuri
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Amon, A., Ormeci, A., Bobnar, M., Akselrud, L. G., Avdeev, M., Gumeniuk, R., et al. (2018). Cluster Formation in the Superconducting Complex Intermetallic Compound Be21Pt5. Accounts of Chemical Research, 51(2), 214-222. doi:10.1021/acs.accounts.7b00561.


Cite as: http://hdl.handle.net/21.11116/0000-0000-2FF6-7
Abstract
ConspectusMaterials with the crystal structure of γ-brass type (Cu5Zn8 type) are typical representatives of intermetallic compounds. From the electronic point of view, they are often interpreted using the valence electron concentration approach of Hume–Rothery, developed previously for transition metals. The γ-brass-type phases of the main-group elements are rather rare. The intermetallic compound Be21Pt5, a new member of this family, was synthesized, and its crystal structure, chemical bonding, and physical properties were characterized.Be21Pt5 crystallizes in the cubic space group F4̅3m with lattice parameter a = 15.90417(3) Å and 416 atoms per unit cell. From the crystallographic point of view, the binary substance represents a special family of intermetallic compounds called complex metallic alloys (CMA). The crystal structure was solved by a combination of synchrotron and neutron powder diffraction data. Besides the large difference in the scattering power of the components, the structure solution was hampered by the systematic presence of very weak reflections mimicking wrong symmetry. The structural motif of Be21Pt5 is described as a 2 × 2 × 2 superstructure of the γ-brass structure (Cu5Zn8 type) or 6 × 6 × 6 superstructure of the simple bcc structural pattern with distinct distribution of defects. The main building elements of the crystal structure are four types of nested polyhedral units (clusters) with the compositions Be22Pt4 and Be20Pt6. Each cluster contains four shells (4 + 4 + 6 + 12 atoms). Clusters with different compositions reveal various occupation of the shells by platinum and beryllium. Polyhedral nested units with the same composition differ by the distance of the shell atoms to the cluster center.Analysis of chemical bonding was made applying the electron localizability approach, a quantum chemical technique operating in real space that is proven to be especially efficient for intermetallic compounds. Evaluations of the calculated electron density and electron localizability indicator (ELI-D) revealed multicenter bonding, being in accordance with the low valence electron count per atom in Be21Pt5. A new type of atomic interactions in intermetallic compounds, cluster bonds involving 8 or even 14 atoms, is found in the clusters with shorter distances between the shell atoms and the cluster centers. In the remaining clusters, four- and five-center bonds characterize the atomic interactions. Multicluster interactions within the polyhedral nested units and three-center polar intercluster bonds result in a three-dimensional framework resembling the structural pattern of NaCl. Be21Pt5 is a diamagnetic metal and one of rather rare CMA compounds revealing superconductivity (Tc = 2.06 K).