English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Competitive Molecular and Dissociative Hydrogen Chemisorption on Size Selected Doubly Rhodium Doped Aluminum Clusters

MPS-Authors
/persons/resource/persons21548

Gewinner,  Sandy
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22079

Schöllkopf,  Wieland
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21506

Fielicke,  André
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Institut für Optik und Atomare Physik, TU Berlin;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Vanbuel, J., Jia, M.-y., Ferrari, P., Gewinner, S., Schöllkopf, W., Nguyen, M. T., et al. (2018). Competitive Molecular and Dissociative Hydrogen Chemisorption on Size Selected Doubly Rhodium Doped Aluminum Clusters. Topics in Catalysis, 61(1), 62-70. doi:10.1007/s11244-017-0878-x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-7696-0
Abstract
The interaction of hydrogen with AlnRh2+ (n = 10–13) clusters is studied by mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Comparing the IRMPD spectra with predictions obtained using density functional theory calculations allows for the identification of the hydrogen binding geometry. For n = 10 and 11, a single H2 molecule binds dissociatively, whereas for n = 12 and 13, it adsorbs molecularly. Upon adsorption of a second H2 to Al12Rh2+, both hydrogen molecules dissociate. Theoretical calculations suggest that the molecular adsorption for n = 12 and 13 is not due to kinetic impediment of the hydrogenation reaction by an activation barrier, but due to a higher binding energy of the molecularly adsorbed hydrogen–cluster complex. Inspection of the highest occupied molecular orbitals shows that the hydrogen molecule initially forms a strongly bound Kubas complex with the Al11-13Rh2+ clusters, whereas it only binds weakly with Al10Rh2+.