Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Toward an Understanding of Selective Alkyne Hydrogenation on Ceria: On the Impact of O Vacancies on H2 Interaction with CeO2(111)

MPG-Autoren
/persons/resource/persons208771

Werner,  Kristin
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons138036

Weng,  Xuefei
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons79433

Calaza,  Florencia
Chemical Physics, Fritz Haber Institute, Max Planck Society;
Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), UNL-CONICET;

/persons/resource/persons22106

Shaikhutdinov,  Shamil K.
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Werner, K., Weng, X., Calaza, F., Sterrer, M., Kropp, T., Paier, J., et al. (2017). Toward an Understanding of Selective Alkyne Hydrogenation on Ceria: On the Impact of O Vacancies on H2 Interaction with CeO2(111). Journal of the American Chemical Society, 139(48), 17608-17616. doi:10.1021/jacs.7b10021.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-9764-5
Zusammenfassung
Ceria (CeO2) has recently been found to be a promising catalyst in the selective hydrogenation of alkynes to alkenes. This reaction occurs primarily on highly dispersed metal catalysts, but rarely on oxide surfaces. The origin of the outstanding activity and selectivity observed on CeO2 remains unclear. In this work, we show that one key aspect of the hydrogenation reaction—the interaction of hydrogen with the oxide—depends strongly on the presence of O vacancies within CeO2. Through infrared reflection absorption spectroscopy on well-ordered CeO2(111) thin films and density functional theory (DFT) calculations, we show that the preferred heterolytic dissociation of molecular hydrogen on CeO2(111) requires H2 pressures in the mbar regime. Hydrogen depth profiling with nuclear reaction analysis indicates that H species stay on the surface of stoichiometric CeO2(111) films, whereas H incorporates as a volatile species into the volume of partially reduced CeO2–x(111) thin films (x ∼ 1.8–1.9). Complementary DFT calculations demonstrate that oxygen vacancies facilitate H incorporation below the surface and that they are the key to the stabilization of hydridic H species in the volume of reduced ceria.