de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

PAOFLOW: A utility to construct and operate on ab initio Hamiltonians from the projections of electronic wavefunctions on atomic orbital bases, including characterization of topological materials

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons213699

Curtarolo,  Stefano
Materials Science, Electrical Engineering, Physics and Chemistry, Duke University;
Center for Materials Genomics, Duke University;
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nardelli, M. B., Cerasoli, F. T., Costa, M., Curtarolo, S., De Gennaro, R., Fornari, M., et al. (2018). PAOFLOW: A utility to construct and operate on ab initio Hamiltonians from the projections of electronic wavefunctions on atomic orbital bases, including characterization of topological materials. Computational Materials Science, 143, 462-472. doi:10.1016/j.commatsci.2017.11.034.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002E-9D06-5
Zusammenfassung
PAOFLOW is a utility for the analysis and characterization of materials properties from the output of electronic structure calculations. By exploiting an efficient procedure to project the full plane-wave solution on a reduced space of atomic orbitals, PAOFLOW facilitates the calculation of a plethora of quantities such as diffusive, anomalous and spin Hall conductivities, magnetic and spin circular dichroism, and Z2 topological invariants and more. The computational cost associated with post-processing first principles calculations is negligible. This code, written entirely in Python under GPL 3.0 or later, opens the way to the high-throughput computational characterization of materials at an unprecedented scale.