de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Terahertz Sum-Frequency Excitation of a Raman-Active Phonon

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons39359

Mährlein,  Sebastian
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21937

Paarmann,  Alexander
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21693

Kampfrath,  Tobias
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Physics, Freie Universität Berlin;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

PhysRevLett.119.127402.pdf
(Verlagsversion), 637KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mährlein, S., Paarmann, A., Wolf, M., & Kampfrath, T. (2017). Terahertz Sum-Frequency Excitation of a Raman-Active Phonon. Physical Review Letters, 119(12): 127402. doi:10.1103/PhysRevLett.119.127402.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002E-0048-3
Zusammenfassung
In stimulated Raman scattering, two incident optical waves induce a force oscillating at the difference of the two light frequencies. This process has enabled important applications such as the excitation and coherent control of phonons and magnons by femtosecond laser pulses. Here, we experimentally and theoretically demonstrate the so far neglected up-conversion counterpart of this process: THz sumfrequency excitation of a Raman-active phonon mode, which is tantamount to two-photon absorption by an optical transition between two adjacent vibrational levels. Coherent control of an optical lattice vibration of diamond is achieved by an intense terahertz pulse whose spectrum is centered at half the phonon frequency of 40 THz. Remarkably, the carrier-envelope phase of the THz pulse is directly transferred into the phase of the lattice vibration. New prospects in general infrared spectroscopy, action spectroscopy, and lattice trajectory control in the electronic ground state emerge.