de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ribosome reinitiation can explain length-dependent translation of messenger RNA

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56565

Rogers,  David W.
Max-Planck Research Group Experimental Evolution, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons200275

Böttcher,  Marvin A.
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56973

Traulsen,  Arne
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56563

Greig,  Duncan
Max-Planck Research Group Experimental Evolution, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Volltexte (frei zugänglich)

journal.pcbi.1005592.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rogers, D. W., Böttcher, M. A., Traulsen, A., & Greig, D. (2017). Ribosome reinitiation can explain length-dependent translation of messenger RNA. PLoS Computational Biology, 13(6): e1005592. doi:10.1371/journal.pcbi.1005592.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002E-87E0-E
Zusammenfassung
Author summary Recent advances in proteomics show that translation is strongly dependent on transcript length, but current theoretical models fail to capture this relationship. Here, we propose that the high initiation rates and protein yields of short transcripts result from terminating ribosomes reinitiating on the same transcript. The frequency of reinitiation depends on the time required to complete one full transit of a transcript, coupling transcript lengths and elongation rates to protein yield. Any slow step reduces the protein yield of shorter transcripts more than the yield of longer transcripts, generating stronger selective pressure to eliminate slow steps in shorter transcripts and explaining the widespread negative correlations in eukaryotes between transcript length and both 5' mRNA folding energy and codon adaptation. Our reinitiation-based model reconciles conflicting results from previous initiation-limited models with recent advances in biotechnology and identifies the mechanism underlying length-dependent translation, allowing powerful prediction of translational regulation across eukaryotes.